Exploring the Multifaceted Potential of Endangered Sturgeon: Caviar, Meat and By-Product Benefits
Abstract
:Simple Summary
Abstract
1. Introduction
2. From Roe to Caviar—Nutritional Profile and Preservation
2.1. Nutritional Profile of Sturgeon Roe
2.1.1. Water Content
2.1.2. Protein Content
2.1.3. Lipid Content
2.1.4. Carbohydrate Content
2.1.5. Amino Acid Composition
2.1.6. Fatty Acids Profile
2.1.7. Minerals and Vitamins
2.2. Raw Eggs versus Caviar—Nutritional Status
3. Sturgeon Meat—Main Product or By-Product?
3.1. Nutritional Profile of Sturgeon Meat
3.1.1. Amino Acids Composition
3.1.2. Fatty Acids Profile
3.1.3. Minerals and Vitamins
4. Unlocking the Potential of Sturgeon By-Products
4.1. Nutrients and Bioactive Compounds from Sturgeon By-Products
4.1.1. Proteins and Active Peptides
4.1.2. Collagen and Gelatin
4.1.3. Lipids
4.1.4. Minerals
4.2. Current Progress and Studies on Sturgeon By-Products
4.2.1. Bones and Cartilage
4.2.2. Skin/Scales
4.2.3. Viscera
4.2.4. Sturgeon Oil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bemis, W.E.; Kynard, B. Sturgeon rivers: An introduction to Acipenseriform biogeography and life history. Environ. Biol. Fish. 1997, 48, 167–184. [Google Scholar] [CrossRef]
- Bemis, W.E.; Findeis, E.K.; Grande, L. An overview of Acipenseriformes. Environ. Biol. Fish. 1997, 48, 25–71. [Google Scholar] [CrossRef]
- Fish Base. Available online: https://www.fishbase.se/photos/UploadedBy.php?autoctr=42814&win=uploaded (accessed on 30 July 2024).
- Fish Base. Available online: https://www.fishbase.se/photos/UploadedBy.php?autoctr=42838&win=uploaded (accessed on 30 July 2024).
- Billard, R.; Lecointre, G. Biology and conservation of sturgeon and paddlefish. Rev. Fish Biol. Fish. 2001, 10, 355–392. [Google Scholar] [CrossRef]
- Nelson, T.C.; Doukakis, P.; Lindley, S.T.; Schreier, A.D.; Hightower, J.E.; Hildebrand, L.R.; Whitlock, R.E.; Webb, M.A.H. Research Tools to Investigate Movements, Migrations, and Life History of Sturgeons (Acipenseridae), with an Emphasis on Marine-Oriented Populations. PLoS ONE 2013, 8, e71552. [Google Scholar] [CrossRef]
- IUCN. Red List of Threatened Species. Available online: https://www.iucn.org/content/sturgeon-more-critically-endangered-any-other-group-species (accessed on 14 June 2024).
- Bronzi, P.; Chebanov, M.; Michaels, J.T.; Wei, Q.; Rosenthal, H.; Gessner, J. Sturgeon meat and caviar production: Global update. J. Appl. Ichthyol. 2019, 35, 257–266. [Google Scholar] [CrossRef]
- Vasilyeva, L.M.; Elhetawy, A.I.G.; Sudakova, N.V.; Astafyeva, S.S. History, current status and prospects of sturgeon aquaculture in Russia. Aquac. Res. 2019, 50, 979–993. [Google Scholar] [CrossRef]
- Chen, R.; Liu, Z.; Wang, J.; Jin, W.; Abdu, H.I.; Pei, J.; Wang, Q.; Abd El-Aty, A.M. A review of the nutritional value and biological activities of sturgeon processed byproducts. Front. Nutr. 2022, 14, 1024309. [Google Scholar] [CrossRef] [PubMed]
- Google Scholar. Available online: https://scholar.google.com/scholar?q=%22sturgeon+aquaculture%22&hl=en&as_sdt=0%2C5&as_ylo=2000&as_yhi=2024 (accessed on 6 June 2024).
- Openknowledge.fao.org/FAO Report. Sustainable Fisheries and Aquaculture for Food Security and Nutrition. A Report by the High Level Panel of Experts on Food Security and Nutrition. Available online: http://www.fao.org/3/a-i3844e.pdf (accessed on 10 June 2024).
- White, P. Environmental consequences of poor feed quality and feed management. In On-Farm Feeding and Feed Management in Aquaculture; FAO Fisheries and Aquaculture Technical Paper; Hasan, M.R., New, M.B., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; pp. 553–564. [Google Scholar]
- Anderson, W.G.; Schreier, A.; Crossman, J.A. Conservation aquaculture—A stocking story. Fish Physiol. 2022, 39, 39–109. [Google Scholar] [CrossRef]
- Stevens, J.R.; Newton, R.W.; Tlusty, M.; Little, D.C. The rise of aquaculture by-products: Increasing food production, value, and sustainability through strategic utilisation. Mar. Policy 2018, 90, 115–124. [Google Scholar] [CrossRef]
- Laktuka, K.; Kalnbalkite, L.; Logins, K.; Lauka, D. Towards the Sustainable Intensification of Aquaculture: Exploring Possible Ways Forward. Sustainability 2023, 15, 16952. [Google Scholar] [CrossRef]
- Bledsoe, G.E.; Bledsoe, C.D.; Rasco, B. Caviars and fish roe products. Crit. Rev. Food Sci. Nutr. 2003, 43, 317–356. [Google Scholar] [CrossRef] [PubMed]
- CITES. Trade Database. Available online: https://trade.cites.org/en/cites_trade/download/view_results?filters%5Btime_range_start%5D=2022&filters%5Btime_range_end%5D=2024&filters%5Bexporters_ids%5D%5B%5D=all_exp&filters%5Bimporters_ids%5D%5B%5D=all_imp&filters%5Bsources_ids%5D%5B%5D=106&filters%5Bpurposes_ids%5D%5B%5D=123&filters%5Bterms_ids%5D%5B%5D=12&filters%5Btaxon_concepts_ids%5D%5B%5D=&filters%5Breset%5D=&filters%5Bselection_taxon%5D=taxonomic_cascade&web_disabled=&filters[report_type]=comptab (accessed on 6 June 2024).
- Ghelichi, S.; Hajfathalian, M.; Bekhit, A.E.D.A. Caviar: Processing, composition, safety, and sensory attributes. In Fish Roe; Academic Press: Cambridge, MA, USA, 2022; pp. 183–209. [Google Scholar] [CrossRef]
- Available online: https://globalseafoods.com/blogs/news/osetra-caviar-vs-beluga-caviar-which-one-is-better?_pos=1&_sid=effce6b44&_ss=r (accessed on 8 August 2024).
- Chebanov, M.S.; Billard, R. The culture of sturgeons in Russia: Production of juveniles for stocking and meat for human consumption. Aquat. Living Resour. 2001, 14, 375–381. [Google Scholar] [CrossRef]
- Conte, F.S.; Doroshov, S.I.; Lutes, P.B.; Strange, E.M. Hatchery Manual for the White Sturgeon (Acipenser transmontanus Richardson), With Application to Other North American Acipenseridae; University of California Agriculture and Natural Resources (ANR): Oakland, CA, USA, 1988; p. 104. [Google Scholar]
- Wei, Q.; Ke, F.; Zhang, J.; Zhuang, P.; Luo, J.; Zhou, R.; Yang, W. Biology, fisheries, and conservation of sturgeons and paddlefish in China. In Sturgeon Biodiversity and Conservation; Developments in Environmental Biology of Fishes; Birstein, V.J., Waldman, J.R., Bemis, W.E., Eds.; Springer: Dordrecht, The Netherlands, 1997; Volume 17. [Google Scholar] [CrossRef]
- Gessner, J.; Wirth, M.; Kirschbaum, F.; Krüger, A.; Patriche, N.; Fredrich, F. Caviar composition in wild and cultured sturgeons--impact of food sources on fatty acid composition and contaminant load. J. Appl. Ichthyol. 2002, 18, 665–672. [Google Scholar] [CrossRef]
- Omoto, N.; Arai, K.; Adachi, S. Growth and reproductive performance of hybrid sturgeons (Huso dauricus × Acipenser schrenckii) in captivity. Aquaculture 2005, 245, 287–293. [Google Scholar] [CrossRef]
- Wirth, M.; Kirschbaum, F.; Gessner, J.; Kruger, A.; Patriche, N.; Billard, R. Chemical and biochemical composition of caviar from different sturgeon species and origins. Nahr.-Food 2000, 44, 233–237. [Google Scholar] [CrossRef]
- Pourshamsian, K.; Ghomi, M.R.; Nikoo, M. Fatty acid and proximate composition of farmed great sturgeon (Huso huso) affected by thawing methods, frying oils and chill storage. Adv. Stud. Biol. 2012, 4, 67–76. [Google Scholar]
- Khan, S.U.; Lone, A.N.; Khan, M.S.; Virani, S.S.; Blumenthal, R.S.; Nasir, K.; Miller, M.; Michos, E.D.; Ballantyne, C.M.; Boden, W.E.; et al. Effect of omega-3 fatty acids on cardiovascular outcomes: A systematic review and meta-analysis. eClinicalMedicine 2021, 38, 100997. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.Z.; Li, L.; Dong, C.W.; Tan, C.C.; Xu, W. The Relationship of Omega-3 Fatty Acids with Dementia and Cognitive Decline: Evidence from Prospective Cohort Studies of Supplementation, Dietary Intake, and Blood Markers. Am. J. Clin. Nutr. 2023, 117, 1096–1109. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.V.; Raza, H.; Olsen, K.; Mouritsen, O.G. Proximate nutritional composition of roe from fish, crustaceans, mussels, echinoderms, and cephalopods. Int. J. Gastron. Food Sci. 2024, 36, 100944. [Google Scholar] [CrossRef]
- Lopez, A.; Vasconi, M.; Bellagamba, F.; Mentasti, T.; Moretti, V.M. Sturgeon meat and caviar quality from different cultured species. Fishes 2020, 5, 9. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, Y.; Gao, L.; Lu, J.; Hu, Y.; Xia, L.; Huang, H. Nutritional composition of caviar from three commercially farmed sturgeon species in China. J. Food Nutr. Res. 2013, 1, 108–112. [Google Scholar] [CrossRef]
- Kowalska-Goralska, M.; Formicki, K.; Dobrzanski, Z.; Wondołowska-Grabowska, A.; Skrzynska, E.; Korzelecka-Orkisz, A.; Nędzarek, A.; Tanski, A. Nutritional composition of Salmonidae and Acipenseridae fish eggs. Ann. Anim. Stud. 2020, 20, 629–645. [Google Scholar] [CrossRef]
- Mol, S.; Turan, S. Comparison of proximate, fatty acid and amino acid compositions of various types of fish roes. Int. J. Food Prop. 2008, 11, 669–677. [Google Scholar] [CrossRef]
- Park, K.S.; Kang, K.H.; Bae, E.Y.; Baek, K.A.; Shin, M.H.; Kim, D.U.; Kang, H.K.; Kim, K.J.; Choi, Y.J.; Im, J.S. General and biochemical composition of caviar from sturgeon (Acipenser ruthenus) farmed in Korea. Int. Food Res. J. 2015, 22, 777–781. [Google Scholar]
- Ovissipour, M.; Rasco, B. Fatty acid and amino acid profiles of domestic and wild beluga (Huso huso) roe and impact on fertilization ratio. J. Aquacult. Res. Dev. 2011, 2, 1000113. [Google Scholar] [CrossRef]
- Hamzeh, A.; Moslemi, M.; Karaminasab, M.; Khanlar, M.A.; Faizbakhsh, R.; Navai, M.B.; Tahergorabi, R. Amino acid composition of roe from wild and farmed Beluga sturgeon (Huso huso). J. Agric. Sci. Technol. 2015, 17, 357–364. [Google Scholar]
- Barimani, S.; Hedayatifard, M.; Motamedzadegan, A.; Bozorgnia, A. Changes of amino acids and proximate compositions in freshwater farmed beluga sturgeon (Huso huso) caviar. Iran. J. Fish. Sci. 2021, 20, 230–242. [Google Scholar] [CrossRef]
- Farag, M.; Abib, B.; Tawfik, S.; Shafik, N.; Khattab, A. Caviar and fish roe substitutes: Current status of their nutritive value, bio-chemical diversity, authenticity and quality control methods with future perspectives. Trends Food Sci. Technol. 2021, 110, 405–417. [Google Scholar] [CrossRef]
- Caprino, F.; Moretti, V.M.; Bellagamba, F.; Turchini, G.M.; Busetto, M.L.; Giani, I.; Paleari, M.A.; Pazzaglia, M. Fatty acid composition and volatile compounds of caviar from farmed white sturgeon (Acipenser transmontanus). Anal. Chim. Acta 2008, 617, 139–147. [Google Scholar] [CrossRef]
- DePeters, E.J.; Puschner, B.; Taylor, S.J.; Rodzen, J.A. Can fatty acid and mineral compositions of sturgeon eggs distinguish between farm-raised versus wild white (Acipenser transmontanus) sturgeon origins in California? Preliminary report. Forensic Sci. Int. 2013, 229, 128–132. [Google Scholar] [CrossRef]
- Czesny, S.; Dabrowski, K.; Christensen, J.E.; Van Eenennaam, J.; Doroshov, S. Discrimination of wild and domestic origin of sturgeon ova based on lipids and fatty acid analysis. Aquaculture 2000, 189, 145–153. [Google Scholar] [CrossRef]
- Shin, J.H.; Oliveira, A.C.M.; Rasco, B.A. Quality attributes and microbial storage stability of caviar from cultivated white sturgeon (Acipenser transmontanus). J. Food Sci. 2010, 75, 3–8. [Google Scholar] [CrossRef]
- Gessner, J.; Würtz, S.; Kirschbaum, F.; Wirth, M. Biochemical composition of caviar as a tool to discriminate between aquaculture and wild origin. J. Appl. Ichthyol. 2008, 24, 52–56. [Google Scholar] [CrossRef]
- Wirth, M.; Kirschbaum, F.; Gessner, J.; Williot, P.; Patriche, N.; Billard, R. Fatty Acid Composition in Sturgeon Caviar from Different Species: Comparing Wild and Farmed Origins. Int. Rev. Hydrobiol. 2002, 87, 629–636. [Google Scholar] [CrossRef]
- Cardinal, M. Caviars: How to Describe and Compare Their Qualities? The Sensorial Approach. Chebanov: The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 2—Farming; Williot, P., Nonnotte, G., Chebanov, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 161–173. [Google Scholar] [CrossRef]
- Lukiw, W.J.; Bazan, N.G. Docosahexaenoic Acid and the Aging Brain. J. Nutr. 2008, 138, 2510–2514. [Google Scholar] [CrossRef]
- Yamanaka, T.; Namura, M.; Koseki, K.; Bito, T.; Umebayashi, Y.; Watanabe, F. Characterization of vitamin B12 compounds from commercially available fish roe products. Fish. Sci. 2022, 88, 815–820. [Google Scholar] [CrossRef]
- Chebanov, M.; Rosenthal, H.; Gessner, J.; Van Anrooy, R.; Doukakis, P.; Pourkazemi, M.; Williot, P. Sturgeon Hatchery Practices and Management for Release-Guidelines FAO Fisheries and Aquaculture Technical Paper No 570. Ankara, FAO; 2011; 110p, ISBN 978-92-5-107044-4. Available online: https://www.fao.org/4/i2428e/i2428e.pdf (accessed on 8 August 2024).
- Raposo, A.; Alturki, H.A.; Alkutbe, R.; Raheem, D. Eating Sturgeon: An Endangered Delicacy. Sustainability 2023, 15, 3511. [Google Scholar] [CrossRef]
- Monavar, M.; Alimardani, R.; Omid, M.; Wold, J.P. Prediction of species and freshness of Caspian caviar during storage by front-face fluorescence spectroscopy. Int. J. Agric. Technol. 2012, 8, 1555–1569. [Google Scholar]
- EUMOFA. The Caviar Market. 2018. Available online: https://eumofa.eu/documents/20124/55247/2021+-+The+Caviar+Market.pdf (accessed on 10 August 2024).
- EUMOFA. Sturgeon Meat and Other by-Products of Caviar. 2023. Available online: https://eumofa.eu/documents/20124/35725/Sturgeon+meat.pdf/5e78102f-670e-bae9-521a-a2d764e59aa3?t=1675868036405 (accessed on 10 August 2024).
- Fletcher, N. Caviar: A Global History; Reaktion Books: London, UK, 2010; p. 136. ISBN 978-1861896506. [Google Scholar]
- Global Seafood Alliance. Available online: https://www.globalseafood.org/advocate/as-sturgeon-farming-grows-demand-concerns-emerge/ (accessed on 5 July 2024).
- EUMOFA. The EU Fish Market. 2023 Edition. Available online: https://eumofa.eu/documents/20124/35668/EFM2023_EN.pdf/95612366-79d2-a4d1-218b-8089c8e7508c?t=1699541180521 (accessed on 5 July 2024).
- Chebanov, M.; Williot, P. An Assessment of the Characteristics of World Production of Siberian Sturgeon Destined to Human Consumption. Chebanov: The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 2—Farming; Williot, P., Nonnotte, G., Chebanov, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 217–286. [Google Scholar] [CrossRef]
- Xue, M.; Yun, B.; Wang, J.; Sheng, H.; Zheng, Y.; Wu, X.; Qin, Y.; Li, P. Performance, body compositions, input and output of nitrogen and phosphorus in Siberian sturgeon, Acipenser baerii Brandt, as affected by dietary animal protein blend replacing fishmeal and protein levels. Aquac. Nutr. 2012, 18, 493–501. [Google Scholar] [CrossRef]
- Badiani, A.; Stipa, S.; Nanni, N.; Gatta, P.P.; Manfredini, M. Physical indices, processing yields, compositional parameters and fatty acid profile of three species of cultured sturgeon (genus Acipenser). J. Sci. Food Agric. 1997, 74, 257–264. [Google Scholar] [CrossRef]
- Jankowska, B.; Kolman, R.; Szczepkowski, M.; Żmijewski, T. Production value, chemical composition and colour of fillets of the reciprocal hybrid of Siberian sturgeon with green sturgeon (Acipenser baeri Br × (Acipenser baeri × Acipenser medirostris Ayres). Czech J. Anim. Sci. 2005, 50, 220–225. [Google Scholar] [CrossRef]
- Şener, E.; Yildiz, M.; Savaş, E. Effects of Dietary Lipids on Growth and Fatty Acid Composition in Russian Sturgeon (Acipenser gueldenstaedtii) Juveniles. Turk. J. Vet. Anim. Sci. 2005, 29, 1101–1107. [Google Scholar]
- Huang, H.L.; Lu, J.X.; Gao, L.J.; Huang, Y.Q.; Gong, Y.Y. Substitution of krill meal for fish meal in feed for Russian Sturgeon, Acipenser gueldenstaedtii. Isr. J. Aquac. -Bamidgeh 2016, 68, 1319–1325. [Google Scholar] [CrossRef]
- Tiril, S.U.; Dernekbasi, S.; Karayucel, I.; Kerim, M.; Akyuz, A.P. Effects of Canola and Safflower Oil Supplementation in Diets, on Growth Performance and Fatty Acid Composition of Russian Sturgeon (Acipenser gueldenstaedtii Brandt, 1833). Isr. J. Aquac. Bamidgeh 2016, 68, 1222–1234. [Google Scholar] [CrossRef]
- Babaei, S.; Abedian-Kenari, A.; Hedayati, M.; Yazdani-Sadati, M.A. Growth response, body composition, plasma metabolites, digestive and antioxidant enzymes activities of Siberian sturgeon (Acipenser baerii, Brandt, 1869) fed different dietary protein and carbohydrate: Lipid ratio. Aqua Res. 2017, 48, 2642–2654. [Google Scholar] [CrossRef]
- Paleari, M.A.; Beretta, G.; Grimaldi, P.; Vaini, F. Composition of muscle tissue of farmed white sturgeon (Acipenser transmontanus) with particular reference to lipidic content. J. Appl. Ichthyol. 1997, 13, 63–66. [Google Scholar] [CrossRef]
- Yalçin, K.; Hülya, T.; Erdem, E.M. Fatty acid and amino acid composition of raw and hot smoked sturgeon (Huso huso, L. 1758). Int. J. Food Sci. Nutr. 2008, 59, 635–642. [Google Scholar] [CrossRef]
- Alipour, H.J.; Shabanpoor, B.; Shabani, A.; Mahoonak, A.S. Effects of cooking methods on physico-chemical and nutritional properties of Persian sturgeon Acipenser persicus fillet. Int. Aquat. Res. 2010, 2, 15. [Google Scholar]
- Kenari, A.A.; Regenstein, J.M.; Hosseini, S.V.; Rezaei, M.; Tahergorabi, R.; Nazari, R.M.; Mogaddasi, M.; Kaboli, S.A. Amino Acid and Fatty Acid Composition of Cultured Beluga (Huso huso) of Different Ages. J. Aquat. Food Prod. 2009, 18, 245–265. [Google Scholar] [CrossRef]
- Badiani, A.; Anfossi, P.; Fiorentini, L.; Gatta, P.P.; Manfredini, M.; Nanni, N.; Stipa, S.; Tolomelli, B. Nutritional composition of cultured sturgeon (Acipenser spp.). J. Food Compos. Anal. 1996, 9, 171–190. [Google Scholar] [CrossRef]
- Ghomi, M.R.; Nikoo, M.; Babaei, Z. Fatty acid composition in farmed great sturgeon Huso huso. Comp. Clinic. Pathol. 2011, 21, 111–114. [Google Scholar] [CrossRef]
- Nieminen, P.; Westenius, E.; Halonen, T.; Mustonen, A.M. Fatty acid composition in tissues of the farmed Siberian sturgeon (Acipenser baerii). Food Chem. 2014, 159, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, A.M.; Bua, G.; Messina, C.M.; Santulli, A.; Mazzola, A. Fatty acid composition of a cultured sturgeon hybrid (Acipenser naccarii x A. baerii). Food Chem. 2005, 93, 627–631. [Google Scholar] [CrossRef]
- Ezejiofor, T.I.N.; Enebaku, U.E.; Ogueke, C. Waste to wealth-value recovery from agro-food processing wastes using biotechnology: A review. Br. Biotechnol. J. 2014, 4, 418–481. [Google Scholar] [CrossRef]
- Kundam, D.N.; Acham, I.O.; Girgih, A.T. Bioactive compounds in fish and their health benefits. Asian Food Sci. J. 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Zilia, F.; Bacenetti, J.; Sugni, M.; Matarazzo, A.; Orsi, L. From waste to product: Circular economy applications from sea urchin. Sustainability 2021, 13, 5427. [Google Scholar] [CrossRef]
- Villamil, O.; Vaquiro, H.; Solanilla, J.F. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chem. 2017, 224, 160–171. [Google Scholar] [CrossRef]
- Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef]
- He, S.; Franco, C.; Zhang, W. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Int. Food Res. 2013, 50, 289–297. [Google Scholar] [CrossRef]
- Nolsøe, H.; Undeland, I. The acid and alkaline solubilization process for the isolation of muscle proteins: State of the art. Food Bioproc. Tec. 2009, 2, 1–27. [Google Scholar] [CrossRef]
- Pasupuleti, V.K.; Braun, S. State of the art manufacturing of protein hydrolysates. In Protein Hydrolysates in Biotechnology; Pasupuleti, V., Demain, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 11–32. [Google Scholar]
- Bhaskar, N.; Benila, T.; Radha, C.; Lalitha, R.G. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresour. Technol. 2008, 99, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Klompong, V.; Benjakul, S.; Kantachote, D.; Shahidi, F. Antioxidative activity and functional properties of protein hydrolysate of yellow striptrevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 2007, 102, 1317–1327. [Google Scholar] [CrossRef]
- Ryan, J.T.; Ross, R.P.; Bolton, D.; Fitzgerald, G.F.; Stanton, C. Bioactive peptides from muscle sources: Meat and fish. Nutrients 2011, 3, 765–791. [Google Scholar] [CrossRef] [PubMed]
- Aleman, A.; Gomez-Guillen, M.C.; Montero, P. Identification of ACE inhibitory peptides from squid skin collagen after in vitro gastrointestinal digestion. Int. Food Res. 2013, 54, 790–795. [Google Scholar] [CrossRef]
- Ovissipour, M.; Abedian, A.; Motamedzadegan, A.; Rasco, B.; Safari, R.; Shahiri, H. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chem. 2009, 115, 238–242. [Google Scholar] [CrossRef]
- Ovissipour, M.; Safari, R.; Motamedzadegan, A.; Shabanpour, B. Chemical and Biochemical Hydrolysis of Persian Sturgeon (Acipenser persicus) Visceral Protein. Food Bioproc. Tec. 2012, 5, 460–465. [Google Scholar] [CrossRef]
- Caldeira, M.; Barreto, C.; Pestana, P.; Cardoso, M.A.T. Fish residue valorization by the production of value- added compounds towards a sustainable zero waste industry: A critical review. J. Sci. Eng. Res. 2018, 5, 418–447. [Google Scholar]
- Al Khawli, F.; Martí-Quijal, F.J.; Ferrer, E.; Ruiz, M.J.; Berrada, H.; Gavahian, M.; Barba, F.J.; de la Fuente, B. Aquaculture and its by-products as a source of nutrients and bioactive compounds. Adv. Food Nutr. Res. 2020, 92, 1–33. [Google Scholar] [CrossRef]
- Silva, T.H.; Moreira-Silva, J.; Marques, A.L.P.; Domingues, A.; Bayon, Y.; Reis, R.L. Marine origin collagens and its potential applications. Mar. Drugs 2014, 12, 5881–5901. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, Y. Comparative analysis of the nutrient components in the muscle and skin tissues of hybrid sturgeon (Acipenser baerii ♀ × Acipenser schrenckii ♂) of different sizes. Aquac. Res. 2022, 53, 6124–6134. [Google Scholar] [CrossRef]
- Bruno, S.F.; Ekorong, F.J.; Karkal, S.S.; Cathrine, M.S.B.; Kudre, T.G. Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends Food Sci. Technol. 2019, 85, 10–22. [Google Scholar] [CrossRef]
- Webb, G.P. Vitamins/minerals as dietary supplements: A review of clinical studies. In Dietary Supplements: Safety, Efficacy and Quality; Berginc, K., Kreft, S., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 139–169. [Google Scholar]
- Huang, H.; Wei, Y.; Li, L.; Yang, X.; Chen, J.; Pan, C.; Hao, S. The impact of seasonal changes on the nutritional composition of hybrid sturgeon meat. Food Ind. Sci. Technol. 2021, 42, 360–365. [Google Scholar] [CrossRef]
- Menon, V.V.; Lele, S.S. Nutraceuticals and bioactive compounds from seafood processing waste. In Springer Handbook of Marine Biotechnology; Kim, S.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1405–1425. [Google Scholar]
- Place, E.S.; Evans, N.D.; Stevens, M.M. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009, 8, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Karimzadeh, K. Antihypertensive and anticoagulant properties of glycosaminoglycans extracted from the sturgeon (Acipenser persicus) cartilage. Curr. Issues Pharm. Med. Sci. 2018, 31, 163–169. [Google Scholar] [CrossRef]
- Zheng, P.; Teng, F.; Hu, M.; Li, Q.; Xu, N.; Li, W.; Wang, J.; Zhang, H. Optimization of the extraction process of type II collagen from sturgeon cartilage. J. Food Saf. Qual. Inspect. 2021, 12, 1291–1297. [Google Scholar] [CrossRef]
- Zhu, L.; Li, J.; Wang, Y.; Sun, X.; Li, B.; Poungchawanwong, S.; Hou, H. Structural feature and self-assembly properties of type II collagens from the cartilages of skate and sturgeon. Food Chem. 2020, 331, 127340. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Li, W.; Leng, X.; Takagi, Y.; Dai, Z.; Du, H.; Wei, Q. Extraction of chondroitin sulphate and type II collagen from sturgeon (Acipenser gueldenstaedtii) notochord and characterization of their hybrid fibrils. Process Biochem. 2023, 124, 180–188. [Google Scholar] [CrossRef]
- Meng, D.; Wei, Q.; Takagi, Y.; Dai, Z.; Zhang, Y. Structural Properties and Biological Activities of Collagens from Four Main Processing By-Products (Skin, Fin, Cartilage, Notochord) of Sturgeon (Acipenser gueldenstaedtii). Waste Biomass Valor. 2023, 14, 3987–4002. [Google Scholar] [CrossRef]
- Li, Z.; Bai, X.; Fan, Y.; Jia, Q.; Zhang, H.; Hou, H. Structure of type II collagen from sturgeon cartilage and its effect on adjuvant-induced rheumatoid arthritis in rats. Food Funct. 2022, 13, 6152–6165. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Qiu, Y.T.; Wang, Y.M.; Chi, C.F.; Wang, B. Novel Antioxidant Collagen Peptides of Siberian Sturgeon (Acipenser baerii) Cartilages: The Preparation, Characterization, and Cytoprotection of H2O2-Damaged Human Umbilical Vein Endothelial Cells (HUVECs). Mar. Drugs 2022, 20, 325. [Google Scholar] [CrossRef]
- Luyuan, L.; Shengfan, W.; Yougui, Z.; Yinjun, Z.; Zhao, W.; Jianyong, Z. Enzymatic preparation of sturgeon skin collagen polypeptide and its antioxidant activity. Food Ferment Ind. 2019, 45, 138–143. [Google Scholar] [CrossRef]
- Atef, M.; Ojagh, S.M.; Latifi, A.M.; Esmaeili, M.; Udenigwe, C.C. Biochemical and structural characterization of sturgeon fish skin collagen (Huso huso). J. Food Biochem. 2020, 44, e13256. [Google Scholar] [CrossRef]
- Ahmad, T.; Ismail, A.; Ahmad, S.A.; Khalil, K.A.; Kumar, Y.; Adeyemi, K.D.; Sazili, A.Q. Recent advances on the role of process variables affecting gelatin yield and characteristics with special reference to enzymatic extraction: A review. Food Hydrocoll. 2017, 63, 85–96. [Google Scholar] [CrossRef]
- Nikoo, M.; Benjakul, S.; Ehsani, A.; Li, J.; Wu, F.; Yang, N.; Xu, B.; Jin, Z.; Xu, X. Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. J. Funct. Foods 2014, 7, 609–620. [Google Scholar] [CrossRef]
- Islam, M.R.; Yuhi, T.; Ura, K.; Takagi, Y. Optimization of Extraction of Gelatin from the Head of Kalamtra Sturgeon (Huso dauricus × Acipenser scherenkii × Acipenser transmontanus). Appl. Sci. 2020, 10, 6660. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, K.; Liu, Y.; Wang, Y.; Huang, W. Comparison of Physicochemical Properties of Pepsin-Soluble Collagens from Swim Bladders of Sturgeon (Acipenser schrenckii) and Grass Carp (Ctenopharyngodon idella). Sci. Technol. Food Ind. 2021, 42, 27–32. [Google Scholar] [CrossRef]
- Zu, X.Y.; Liu, W.B.; Xiong, G.Q.; Liao, T.; Li, H.L. Isolation, Identification, and Biological Activity Analysis of Swim Bladder Polypeptides from Acipenser schrencki. Foods 2023, 12, 1934. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Wei, Y.; Li, L.; Yang, X.; Cen, J.; Huang, H.; Lin, W.; Yuan, X. The effects of different extraction methods on composition and storage stability of sturgeon oil. Food Chem. 2015, 173, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.B.; He, R.Y.; Yu, H.; Wang, H.L.; Liu, Z.G. Enzymatic extraction of sturgeon fish oil and its intervention on non-alcoholic fatty liver disease. J. Food Saf. Qual. 2022, 13, 3532–3540. [Google Scholar]
- Lee, H.S.; Lee, Y.K.; Park, J.H.; Kim, S.H.; Park, C.S.; Kim, K.; Lee, C. Therapeutic efficacy and mechanism of solubilized sturgeon oil in a mouse model of house dust mite-induced atopic dermatitis. J. Func. Foods 2024, 115, 106093. [Google Scholar] [CrossRef]
- Qiang, H.; Mengcheng, R.; Hualin, W.; Rulong, C.; Zhiguo, L. Effect of sturgeon oil on intestinal flora balance in mice with high-fat induced nonalcoholic fatty liver disease. J. Wuhan Univ. Light. Ind. 2017, 36, 12–17. [Google Scholar] [CrossRef]
Scientific Name/Common Name | Origin | Type of Sample * | Water (g/100 g Wet Weight) | Protein (g/100 g Wet Weight) | Lipids (g/100 g Wet Weight) | Carbohydrates (g/100 g Wet Weight) | d (mm) | References |
---|---|---|---|---|---|---|---|---|
A. baerii/Siberian sturgeon | Farmed (France) | Caviar | 53.02 ± 0.23 | 26.21 ± 1.14 | 10.90 ± 0.07 | - | 3.06 ± 0.25 | [26] |
Farmed (Italy) | Eggs | 59.50 ± 0.90 | 23.80 ± 0.80 | 14.90 ± 0.90 | - | - | [31] | |
Farmed (Italy) | Caviar | 57.30 ± 2.50 | 23.90 ± 2.20 | 14.90 ± 0.70 | - | - | [31] | |
Farmed (China) | Caviar | 51.80 ± 0.98 | 23.98 ± 0.78 | 14.23 ± 0.71 | - | - | [32] | |
Farmed (Poland) | Eggs | 64.00 | 19.82 ± 1.11 | 10.46 ± 1.09 | 2.51 ± 0.13 | [33] | ||
A. gueldenstaedtii/Russian sturgeon | Wild (Danube River/Romania) | Caviar | 41.90 ± 3.21 | 29.32 ± 0.92 | 17.13 ± 0.76 | - | 3.24 ± 0.15 | [26] |
Wild (Caspian Sea) | Caviar | 50.90 ± 2.32 | 27.01 ± 1.12 | 14.05 ± 1.20 | - | 3.01 ± 0.24 | [26] | |
Unspecified (Iran) | Caviar | 52.00 ± 0.80 | 24.00 ± 2.90 | 14.60 ± 2.40 | 4.60 ± 1.94 | - | [34] | |
Farmed (Italy) | Eggs | 53.90 ± 2.00 | 24.10 ± 1.00 | 19.70 ± 1.80 | - | - | [31] | |
Farmed (Italy) | Caviar | 52.70 ± 2.20 | 24.70 ± 1.20 | 19.10 ± 3.20 | - | - | [31] | |
A. persicus/Persian sturgeons | Unspecified (Iran) | Caviar | 51.50 ± 0.50 | 24.20 ± 1.30 | 14.70 ± 0.50 | 5.40 ± 0.60 | - | [34] |
A. ruthenus/sterlet sturgeon | Farmed (Korea) | Caviar | 51.32 | 25.43 | 13.21 | - | - | [35] |
A. schrenckii/Amur sturgeon | Farmed (China) | Caviar | 48.65 ± 0.90 | 24.27 ± 1.93 | 15.99 ± 0.93 | - | - | [32] |
A. stellatus/stellate sturgeon | Wild (Danube River/Romania) | Caviar | 38.52 ± 3.01 | 31.13 ± 1.53 | 16.96 ± 0.83 | - | 2.85 ± 0.34 | [26] |
Wild (Caspian Sea) | Caviar | 51.81 ± 3.59 | 27.59 ± 1.72 | 14.58 ± 1.20 | - | 2.67 ± 0.19 | [26] | |
A. transmontanus (white sturgeon) | Farmed (Italy) | Eggs | 57.10 ± 1.30 | 24.90 ± 0.60 | 16.10 ± 1.20 | - | - | [31] |
Farmed (Italy) | Caviar | 54.60 ± 0.90 | 24.00 ± 1.30 | 17.70 ± 1.20 | - | - | [31] | |
H. huso (beluga sturgeon) | Wild (Danube River/Romania) | Caviar | 37.10 | 30.49 | 19.41 | - | 3.47 ± 0.23 | [26] |
Wild (Caspian Sea) | Caviar | 52.93 ± 1.23 | 28.44 ± 1.12 | 15.16 ± 1.09 | - | 3.75 ± 0.27 | [26] | |
Wild (Caspian Sea/Iran) | Eggs | 64.10 ± 2.10 | 15.11 ± 0.97 | 14.87 ± 1.00 | - | [36] | ||
Farmed (Iran) | Eggs | 64.83 ± 0.46 | 14.56 ± 0.20 | 14.55 ± 0.60 | - | [36] | ||
Wild (Caspian Sea/Iran) | Eggs | 56.21 ± 4.26 | 25.43 ± 2.83 | 14.80 ± 1.74 | - | - | [37] | |
Farmed (Iran) | Eggs | 57.29 ± 3.23 | 23.81 ± 3.88 | 15.67 ± 2.16 | - | 3.00–5.00 | [37] | |
Wild (Caspian Sea) | Caviar | 51.26 ± 0.21 | 26.56 ± 0.11 | 16.06 ± 0.16 | - | [38] | ||
Farmed (Iran) | Caviar | 51.40 ± 0.28 | 26.37 ± 0.65 | 16.35 ± 0.18 | - | [38] | ||
Unspecified (Iran) | Caviar | 48.40 ± 2.20 | 24.70 ± 0.30 | 15.90 ± 2.00 | 6.90 ± 1.40 | - | [34] | |
Hybrid (A. schrenckii × H. dauricus) | Farmed (China) | Caviar | 47.72 ± 1.62 | 25.55 ± 1.82 | 16.22 ± 1.12 | - | - | [32] |
Scientific Name/Common Name | Origin | Age | Water (g/100 g Wet Weight) | Protein (g/100 g Wet Weight) | Lipids (g/100 g Wet Weight) | References |
---|---|---|---|---|---|---|
A. baerii/Siberian sturgeon | Farmed (Italy) | Adult | 75.50 ± 1.60 | 17.60 ± 0.50 | 5.60 ± 1.70 | [31] |
Farmed (China) | Juveniles | 74.00 ± 1.10–77.40 ± 0.70 | 15.70 ± 0.30–16.50 ± 0.10 | 5.80 ± 0.50–8.60 ± 1.20 | [58] | |
Farmed (Italy) | 3.5–4.5 Y | 72.11 ± 0.58 | 19.47 ± 0.24 | 7.76 ± 0.59 | [59] | |
Farmed | 1 Y+ | 75.20 ± 0.75 | 14.30 ± 0.72 | 9.50 ± 0.39 | [60] | |
A. gueldenstaedtii/Russian sturgeon | Farmed (Turkey) | Juveniles | 76.21 ± 0.09–78.24 ± 0.05 | 10.71 ± 0.04–11.63 ± 0.02 | 4.65 ± 0.03–6.05 ± 0.07 | [61] |
Farmed (China) | Juveniles | 78.10 ± 0.85–79.74 ± 0.38 | 16.12 ± 0.42–16.96 ± 0.21 | 2.54 ± 0.21–2.60 ± 0.03 | [62] | |
Farmed (Turkey) | Juveniles | 74.72 ± 0.10–78.18 ± 0.23 | 18.44 ± 1.53–20.78 ± 0.24 | 3.41 ± 0.21–6.64 ± 0.42 | [63] | |
A. naccarii/Adriatic sturgeon | Farmed (Italy) | 3.5–4.5 Y | 69.81 ± 0.60 | 18.64 ± 0.27 | 10.64 ± 0.76 | [59] |
A. persicus/Persian sturgeon | South coast of the Caspian Sea (Iran) | Adult | 63.20 ± 0.41 | 21.40 ± 0.38 | 13.10 ± 1.13 | [64] |
A. transmontanus/white sturgeon | Farmed (Italy) | Adult | 75.20 ± 3.30 * 77.70 ± 1.10 ** | 19.60 ± 0.80 * 18.60 ± 0.50 ** | 3.90 ± 2.50 * 2.60 ± 0.80 ** | [31] |
Farmed (Italy) | 3.5–4.5 Y | 75.55 ± 0.54 | 19.57 ± 0.28 | 4.49 ± 0.41 | [59] | |
Farmed (Italy) | Adult (3–5 Y) | 76.35 ± 0.98–77.41 ± 1.05 | 18.66 ± 0.59–18.98 ± 0.73 | 2.50 ± 1.04–3.36 ± 0.74 | [65] | |
H. huso/beluga sturgeon | Farmed (Iran) | Adult | 70.75 ± 1.34 | 18.45 ± 0.49 | 4.25 ± 0.91 | [27] |
Hybrid (A. baerii × A. medirostris) | Farmed (Poland) | 1 Y+ | 77.40 ± 0.44 | 15.20 ± 0.41 | 6.40 ± 0.47 | [60] |
Hybrid A. baerii × (A. baerii × A. medirostris) | Farmed Poland | 1 Y+ | 73.52 ± 0.55 | 16.51 ± 0.38 | 8.90 ± 0.47 | [60] |
Fatty Acids | H. huso | Acipenser spp. | A. baerii | A. naccarii | A. transmontanus | A. gueldenstaedtii | A. naccarii × A. baerii | A. baerii × A. medirostris | A. baerii × (A. baerii × A. medirostris) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ΣSFA | 29.93 | 33.61 | 25.99 | 24.75 | 27.00 | 19.20 | 26.34 | 26.88 | 31.90 a 29.95 b | 23.40 e 24.50 f | 23.39 c 24.58 d | 26.76 | 25.84 | 26.71 |
ΣMUFA | 41.93 | 32.46 | 46.00 | 44.89 | 39.90 | 45.50 | 47.7 | 45.39 | 69.30 a* 70.10 b* | 42.70 e 31.30 f | 38.4 c 27.86 d | 37.92 | 46.15 | 46.21 |
ΣPUFA | 32.44 | 21.30 | 22.4 | 25.21 | 32.90 | 35.30 | 20.17 | 21.81 | 69.30 a* 70.10 b* | 33.90 e 44.20 f | 37.62 c 47.56 d | 34.7 | 28.01 | 27.08 |
Σn-3 | 7.24 | 17.48 | 18.09 | 19.98 | 20.20 | 15.00 | 16.66 | 17.62 | 21.10 a 23.40 b | 18.50 e 24.70 f | 14.13 c 14.36 d | 30.19 | 22.68 | 19.58 |
Σn-6 | 25.31 | 3.54 | 4.31 | 5.23 | 9.99 | 20.40 | 3.51 | 4.18 | 8.55 a 9.10 b | 15.40 e 19.50 f | 23.49 c 33.21 d | 4.48 | 5.32 | 6.59 |
n-3/n-6 | 0.28 | 4.94 | 4.26 | 3.83 | 2.04 | 0.70 | 4.74 | 4.21 | 2.47 a 2.64 b | 1.20 e 1.40 f | 0.6 c 0.43 d | 6.74 | 4.26 | 2.97 |
C20:5n-3 (EPA) | 0.55 | 4.65 | 5.63 | 6.54 | - | 3.90 | 4.81 | 5.55 | - | 5.70 e 8.60 f | 1.99 c** 2.31 d** | 9.40 | 6.04 | 5.46 |
C22:6n-3 | 2.17 | 12.41 | 9.18 | 9.70 | - | 7.30 | 8.77 | 9.06 | - | 9.70 e 12.30 f | - | 15.01 | 11.28 | 9.34 |
Reference | [70] | [66] | [69] | [59] | [71] | [31] | [59] | [59] | [65] | [31] | [63] | [72] | [60] | [60] |
By-Product | Valuable Components | Possible Uses |
---|---|---|
Heads | Proteins, peptides, lipids, collagen, gelatin, minerals (calcium) | Food industry, fish meal, food grade hydrolysates, pet food, nutraceuticals, cosmetics |
Frames (bones, flesh, fins) | Proteins, peptides, lipids, collagen, gelatin, minerals (calcium) | Food industry, fish meal, food grade hydrolysates, pet food, nutraceuticals, cosmetics |
Cartilage | Proteins, peptides, collagen, gelatin, | Food industry, health supplements, cosmetics, organic fertilizer, animal feed additive |
Bladder | Isinglass | Foods and drinks industry (for the clarification of beer and wine) |
Skin | Collagen, gelatin, protein, peptides, lipids, minerals | Fashion industry (leather), food industry, pharmaceuticals, cosmetics, fish meal, fish oil |
Viscera | Proteins, peptides, lipids, enzymes | Fish oil, fish meal, organic fertilizer, animal feed additive, biofuel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudu, A.; Georgescu, S.E. Exploring the Multifaceted Potential of Endangered Sturgeon: Caviar, Meat and By-Product Benefits. Animals 2024, 14, 2425. https://doi.org/10.3390/ani14162425
Dudu A, Georgescu SE. Exploring the Multifaceted Potential of Endangered Sturgeon: Caviar, Meat and By-Product Benefits. Animals. 2024; 14(16):2425. https://doi.org/10.3390/ani14162425
Chicago/Turabian Style(Stroe) Dudu, Andreea, and Sergiu Emil Georgescu. 2024. "Exploring the Multifaceted Potential of Endangered Sturgeon: Caviar, Meat and By-Product Benefits" Animals 14, no. 16: 2425. https://doi.org/10.3390/ani14162425
APA StyleDudu, A., & Georgescu, S. E. (2024). Exploring the Multifaceted Potential of Endangered Sturgeon: Caviar, Meat and By-Product Benefits. Animals, 14(16), 2425. https://doi.org/10.3390/ani14162425