Identification of Individuals of Two Takin Subspecies Using Biological and Ecological Criteria in Eastern Himalayas of China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Research Area
2.2. Camera Trapping
2.3. Camera-Trapping Data Processing
2.3.1. Principle of Camera-Trapping Data Identification
2.3.2. Camera-Trapping Independent Site Full-Event Observation Method
2.3.3. Camera-Trapping Wildlife Identification Method
2.4. AI Image Correction Technology
2.5. Suitable Habitats
2.6. Population
2.7. Activity Rhythms
2.8. Animal Classification
2.9. Ethical Statement
3. Results
3.1. Identification Features of Mishmi Takin (B. taxicolor)
3.2. Identification Features of Bhutan Takin (B. whitei)
3.3. Seasonal Traits
3.4. Suitable Habitats for the Two Takin Subspecies
3.5. Populations of the Two Takin Subspecies
3.6. Activity Rhythms of the Two Takin Subspecies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Li, D.; Dunzhu, P.; Liu, W.; Feng, L.; Jin, K. Recognition of Coat Pattern Variation and Broken Tail Phenomenon in the Asiatic Golden Cat (Catopuma temminckii). Animals 2022, 12, 1420. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Wang, G.; Zhu, P.B.D.; Liu, W.; Li, C.; Jin, K. Morphological, phaneroptic, habitat and population description of three muntjac species in a Tibetan nature reserve. Animals 2022, 12, 2909. [Google Scholar] [CrossRef]
- Andreychev, A.V. A New Methodology for Studying the Activity of Underground Mammals. Biol. Bull. Russ. Acad. Sci. 2018, 45, 937–943. [Google Scholar] [CrossRef]
- Xie, Y.; Yu, W. Remote Monitoring of Amur Tigers in Forest Ecosystems Using Improved YOLOX Algorithm. Forests 2023, 14, 2000. [Google Scholar] [CrossRef]
- Yang, L.; Wei, F.; Zhan, X.; Fan, H.; Zhao, P.; Huang, G.; Chang, J.; Lei, Y.; Hu, Y. Evolutionary conservation genomics reveals recent speciation and local adaptation in threatened takins. Mol. Biol. Evol. 2022, 39, msac111. [Google Scholar] [CrossRef]
- Ellerman, J.R. Checklist of Palaearctic and India Mammals; British Museum: London, UK, 1951. [Google Scholar]
- Wu, J.Y. Study of system and distribution of Chinese takin (Budorcas taxicolor Hodgson, 1850). Zool. Res. 1986, 7, 167–175. [Google Scholar]
- Wu, J.Y. The Chinese Takin; FORESTRY Publishing House: Beijing, China, 1990. [Google Scholar]
- Song, Y.L.; Smith, A.T.; MacKinnon, J. Budorcas Taxicolor. The IUCN Red List Threatened Species 2008: E. T3160A9643719. Available online: https://www.iucnredlist.org/species/3160/9643719 (accessed on 1 July 2024).
- Dhendup, T.; Tempa, T.; Tshering, T.; Norbu, N. New distribution record of the Bhutan Takin Budorcas taxicolor whitei Hodgson, 1850 (Cetartiodactyla: Bovidae) in Bhutan. J. Threat. Taxa 2016, 8, 9365–9366. [Google Scholar] [CrossRef]
- Feng, Z.J.; Cai, G.Q.; Zheng, C.L. The Mammals of Xizang; Science Press: Beijing, China, 1986. [Google Scholar]
- Tibetan Plateau Comprehensive Scientific Expedition Team of the Chinese Academy of Sciences. The Series of the Scientific Expedition to the Qinghai-Xizang Plateau Physical Geography of Xizang; Geological Publishing House: Tibet, China, 1982. [Google Scholar]
- Jiang, Z.G. China’s Red List of Biodiversity; Mammals, I., III, Ed.; China Science Press: Beijing, China, 2021. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Yonglei, L.; Feijó, A.; Guo, K.; Xie, W.; Cheng, J.; Ge, D.; Xia, L.; Cui, Y.; Song, G.; Qu, Y.; et al. Integrating Multiple Diversity and Socioeconomic Criteria in Tibetan Felid Conservation. Ecosyst. Health Sustain. 2024, 10, 1–10. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a Comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Rahbek, C.; Borregaard, M.K.; Antonelli, A.; Colwell, R.K.; Holt, B.G.; Nogues-Bravo, D.; Rasmussen, C.M.Ø.; Richardson, K.; Rosing, M.T.; Whittaker, R.J.; et al. Building mountain biodiversity: Geological and evolutionary processes. Science 2019, 365, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Rahbek, C.; Borregaard, M.K.; Colwell, R.K.; Dalsgaard, B.; Holt, B.G.; Morueta-Holme, N.; Nogues-Bravo, D.; Whittaker, R.J.; Fjeldså, J. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 2019, 365, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Ridout, M.S.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- Meredith, M.; Ridout, M.S. Overlap: Estimates of Coefficient of Overlapping for Animal Activity Patterns, Version 0.2.6. Available online: https://cran.r-project.org/web/packages/overlap/ (accessed on 19 January 2024).
- Cooper, G.E.S. The Mishmi takin. J. Bomb. Hist. Soc. 1923, 29, 553. [Google Scholar]
- Lydekker, R. Catalogue of the ungulate mammals. In Natural History; British Museum: London, UK, 1913. [Google Scholar]
- Simpson, G.G. The principles of classification and a classification of mammals. Bull. Am. 1945, 85, 157–162. [Google Scholar]
- Wang, S. China Red Data Book of Endangered Animals; Science Press: Beijing, China, 1998. [Google Scholar]
- Wang, Y.X. A Complete Checklist of Mammal Species and Subspecies in China: A Taxonomic and Geographic Reference; China Forestry Publishing House: Beijing, China, 2003. [Google Scholar]
- Liu, X.; Liu, W.; Lenstra, J.A.; Zheng, Z.; Wu, X.; Yang, J.; Li, B.; Yang, Y.; Qiu, Q.; Liu, H.; et al. Evolutionary origin of genomic structural variations in domestic yaks. Nat. Commun. 2023, 14, 5617. [Google Scholar] [CrossRef]
- van den Ende, C.; Puttick, M.N.; Urrutia, A.O.; Wills, M.A. Why should we compare morphological and molecular disparity? Methods Ecol. Evol. 2023, 14, 2390–2410. [Google Scholar] [CrossRef]
- Keller, A.; Ankenbrand, M.J.; Bruelheide, H.; Dekeyzer, S.; Enquist, B.J.; Erfanian, M.B.; Falster, D.S.; Gallagher, R.V.; Hammock, J.; Kattge, J.; et al. Ten (mostly) simple rules to future-proof trait data in ecological and evolutionary sciences. Methods Ecol. Evol. 2023, 14, 444–458. [Google Scholar] [CrossRef]
- Etard, A.; Morrill, S.; Newbold, T. Global gaps in trait data for terrestrial vertebrates. Glob. Ecol. Biogeogr. 2020, 29, 2143–2158. [Google Scholar] [CrossRef]
- Juan, D.; Santpere, G.; Kelley, J.L.; Cornejo, O.E.; Marques-Bonet, T. Current advances in primate genomics: Novel approaches for understanding evolution and disease. Nat. Rev. Genet. 2023, 24, 314–331. [Google Scholar] [CrossRef]
- Roscher, C.; Gubsch, M.; Lipowsky, A.; Schumacher, J.; Weigelt, A.; Buchmann, N.; Schulze, E.-D.; Schmid, B. Trait means, trait plasticity and trait differences to other species jointly explain species performances in grasslands of varying diversity. Oikos 2018, 127, 865. [Google Scholar] [CrossRef]
- Cortés-Ortiz, L.; Roos, C.; Zinner, D. Introduction to special issue on primate hybridization and hybrid zones. Int. J. Primatol. 2019, 40, 1–8. [Google Scholar] [CrossRef]
- Lhota, S.; Yap, J.L.; Benedict, M.L.; Ching, K.; Shaw, B.; Angkee, B.D.; Lee, N.; Lee, V.; Mao, J.J.; Ruppert, N. Is Malaysia’s “mystery monkey” a hybrid between Nasalis larvatus and Trachypithecus cristatus? An assessment of photographs. Int. J. Primatol. 2022, 43, 513–532. [Google Scholar] [CrossRef]
- Malaivijitnond, S.; Takenaka, O.; Kawamoto, Y.; Urasopon, N.; Hadi, I.; Hamada, Y. Anthropogenic macaque hybridization and genetic pollution of a threatened population. Trop. Nat. Hist. 2007, 7, 11–23. Available online: https://li01.tci-thaijo.org/index.php/tnh/article/download/102915/82459/260129 (accessed on 1 July 2024).
- Gilhooly, L.J.; Burger, R.; Sipangkui, S.; Colquhoun, I.C. Tourist Behavior Predicts Reactions of Macaques (Macaca fascicularis and M. nemestrina) at Sepilok Orangutan Rehabilitation Centre, Sabah, Malaysia. Int. J. Primatol. 2021, 42, 349–368. [Google Scholar] [CrossRef]
- Ackermann, R.R.; Bishop, J.M. Morphological and molecular evidence reveals recent hybridization between Gorilla taxa. Evolution 2010, 64, 271–290. [Google Scholar] [CrossRef]
- Detwiler, K.M.; Burrell, A.S.; Jolly, C.J. Conservation implications of hybridization in african cercopithecine monkeys. Int. J. Primatol. 2005, 26, 661–684. [Google Scholar] [CrossRef]
- Mallet, J. Hybrid speciation. Nature 2007, 446, 279–283. [Google Scholar] [CrossRef]
- Pastorini, J.; Zaramody, A.; Curtis, D.J.; Nievergelt, C.M.; Mundy, N.I. Genetic analysis of hybridization and introgression between wild mongoose and brown lemurs. BMC Evol. Biol. 2009, 9, 32. [Google Scholar] [CrossRef]
- Zinner, D.; Groeneveld, L.F.; Keller, C.; Roos, C. Mitochondrial phylogeography of baboons (Papio spp.): Indication for introgressive hybridization? BMC Evol. Biol. 2009, 9, 83. [Google Scholar] [CrossRef]
- Roos, C.; Zinner, D.; Kubatko, L.S.; Schwarz, C.; Yang, M.; Meyer, D.; Nash, S.D.; Xing, J.; Batzer, M.A.; Brameier, M.; et al. Nuclear versus mitochondrial DNA: Evidence for hybridization in colobine monkeys. BMC Evol. Biol. 2011, 11, 77. [Google Scholar] [CrossRef]
- Roos, C.; Liedigk, R.; Thinh, V.N.; Nadler, T.; Zinner, D. The Hybrid Origin of the Indochinese Gray Langur Trachypithecus crepusculus. Int. J. Primatol. 2019, 40, 9–27. [Google Scholar] [CrossRef]
- Barabás, G.; Parent, C.; Kraemer, A.; Van de Perre, F.; De Laender, F. The evolution of trait variance creates a tension between species diversity and functional diversity. Nat. Commun. 2022, 13, 2521. [Google Scholar] [CrossRef]
- Antonelli, A.; Kissling, W.D.; Flantua, S.G.; Bermudez, M.A.; Mulch, A.; Muellner-Riehl, A.N.; Kreft, H.; Linder, H.P.; Badgley, C.; Fjeldsa, J.; et al. Geological and climatic influences on mountain biodiversity. Nature Geosci. 2018, 11, 718–725. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wu, Y. Handbook of the Mammals of China, 3rd ed.; The Straits Publishing, Distributing Group: Fuzhou, China, 2023. [Google Scholar]
- Hardin, G. The competitive exclusion principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef]
- Grace, M.K.; Akçakaya, H.R.; Bennett, E.L.; Brooks, T.M.; Heath, A.; Hedges, S.; Hilton-Taylor, C.; Hoffmann, M.; Hochkirch, A.; Jenkins, R.; et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 2021, 35, 1833–1849. [Google Scholar] [CrossRef]
- Lemm, J.U.; Venohr, M.; Globevnik, L.; Stefanidis, K.; Panagopoulos, Y.; van Gils, J.; Posthuma, L.; Kristensen, P.; Feld, C.K.; Mahnkopf, J.; et al. Multiple stressors determine river ecological status at the European scale: Towards an integrated understanding of river status deterioration. Glob. Chang. Biol. 2021, 27, 1962–1975. [Google Scholar] [CrossRef]
Survey Areas | Number of Camera Stations | Elevation Range | Number of Camera-Days | Number of Photographs | Number of Independent Photographs of Budorcas | |
---|---|---|---|---|---|---|
B. taxicolor | B. whitei | |||||
Bixiri Area | 11 | 2235–3479 m | 2794 | 12,294 | 832 | |
Nibi Area | 13 | 2256–3509 m | 2354 | 13,892 | 648 | |
South Bank of the Yarlung Zangbo River Area | 10 | 582–668 m | 1880 | 16,751 | ||
Uma Mountain Area | 6 | 1751–3145 m | 1374 | 6942 | 3 | |
Raj Mountain Area | 8 | 1631–2086 m | 1968 | 8467 | ||
DanGeZhuo Area | 3 | 954–1434 m | 630 | 684 | ||
GeDang Ditch Area | 36 | 2230–4470 m | 8691 | 10,713 | 843 | |
MeiYuLunBa Area | 2 | 1751–2315 m | 294 | 5172 | ||
XiGong River Area | 6 | 1124–1590 m | 1080 | 6532 | ||
DeYang Ditch Area | 8 | 815–1294 m | 1360 | 6359 | 7 | |
North of the Grand Canyon | 31 | 3650–4700 m | 5580 | 4578 | 2504 | |
DeErGong Area | 80 | 1750–2890 m | 30,500 | 11,980 | ||
Total | 214 | 582–4700 m | 58,505 | 104,364 | 1685 | 3152 |
Budorcas | Ips | Camera-Days | MCV | D1 | D2 | /x ± SE |
---|---|---|---|---|---|---|
B. taxicolor | 1685 | 1238 | 1.36 | 0.1738 | 0.1720 | 0.1729 ± 0.0134 |
B. whitei | 3152 | 1594 | 1.98 | 0.1429 | 0.1289 | 0.1359 ± 0.0264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lv, Y.; Wang, G.; Liu, F.; Ji, Y.; Liu, Z.; Zhao, W.; Liu, W.; Dun Zhu, P.B.; Jin, K. Identification of Individuals of Two Takin Subspecies Using Biological and Ecological Criteria in Eastern Himalayas of China. Animals 2024, 14, 2426. https://doi.org/10.3390/ani14162426
Wang Y, Lv Y, Wang G, Liu F, Ji Y, Liu Z, Zhao W, Liu W, Dun Zhu PB, Jin K. Identification of Individuals of Two Takin Subspecies Using Biological and Ecological Criteria in Eastern Himalayas of China. Animals. 2024; 14(16):2426. https://doi.org/10.3390/ani14162426
Chicago/Turabian StyleWang, Yuan, Yonglei Lv, Guanglong Wang, Feng Liu, Yingxun Ji, Zheng Liu, Wanglin Zhao, Wulin Liu, Pu Bu Dun Zhu, and Kun Jin. 2024. "Identification of Individuals of Two Takin Subspecies Using Biological and Ecological Criteria in Eastern Himalayas of China" Animals 14, no. 16: 2426. https://doi.org/10.3390/ani14162426
APA StyleWang, Y., Lv, Y., Wang, G., Liu, F., Ji, Y., Liu, Z., Zhao, W., Liu, W., Dun Zhu, P. B., & Jin, K. (2024). Identification of Individuals of Two Takin Subspecies Using Biological and Ecological Criteria in Eastern Himalayas of China. Animals, 14(16), 2426. https://doi.org/10.3390/ani14162426