Effect of Urolithin A on Bovine Sperm Capacitation and In Vitro Fertilization
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
- (a)
- Test the effect of different concentrations of UA (0, 1, and 10 µM; 12–21 replicates) in the capacitation process of frozen-thawed bovine spermatozoa on their morphology, motility, viability, ROS production, and mitochondrial quality. The process of maturation in the capacitation medium (CAP; CAP0—0 µM of UA, CAP1—1 µM of UA, and CAP10—10 µM of UA) was carried out by the swim-up method with spermatozoa from three Holstein-Friesian bulls of proven fertility (pools of four straws from ejaculates from two collection days).
- (b)
- Test the effect of bulls and different doses of UA in both the capacitation medium, as above, and the fertilization medium (Fert0, Fert1, and Fert10), on sperm fertilizing ability and subsequent early embryo development (9 sessions). For this purpose, bovine ovaries (n = 816) were collected in a local abattoir, immediately after slaughter, in 9 sessions, for oocyte collection (n = 2851). After oocyte selection, oocytes were matured for 22 h and transferred to UA supplemented fertilization medium. Then, mature oocytes were inseminated with the capacitated spermatozoa, with UA at the concentration of 0 (control), 1, and 10 µm, totalizing seven groups (Figure 2). Embryo production was evaluated.
2.2. Oocyte Preparation
2.3. Spermatozoa Preparation and Analysis
2.3.1. Evaluation of Spermatozoa Movement
2.3.2. Evaluation of Spermatozoa Vitality and Morphology
2.3.3. Evaluation of Mitochondrial Membrane Potential
2.3.4. Intracellular ATP Levels
2.3.5. Evaluation of Hydrogen Peroxide Content
2.3.6. Analysis of Cellular Oxygen Consumption Rate
2.4. Oocyte Insemination, Embryo Culture and Development
2.5. Statistical Analysis
3. Results
3.1. Effect of UA and Bull in Spermatozoa Kinematic Parameters
3.2. Effect of UA and Bull on Semen Concentration, Vitality, and Abnormalities
3.3. Effect of UA and Bull on Mitochondrial Membrane Potential
3.4. Effect of UA and Bull on Spermatozoa Oxygen Consumption Rate, Cellular Oxidative Stress, and Intracellular ATP Levels
3.5. Effect of UA and Bull on Embryo Production Rates and Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cásedas, G.; Les, F.; Choya-Foces, C.; Hugo, M.; López, V. The Metabolite Urolithin-A Ameliorates Oxidative Stress in Neuro-2a Cells, Becoming a Potential Neuroprotective Agent. Antioxidants 2020, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Andreux, P.A.; Blanco-Bose, W.; Ryu, D.; Burdet, F.; Ibberson, M.; Aebischer, P.; Auwerx, J.; Singh, A.; Rinsch, C. The Mitophagy Activator Urolithin A Is Safe and Induces a Molecular Signature of Improved Mitochondrial and Cellular Health in Humans. Nat. Metab. 2019, 1, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Chen, F.; Lei, J.; Li, Q.; Zhou, B. Activation of the MiR-34a-Mediated SIRT1/MTOR Signaling Pathway by Urolithin A Attenuates d-Galactose-Induced Brain Aging in Mice. Neurotherapeutics 2019, 16, 1269–1282. [Google Scholar] [CrossRef] [PubMed]
- Ishimoto, H.; Shibata, M.; Myojin, Y.; Ito, H.; Sugimoto, Y.; Tai, A.; Hatano, T. In Vivo Anti-Inflammatory and Antioxidant Properties of Ellagitannin Metabolite Urolithin A. Bioorg. Med. Chem. Lett. 2011, 21, 5901–5904. [Google Scholar] [CrossRef]
- Saha, P.; Yeoh, B.S.; Singh, R.; Chandrasekar, B.; Vemula, P.K.; Haribabu, B.; Vijay-Kumar, M.; Jala, V.R. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases. PLoS ONE 2016, 11, e0156811. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, Z.; Zhou, B.; Liu, C.; Ruan, J.; Yan, Q.; Liao, J.; Zhu, F. In Vitro Antiproliferative and Antioxidant Effects of Urolithin A, the Colonic Metabolite of Ellagic Acid, on Hepatocellular Carcinomas HepG2 Cells. Toxicol. Vitr. 2015, 29, 1107–1115. [Google Scholar] [CrossRef]
- Djedjibegovic, J.; Marjanovic, A.; Panieri, E.; Saso, L. Ellagic Acid-Derived Urolithins as Modulators of Oxidative Stress. Oxid. Med. Cell. Longev. 2020, 2020, 5194508. [Google Scholar] [CrossRef]
- Fonseca, É.; Marques, C.C.; Pimenta, J.; Jorge, J.; Baptista, M.C.; Gonçalves, A.C.; Pereira, R.M.L.N. Anti-Aging Effect of Urolithin a on Bovine Oocytes in Vitro. Animals 2021, 11, 2048. [Google Scholar] [CrossRef]
- D’Amico, D.; Andreux, P.A.; Valdés, P.; Singh, A.; Rinsch, C.; Auwerx, J. Impact of the Natural Compound Urolithin A on Health, Disease, and Aging. Trends Mol. Med. 2021, 27, 687–699. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; Benfeito, S.; Cagide, F.; Teixeira, J.; Oliveira, P.J.; Borges, F.; Silva, A.F.; Pereira, C.M. Electrochemical Behavior of a Mitochondria-Targeted Antioxidant at an Interface between Two Immiscible Electrolyte Solutions: An Alternative Approach to Study Lipophilicity. Anal. Chem. 2018, 90, 7989–7996. [Google Scholar] [CrossRef]
- Lee, H.-C.; Wei, Y.-H. Mitochondrial Biogenesis and Mitochondrial DNA Maintenance of Mammalian Cells under Oxidative Stress. Int. J. Biochem. Cell Biol. 2005, 37, 822–834. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J. Impact of Oxidative Stress on Male and Female Germ Cells: Implications for Fertility. Reproduction 2020, 159, R189–R201. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.C.; Marques, C.C.; Baptista, M.C.; Pimenta, J.; Teixeira, J.; Montezinho, L.; Cagide, F.; Borges, F.; Oliveira, P.J.; Pereira, R.M.L.N. Effect of a Novel Hydroxybenzoic Acid Based Mitochondria Directed Antioxidant Molecule on Bovine Sperm Function and Embryo Production. Animals 2022, 12, 804. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J. Reactive Oxygen Species as Mediators of Sperm Capacitation and Pathological Damage. Mol. Reprod. Dev. 2017, 84, 1039–1052. [Google Scholar] [CrossRef]
- Aitken, R.J.; Drevet, J.R.; Moazamian, A.; Gharagozloo, P. Male Infertility and Oxidative Stress: A Focus on the Underlying Mechanisms. Antioxidants 2022, 11, 306. [Google Scholar] [CrossRef]
- Aitken, R.J. Oxidative Stress and Reproductive Function. Reproduction 2022, 164, E5–E8. [Google Scholar] [CrossRef]
- Peña, F.J.; Gibb, Z.; Aitken, J. Reproduction Oxidative Stress and Reproductive Function Oxidative Stress and the Long-Term Storage of Horse Spermatozoa. Reproduction 2022, 164, F135–F144. [Google Scholar] [CrossRef]
- Tiwari, S.; Dewry, R.K.; Srivastava, R.; Nath, S.; Mohanty, T.K. Targeted Antioxidant Delivery Modulates Mitochondrial Functions, Ameliorates Oxidative Stress and Preserve Sperm Quality during Cryopreservation. Theriogenology 2022, 179, 22–31. [Google Scholar] [CrossRef]
- Pereira, R.M.; Marques, C.C.; Baptista, M.C.; Vasques, M.I.; Horta, A.E.M. Embryos and Culture Cells: A Model for Studying the Effect of Progesterone. Anim. Reprod. Sci. 2009, 111, 31–40. [Google Scholar] [CrossRef]
- Pereira, R.M.; Marques, C.C.; Baptista, M.D.C.; Vasques, M.I.; Horta, A.E. Effect of Arachidonic Acid Supplementation and Cyclooxygenase/Lipoxygenase Inhibition on the Development of Early Bovine Embryos. Rev. Bras. Zootec. 2006, 35, 422–427. [Google Scholar] [CrossRef]
- Gordon, I. Laboratory Production of Cattle Embryos, 1st ed.; Wallingford: Oxon, UK, 1994; ISBN 0851989284. [Google Scholar]
- Kathiravan, P.; Kalatharan, J.; Karthikeya, G.; Rengarajan, K.; Kadirvel, G. Objective Sperm Motion Analysis to assess Dairy Bull Fertility Using Computer-Aided System—A Review. Reprod. Domest. Anim. 2011, 46, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.M.; Mesquita, P.; Pires, V.M.R.; Baptista, M.C.; Barbas, J.P.; Pimenta, J.; Horta, A.E.M.; Prates, J.A.M.; Marques, C.C. Prion Protein Testis Specific (PRNT) Gene Polymorphisms and Transcript Level in Ovine Spermatozoa: Implications in Freezability, Fertilization and Embryo Production. Theriogenology 2018, 115, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Ma, Y.; Liu, Y.; Wan, Q. Measurement of Mitochondrial Respiration in Adherent Cells by Seahorse XF96 Cell Mito Stress Test. STAR Protoc. 2021, 2, 100245. [Google Scholar] [CrossRef] [PubMed]
- Bó, G.A.; Mapletoft, R.J. Evaluation and Classification of Bovine Embryos. Anim. Reprod. 2013, 10, 344–348. [Google Scholar]
- Yoon, J.W.; Lee, S.E.; Kim, W.J.; Kim, D.C.; Hyun, C.H.; Lee, S.J.; Park, H.J.; Kim, S.H.; Oh, S.H.; Lee, D.G.; et al. Evaluation of Semen Quality of Jeju Black Cattle (JBC) to Select Bulls Optimal for Breeding and Establish Freezing Conditions Suitable for JBC Sperm. Animals 2022, 12, 535. [Google Scholar] [CrossRef]
- Gallo, A.; Boni, R.; Tosti, E. Gamete Quality in a Multistressor Environment. Environ. Int. 2020, 138, 105627. [Google Scholar] [CrossRef]
- Madeja, Z.E.; Podralska, M.; Nadel, A.; Pszczola, M.; Pawlak, P.; Rozwadowska, N. Mitochondria Content and Activity Are Crucial Parameters for Bull Sperm Quality Evaluation. Antioxidants 2021, 10, 1204. [Google Scholar] [CrossRef]
- Magdanz, V.; Boryshpolets, S.; Ridzewski, C.; Eckel, B.; Reinhardt, K. The Motility-Based Swim-up Technique Separates Bull Sperm Based on Differences in Metabolic Rates and Tail Length. PLoS ONE 2019, 14, e0223576. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Esposito, M.C.; Tosti, E.; Boni, R. Sperm Motility, Oxidative Status, and Mitochondrial Activity: Exploring Correlation in Different Species. Antioxidants 2021, 10, 1131. [Google Scholar] [CrossRef]
- Pereira, R.; Marques, C.C.; Pimenta, J.; Barbas, J.P.; Baptista, M.C.; Diniz, P.; Torres, A.; Lopes-da-Costa, L. Assisted Reproductive Technologies (ART) Directed to Germplasm Preservation. In Advances in Animal Health, Medicine and Production; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 199–215. [Google Scholar]
- Fonseca, E.; Mesquita, P.; Marques, C.C.; Baptista, M.C.; Pimenta, J.; Matos, J.E.; Soveral, G.; Pereira, R.M.L.N. Modulation of P2Y2 Receptors in Bovine Cumulus Oocyte Complexes: Effects on Intracellular Calcium, Zona Hardening and Developmental Competence. Purinergic. Signal. 2020, 16, 85–96. [Google Scholar] [CrossRef]
- Balaban, B.; Urman, B.; Sertac, A.; Alatas, C.; Aksoy, S.; Mercan, R. Blastocyst Quality Affects the Success of Blastocyst-Stage Embryo Transfer. Fertil. Steril. 2000, 74, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.G.; Hasler, J.F. A 100-Year Review: Reproductive Technologies in Dairy Science. J. Dairy Sci. 2017, 100, 10314–10331. [Google Scholar] [CrossRef]
- Mostek, A.; Westfalewicz, B.; Słowińska, M.; Dietrich, M.A.; Judycka, S.; Ciereszko, A. Differences in Sperm Protein Abundance and Carbonylation Level in Bull Ejaculates of Low and High Quality. PLoS ONE 2018, 13, e0206150. [Google Scholar] [CrossRef] [PubMed]
- de Agostini Losano, J.D.; Souders, C.L.; Martyniuk, C.J.; Daigneault, B.W. Characterization of Bioenergetic and Kinematic Plasticity of Bovine Sperm Reveals Novel and Dynamic Temporal Traits. Reproduction 2023, 166, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Amico, D.D.; Olmer, M.; Fouassier, A.M.; Valdés, P.; Andreux, P.A.; Rinsch, C.; Lotz, M. Urolithin A Improves Mitochondrial Health, Reduces Cartilage Degeneration, and Alleviates Pain in Osteoarthritis. Aging Cell 2022, 21, e13662. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Gibb, Z.; Baker, A.; Drevet, J.; Gharagozloo, P. Causes and Consequences of Oxidative Stress in Spermatozoa. Reprod. Fertil. Dev. 2016, 28, 1–10. [Google Scholar] [CrossRef]
- Moazamian, A.; Gharagozloo, P.; Aitken, R.J.; Drevet, J.R.; Aitken, J. Reproduction Oxidative Stress and Reproductive Function Sperm Telomeres, Oxidative Stress, and Infertility. Reproduction 2022, 164, F125–F133. [Google Scholar] [CrossRef]
- Gonçalves, F.S.; Barretto, L.S.S.; Arruda, R.P.; Perri, S.H.V.; Mingoti, G.Z. Effect of Antioxidants during Bovine in Vitro Fertilization Procedures on Spermatozoa and Embryo Development. Reprod. Domest. Anim. 2010, 45, 129–135. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Nandi, S.; Gupta, P.S.P.; Mondal, S. Antioxidants Supplementation Improves the Quality of in Vitro Produced Ovine Embryos with Amendments in Key Development Gene Expressions. Theriogenology 2023, 201, 41–52. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Yeste, M. Oxidative Stress in Male Infertility: Causes, Effects in Assisted Reproductive Techniques and Protective Support of Antioxidants. Biologia 2020, 9, 77. [Google Scholar] [CrossRef]
- Crowe, A.D.; Lonergan, P.; Butler, S.T. Invited Review: Use of Assisted Reproduction Techniques to Accelerate Genetic Gain and Increase Value of Beef Production in Dairy Herds. J. Dairy Sci. 2021, 104, 12189–12206. [Google Scholar] [CrossRef] [PubMed]
- Jacques, A.; Leroy, G.; Rognon, X.; Verrier, E.; Tixier-Boichard, M.; Restoux, G. Reintroducing Genetic Diversity in Populations from Cryopreserved Material: The Case of Abondance, a French Local Dairy Cattle Breed. Genet. Sel. Evol. 2023, 55, 28. [Google Scholar] [CrossRef] [PubMed]
Kinematic Parameters | Groups | |||||
---|---|---|---|---|---|---|
UA Effect | Bull Effect | |||||
CAPcontrol | CAP1 | CAP10 | Bull A | Bull B | Bull C | |
Total Motility (%) | 61.2 ± 3.33 a | 60.1 ± 3.24 a | 55.3 ± 3.33 b | 71.7 ± 3.64 a | 58.2 ± 5.31 b | 46.7 ± 6.23 b |
Progressive motility (%) | 30.9 ± 4.39 | 32.1 ± 4.19 | 32.8 ± 4.37 | 39.4 ± 4.30 a | 35.3 ± 6.49 ab | 21.1 ± 7.24 b |
VCL (µms−1) | 67.0 ± 5.67 | 67.2 ± 5.43 | 75.8 ± 5.65 | 83.1 ± 5.64 a | 58.1 ± 9.53 b | 68.8 ± 8.47 ab |
VAP (µms−1) | 38.3 ± 3.66 | 41.4 ± 3.58 | 43.1 ± 3.65 | 50.3 ± 4.04 | 37.7 ± 6.92 | 37.8 ± 5.87 |
Static spz (n) | 37.9 ± 3.34 b | 39.0 ± 3.25 b | 44.0 ± 3.34 a | 27.5 ± 3.66 a | 52.6 ± 6.26 b | 40.8 ± 5.33 b |
Slow motile spz (n) | 4.6 ± 0.55 | 4.7 ± 0.52 | 3.8 ± 0.54 | 2.6 ± 0.54 b | 1.9 ± 0.91 b | 8.5 ± 0.81 a |
Medium motile spz (n) | 8.8 ± 1.16 a | 7.3 ± 1.11 ab | 5.3 ± 1.16 b | 5.4 ± 1.17 b | 2.5 ± 1.97 b | 13.4 ± 1.75 a |
Rapid motile spz (n) | 15.2 ± 1.94 a | 12.3 ± 1.87 ab | 10.9 ± 1.94 b | 12.7 ± 2.03 b | 4.9 ± 3.46 b | 20.9 ± 3.00 a |
VSL (µms−1) | 32.3 ± 3.61 | 37.2 ± 3.51 | 37.1 ± 3.60 | 44.9 ± 3.86 a | 33.3 ± 6.59 ab | 28.3 ± 5.69 b |
ALH (µm) | 2.5 ± 0.15 | 2.2 ± 0.15 | 2.3 ± 0.15 | 2.8 ± 0.15 a | 1.8 ± 0.24 b | 2.5 ± 0.22 a |
Linearity | 47.3 ± 1.96 b | 55.0 ± 1.83 a | 54.0 ± 1.95 a | 53.6 ± 1.66 | 54.5 ± 2.7 | 48.3 ± 2.64 |
Straightness | 79.0 ± 1.91 b | 86.6 ± 1.76 a | 83.5 ± 1.89 ab | 87.0 ± 1.51 a | 81.3 ± 2.44 b | 80.8 ± 2.48 b |
Wobble VAP/VCL | 57.2 ± 1.67 b | 62.2 ± 1.58 a | 61.9 ± 1.66 a | 60.0 ± 1.52 | 62.0 ± 2.53 | 59.2 ± 2.35 |
BCF (Hz) | 6.0 ± 0.31 b | 7.0 ± 0.29 a | 6.6 ± 0.31 ab | 7.4 ± 0.25 a | 6.3 ± 0.41 b | 6.0 ± 0.41 b |
Parameters | Groups | |||||
---|---|---|---|---|---|---|
UA Effect | Bull Effect | |||||
CAPcontrol | CAP1 | CAP10 | Bull A | Bull B | Bull C | |
Concentration (×106 spz mL−1) | 51.9 ± 7.59 | 50.4 ± 7.59 | 46.3 ± 7.59 | 40.5 ± 7.03 b | 33.3 ± 14.92 b | 74.8 ± 12.18 a |
Vitality (%) | 39.7 ± 2.52 | 44.7 ± 2.49 | 39.6 ± 2.40 | 52.7 ± 2.47 a | 26.2 ± 4.16 b | 45.2 ± 3.48 a |
Head defect (%) | 7.6 ± 1.12 | 7.5 ± 1.10 | 9.7 ± 1.06 | 7.1 ± 1.03 | 10.7 ± 1.73 | 7.2 ± 1.46 |
Intermediate piece defect (%) | 3.0 ± 0.59 | 4.2 ± 0.58 | 4.4 ± 0.54 | 3.1 ± 0.46 | 5.3 ± 0.74 | 3.1 ± 0.64 |
Tail defect (%) | 3.8 ± 1.11 | 4.3 ± 1.09 | 4.9 ± 1.04 | 2.4 ± 1.02 | 3.7 ± 1.70 | 7.0 ± 1.43 |
Total anomalies (%) | 14.4 ± 1.80 b | 15.7 ± 1.78 b | 19.0 ± 1.72 a | 12.5 ± 1.84 | 19.7 ± 3.13 | 17.0 ± 2.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorge, M.; Ferreira, F.C.; Marques, C.C.; Batista, M.C.; Oliveira, P.J.; Lidon, F.; Duarte, S.C.; Teixeira, J.; Pereira, R.M.L.N. Effect of Urolithin A on Bovine Sperm Capacitation and In Vitro Fertilization. Animals 2024, 14, 2726. https://doi.org/10.3390/ani14182726
Jorge M, Ferreira FC, Marques CC, Batista MC, Oliveira PJ, Lidon F, Duarte SC, Teixeira J, Pereira RMLN. Effect of Urolithin A on Bovine Sperm Capacitation and In Vitro Fertilization. Animals. 2024; 14(18):2726. https://doi.org/10.3390/ani14182726
Chicago/Turabian StyleJorge, Manuela, Filipa C. Ferreira, Carla C. Marques, Maria C. Batista, Paulo J. Oliveira, F. Lidon, Sofia C. Duarte, José Teixeira, and Rosa M. L. N. Pereira. 2024. "Effect of Urolithin A on Bovine Sperm Capacitation and In Vitro Fertilization" Animals 14, no. 18: 2726. https://doi.org/10.3390/ani14182726
APA StyleJorge, M., Ferreira, F. C., Marques, C. C., Batista, M. C., Oliveira, P. J., Lidon, F., Duarte, S. C., Teixeira, J., & Pereira, R. M. L. N. (2024). Effect of Urolithin A on Bovine Sperm Capacitation and In Vitro Fertilization. Animals, 14(18), 2726. https://doi.org/10.3390/ani14182726