Effect of Dietary Crude Protein Reduction Levels on Performance, Nutrient Digestibility, Nitrogen Utilization, Blood Parameters, Meat Quality, and Welfare Index of Broilers in Welfare-Friendly Environments
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statements
2.2. Birds, Experimental Diets, and Housing
2.3. Growth Performance, Economic Evaluation, and Sample Collection
2.4. Analysis of Nutrient Digestibility and Nitrogen Utilization
2.5. Blood Parameters and Corticosterone
2.6. Meat Quality and Chemical Composition
2.7. Assessment of Welfare Indicators
2.8. Litter Quality
2.9. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Digestibility
3.3. Nitrogen Utilization
3.4. Blood Parameters
3.5. Serum Corticosterone
3.6. Meat Quality
3.7. Animal Welfare Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Usturoi, M.G.; Radu-Rusu, R.M.; Usturoi, A.; Simeanu, C.; Doliș, M.G.; Rațu, R.N.; Simeanu, D. Impact of different levels of crude protein on production performance and meat quality in broiler selected for slow growth. Agriculture 2023, 13, 427. [Google Scholar] [CrossRef]
- Roy, S.C.; Alam, M.S.; Ali, M.A.; Chowdhury, S.D.; Goswami, C. Different levels of protein on the performance of synthetic broiler. Bangladesh J. Vet. Med. 2010, 8, 117–122. [Google Scholar] [CrossRef]
- Badawi, M.E.S.; Ali, A.H.; El-Razik, W.M.A.; Soliman, M.H. Influence of low crude protein diets on broiler chickens performance. Adv. Anim. Vet. 2019, 7, 26–33. [Google Scholar] [CrossRef]
- Gou, Z.Y.; Jiang, S.Q.; Jiang, Z.Y.; Zheng, C.T.; Li, L.; Ruan, D.; Chen, F.; Lin, X.J. Effects of high peanut meal with different crude protein level supplemented with amino acids on performance, carcass traits and nitrogen retention of Chinese Yellow broilers. J. Anim. Physiol. Anim. Nutr. 2016, 100, 657–664. [Google Scholar] [CrossRef]
- Hur, S.J.; Kim, J.M.; Yim, D.G.; Yoon, Y.; Lee, S.S.; Jo, C. Impact of livestock industry on climate change: Case Study in South Korea—A review. Anim. Biosci. 2024, 37, 405. [Google Scholar] [CrossRef]
- Chrystal, P.V.; Moss, A.F.; Khoddami, A.; Naranjo, V.D.; Selle, P.H.; Liu, S.Y. Impacts of reduced-crude protein diets on key parameters in male broiler chickens offered maize-based diets. Poult. Sci. 2020, 99, 505–516. [Google Scholar] [CrossRef]
- Brandejs, V.; Kupcikova, L.; Tvrdon, Z.; Hampel, D.; Lichovnikova, M. Broiler chicken production using dietary crude protein reduction strategy and free amino acid supplementation. Livest. Sci. 2022, 258, 104879. [Google Scholar] [CrossRef]
- Van Emous, R.A.; Winkel, A.; Aarnink, A.J.A. Effects of dietary crude protein levels on ammonia emission, litter and manure composition, N losses, and water intake in broiler breeders. Poult. Sci. 2019, 98, 6618–6625. [Google Scholar] [CrossRef]
- Brink, M.; Janssens, G.P.; Demeyer, P.; Bağci, Ö.; Delezie, E. Reduction of dietary crude protein and feed form: Impact on broiler litter quality, ammonia concentrations, excreta composition, performance, welfare, and meat quality. Anim. Nutr. 2022, 9, 291–303. [Google Scholar] [CrossRef]
- Belloir, P.; Méda, B.; Lambert, W.; Corrent, E.; Juin, H.; Lessire, M.; Tesseraud, S. Reducing the CP content in broiler feeds: Impact on animal performance, meat quality and nitrogen utilization. Animal 2017, 11, 1881–1889. [Google Scholar] [CrossRef]
- Malomo, G.A.; Bolu, S.A.; Olutade, S.G. Effects of dietary crude protein on performance and nitrogen economy of broilers. Sustain. Agric. Res. 2013, 2, 52–57. [Google Scholar] [CrossRef]
- Pesti, G.M. Impact of dietary amino acid and crude protein levels in broiler feeds on biological performance. J. Appl. Poult. Res. 2009, 18, 477–486. [Google Scholar] [CrossRef]
- Beski, S.S.; Swick, R.A.; Iji, P.A. Specialized protein products in broiler chicken nutrition: A review. Anim. Nutr. 2015, 1, 47–53. [Google Scholar] [CrossRef]
- Barekatain, R.; Romero, L.F.; Sorbara, J.O.B.; Cowieson, A.J. Balanced nutrient density for broiler chickens using a range of digestible lysine-to-metabolizable energy ratios and nutrient density: Growth performance, nutrient utilisation and apparent metabolizable energy. Anim. Nutr. 2021, 7, 430–439. [Google Scholar] [CrossRef]
- Dairo, F.A.S.; Adesehinwa, A.O.K.; Oluwasola, T.A.; Oluyemi, J.A. High and low dietary energy and protein levels for broiler chickens. Afr. J. Agric. Res. 2010, 5, 2030–2038. [Google Scholar]
- Ventura, B.A.; Siewerdt, F.; Estevez, I. Effects of barrier perches and density on broiler leg health, fear, and performance. Poult. Sci. 2010, 89, 1574–1583. [Google Scholar] [CrossRef]
- Hongchao, J.; Jiang, Y.; Song, Z.; Zhao, J.; Wang, X.; Lin, H. Effect of perch type and stocking density on the behaviour and growth of broilers. Anim. Prod. Sci. 2013, 54, 930–941. [Google Scholar] [CrossRef]
- National Institute of Animal Science (NIAS). Korean feeding standard for poultry. In Nutrient Requirements of Poultry, 3rd ed.; National Institute of Animal Science: Wanju-gun, Republic of Korea, 2017. [Google Scholar]
- Heo, Y.J.; Park, J.; Kim, Y.B.; Kwon, B.Y.; Kim, D.H.; Song, J.Y.; Lee, K.W. Effects of dietary protein levels on performance, nitrogen excretion, and odor emission of growing pullets and laying hens. Poult. Sci. 2023, 102, 102798. [Google Scholar] [CrossRef]
- Kamran, Z.A.H.I.D.; Sarwar, M.U.H.A.M.M.A.D.; Nisa, M.U.; Nadeem, M.A.; Mahmood, S. Effect of low levels of dietary crude protein with constant metabolizable energy on nitrogen excretion, litter composition and blood parameters of broilers. Int. J. Agric. Biol. 2010, 12, 401–405. [Google Scholar]
- Van Harn, J.; Dijkslag, M.A.; Van Krimpen, M.M. Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poult. Sci. 2019, 98, 4868–4877. [Google Scholar] [CrossRef]
- Maqsood, M.A.; Khan, E.U.; Qaisrani, S.N.; Rashid, M.A.; Shaheen, M.S.; Nazir, A.; Talib, H.; Ahmad, S. Interactive effect of amino acids balanced at ideal lysine ratio and exogenous protease supplemented to low CP diet on growth performance, carcass traits, gut morphology, and serum metabolites in broiler chicken. Trop. Anim. Health Prod. 2022, 54, 186. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.S.; Shahin, S.E.; Omar, A.E.; Mohammed, H.A.; Mahmoud, H.I.; Ibrahim, D. Effects of graded levels of microbial fermented or enzymatically treated dried brewer’s grains on growth, digestive and nutrient transporter genes expression and cost effectiveness in broiler chickens. BMC Vet. Res. 2020, 16, 424. [Google Scholar] [CrossRef]
- Qaid, M.M.; Al-Mufarrej, S.I.; Al-Garadi, M.A.; Al-Haidary, A.A. Effects of Rumex nervosus leaf powder supplementation on carcasses compositions, small intestine dimensions, breasts color quality, economic feasibility in broiler chickens. Poult. Sci. 2023, 102, 102943. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Welfare Quality®. Welfare Quality® Assessment Protocol for Poultry; Welfare Quality® Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book Co.: New York, NY, USA, 1997. [Google Scholar]
- Mohammadigheisar, M.; Kim, I.H. Addition of a protease to low crude protein density diets of broiler chickens. J. Appl. Anim. Res. 2018, 46, 1377–1381. [Google Scholar] [CrossRef]
- Liu, S.Y.; Macelline, S.P.; Chrystal, P.V.; Selle, P.H. Progress towards reduced-crude protein diets for broiler chickens and sustainable chicken-meat production. J. Anim. Sci. Biotechnol. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Hejdysz, M.; Bogucka, J.; Ziółkowska, E.; Perz, K.; Jarosz, Ł.; Ciszewski, A.; Nowaczewski, S.; Ślósarz, P.; Kaczmarek, S.A. Effects of low crude protein content and glycine supplementation on broiler chicken performance, carcass traits, and litter quality. Livest. Sci. 2022, 261, 104930. [Google Scholar] [CrossRef]
- Namroud, N.F.; Shivazad, M.; Zaghari, M. Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level, and excreta characteristics of broiler chicks. Poult. Sci. 2008, 87, 2250–2258. [Google Scholar] [CrossRef]
- Lee, W.D.; Kim, H.J.; Kim, H.; Hong, E.C.; Kim, C.H.; Kang, H.K.; Byun, S.J.; Son, J. Dietary energy levels affect productivity, meat quality, blood variables, energy efficiency and welfare indicators in broilers under welfare rearing conditions. Ital. J. Anim. Sci. 2024, 23, 1325–1335. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, T.; Yang, J.; Zheng, W.; Wu, Q.; Zhu, K.; Mou, X.; Wang, L.; Nie, K.; Li, X.; et al. Responses of combined non-starch polysaccharide enzymes and protease on growth performance, meat quality, and nutrient digestibility of yellow-feathered broilers fed with diets with different crude protein levels. Front. Vet. Sci. 2022, 9, 946204. [Google Scholar] [CrossRef]
- Salah, A.A. Effect of low-protein in iso-energetic diets on performance, carcass characteristics, digestibilities and plasma lipids of broiler chickens. Egypt. Poult. Sci. J. 2016, 36, 251–262. [Google Scholar] [CrossRef]
- Deschepper, K.; deGroote, G. Effect of dietary protein, essential and non-essential amino acids on the performance and carcase composition of male broiler chickens. Br. Poult. Sci. 1995, 36, 229–245. [Google Scholar] [CrossRef]
- Kamely, M.; He, W.; Wakaruk, J.; Whelan, R.; Naranjo, V.; Barreda, D.R. Impact of reduced dietary crude protein in the starter phase on immune development and response of broilers throughout the growth period. Front. Vet. Sci. 2020, 7, 436. [Google Scholar] [CrossRef]
- Eits, R.M.; Kwakkel, R.P.; Verstegen, M.W.A.; Emmans, G.C. Responses of broiler chickens to dietary protein: Effects of early life protein nutrition on later responses. Br. Poult. Sci. 2003, 44, 398–409. [Google Scholar] [CrossRef]
- Ibrahim, D.; Moustafa, A.; Shahin, S.E.; Sherief, W.R.; Abdallah, K.; Farag, M.F.; Ibrahim, S.M. Impact of fermented or enzymatically fermented dried olive pomace on growth, expression of digestive enzyme and glucose transporter genes, oxidative stability of frozen meat, and economic efficiency of broiler chickens. Front. Vet. Sci. 2021, 8, 644325. [Google Scholar] [CrossRef]
- Freitas, D.M.; Vieira, S.L.; Angel, C.R.; Favero, A.; Maiorka, A. Performance and nutrient utilization of broilers fed diets supplemented with a novel mono-component protease. J. Appl. Poult. Res. 2011, 20, 322–334. [Google Scholar] [CrossRef]
- Ding, X.M.; Li, D.D.; Li, Z.R.; Wang, J.P.; Zeng, Q.F.; Bai, S.P.; Su, Z.W.; Zhang, K.Y. Effects of dietary crude protein levels and exogenous protease on performance, nutrient digestibility, trypsin activity and intestinal morphology in broilers. Livest. Sci. 2016, 193, 26–31. [Google Scholar] [CrossRef]
- Alfonso-Avila, A.R.; Cirot, O.; Lambert, W.; Létourneau-Montminy, M.P. Effect of low-protein corn and soybean meal-based diets on nitrogen utilization, litter quality, and water consumption in broiler chicken production: Insight from meta-analysis. Animal 2022, 16, 100458. [Google Scholar] [CrossRef]
- Jabbar, A.; Tahir, M.; Khan, R.U.; Ahmad, N. Interactive effect of exogenous protease enzyme and dietary crude protein levels on growth and digestibility indices in broiler chickens during the starter phase. Trop. Anim. Health Prod. 2021, 53, 23. [Google Scholar] [CrossRef]
- Angel, C.R.; Saylor, W.; Vieira, S.L.; Ward, N. Effects of a monocomponent protease on performance and protein utilization in 7-to 22-day-old broiler chickens. Poult. Sci. 2011, 90, 2281–2286. [Google Scholar] [CrossRef]
- Vieira, S.L.; Angel, C.R.; Miranda, D.J.A.; Favero, A.; Cruz, R.F.A.; Sorbara, J.O.B. Effects of a monocomponent protease on performance and protein utilization in 1-to 26-day-of-age turkey poults. J. Appl. Poult. Res. 2013, 22, 680–688. [Google Scholar] [CrossRef]
- Buwjoom, T.; Yamauchi, K.; Erikawa, T.; Goto, H. Histological intestinal alterations in chickens fed low protein diet. J. Anim. Physiol. Anim. Nutr. 2010, 94, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, C.; Langeheine, M.; Brehm, R.; Taube, V.; Siebert, D.; Visscher, C. Influence of reduced protein content in complete diets with a consistent arginine–lysine ratio on performance and nitrogen excretion in broilers. Sustainability 2018, 10, 3827. [Google Scholar] [CrossRef]
- Lee, W.D.; Kothari, D.; Moon, S.G.; Kim, J.; Kim, K.I.; Ga, G.W.; Kim, Y.G.; Kim, S.K. Evaluation of non-fermented and fermented Chinese chive juice as an alternative to antibiotic growth promoters of broilers. Animals 2022, 12, 2742. [Google Scholar] [CrossRef] [PubMed]
- Qiu, K.; Chen, J.; Zhang, G.; Chang, W.; Zheng, A.; Cai, H.; Liu, G.; Chen, Z. Effects of dietary crude protein and protease levels on performance, immunity capacity, and AA digestibility of broilers. Agriculture 2023, 13, 703. [Google Scholar] [CrossRef]
- Yu, Y.; Ai, C.; Luo, C.; Yuan, J. Effect of Dietary Crude Protein and Apparent Metabolizable Energy Levels on Growth Performance, Nitrogen Utilization, Serum Parameter, Protein Synthesis, and Amino Acid Metabolism of 1-to 10-Day-Old Male Broilers. Int. J. Mol. Sci. 2024, 25, 7431. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, I.H. The effects of betaine supplementation in diets containing different levels of crude protein and methionine on the growth performance, blood components, total tract nutrient digestibility, excreta noxious gas emission, and meat quality of the broiler chickens. Poult. Sci. 2019, 98, 6808–6815. [Google Scholar] [CrossRef]
- Harr, K.E. Clinical chemistry of companion avian species: A review. Vet. Clin. Pathol. 2002, 31, 140–151. [Google Scholar] [CrossRef]
- Son, J.; Lee, W.D.; Kim, H.J.; Kang, B.S.; Kang, H.K. Effect of providing environmental enrichment into aviary house on the welfare of laying hens. Animals 2022, 12, 1165. [Google Scholar] [CrossRef]
- Zhu, C.; Jiang, Z.Y.; Jiang, S.Q.; Zhou, G.L.; Lin, Y.C.; Chen, F.; Hong, P. Maternal energy and protein affect subsequent growth performance, carcass yield, and meat color in Chinese Yellow broilers. Poult. Sci. 2012, 91, 1869–1878. [Google Scholar] [CrossRef]
- Dong, L.; Li, Y.; Zhang, Y.; Zhang, Y.; Ren, J.; Zheng, J.; Diao, J.; Ni, H.; Yin, Y.; Sun, R.; et al. Effects of organic zinc on production performance, meat quality, apparent nutrient digestibility and gut microbiota of broilers fed low-protein diets. Sci. Rep. 2023, 13, 10803. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, S.U.Z.A.N.; Özkul, H.; Özkan, S.E.Z.E.N.; Gous, R.; Yaşa, İ.H.S.A.N.; Babacanoğlu, E. Effect of dietary protein regime on meat quality traits and carcase nutrient content of broilers from two commercial genotypes. Br. Poult. Sci. 2010, 51, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Shi, J.; Liu, F.; Wang, X.; Gao, C.; Yao, L. Effects of dietary energy and protein on growth performance and carcass quality of broilers during starter phase. Int. J. Poult. Sci. 2009, 8, 508–511. [Google Scholar] [CrossRef]
- Barteczko, J.; Lasek, O. Effect of varied protein and energy contents in mixture on meat quality of broiler chicken. Slovak J. Anim. Sci. 2008, 41, 173–178. [Google Scholar]
- Wang, Q.D.; Zhang, K.Y.; Zhang, Y.; Bai, S.P.; Ding, X.M.; Wang, J.P.; Peng, H.W.; Tian, G.; Xuan, Y.; Su, Z.W.; et al. Effects of dietary protein levels and protease supplementation on growth performance, carcass traits, meat quality, and standardized ileal digestibility of amino acid in Pekin ducks fed a complex diet. Poult. Sci. 2020, 99, 3557–3566. [Google Scholar] [CrossRef]
- Benahmed, S.; Askri, A.; de Rauglaudre, T.; Létourneau-Montminy, M.P.; Alnahhas, N. Effect of reduced crude protein diets supplemented with free limiting amino acids on body weight, carcass yield, and breast meat quality in broiler chickens. Poult. Sci. 2023, 102, 103041. [Google Scholar] [CrossRef] [PubMed]
- Meluzzi, A.; Fabbri, C.; Folegatti, E.; Sirri, F. Survey of chicken rearing conditions in Italy: Effects of litter quality and stocking density on productivity, foot dermatitis and carcase injuries. Br. Poult. Sci. 2008, 49, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Karaarslan, S.; Nazlıgül, A. Effects of lighting, stocking density, and access to perches on leg health variables as welfare indicators in broiler chickens. Livest. Sci. 2018, 218, 31–36. [Google Scholar] [CrossRef]
- Bench, C.J.; Oryschak, M.A.; Korver, D.R.; Beltranena, E. Behaviour, growth performance, foot pad quality, bone density, and carcass traits of broiler chickens reared with barrier perches and fed different dietary crude protein levels. Can. J. Anim. Sci. 2016, 97, 268–280. [Google Scholar] [CrossRef]
- Lambert, W.; Berrocoso, J.D.; Swart, B.; van Tol, M.; Bruininx, E.; Willems, E. Reducing dietary crude protein in broiler diets positively affects litter quality without compromising growth performance whereas a reduction in dietary electrolyte balance further improves litter quality but worsens feed efficiency. Anim. Feed. Sci. Technol. 2023, 297, 115571. [Google Scholar] [CrossRef]
- Koshchaev, I.; Mezinova, K.; Ryadinskaya, A.; Sorokina, N.; Chuev, S. Identification of cases of pododermatitis in broiler chickens when feeding a probiotic feed additive. E3S Web Conf. 2020, 210, 06023. [Google Scholar] [CrossRef]
- Khajali, F.; Moghaddam, H.N. Methionine supplementation of low-protein broiler diets: Influence upon growth performance and efficiency of protein utilization. Int. J. Poult. Sci. 2006, 5, 569–573. [Google Scholar]
- Kim, D.Y.; Kim, J.H.; Choi, W.J.; Han, G.P.; Kil, D.Y. Comparative effects of dietary functional nutrients on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions. Anim. Biosci. 2021, 34, 1839. [Google Scholar] [CrossRef] [PubMed]
- Hafez, M.H.; El-Kazaz, S.E.; Alharthi, B.; Ghamry, H.I.; Alshehri, M.A.; Sayed, S.; Shukry, M.; El-Sayed, Y.S. The impact of curcumin on growth performance, growth-related gene expression, oxidative stress, and immunological biomarkers in broiler chickens at different stocking densities. Animals 2022, 12, 958. [Google Scholar] [CrossRef]
- Kim, C.H.; Kang, H.K.; Kim, H.S. Effect of dietary energy levels on growth performance, blood parameter and intestinal morphology of Pekin ducks in low ambient temperature. J. Anim. Sci. Technol. 2019, 61, 305. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, J.H.; Han, G.P.; Kil, D.Y. Increasing concentrations of dietary threonine, tryptophan, and glycine improve growth performance and intestinal health with decreasing stress responses in broiler chickens raised under multiple stress conditions. Anim. Nutr. 2024, 18, 145–153. [Google Scholar] [CrossRef]
- Yvon, S.; Beaumont, M.; Dayonnet, A.; Eutamène, H.; Lambert, W.; Tondereau, V.; Chalvon-Demersay, T.; Belloir, P.; Paës, C. Effect of diet supplemented with functional amino acids and polyphenols on gut health in broilers subjected to a corticosterone-induced stress. Sci. Rep. 2024, 14, 1032. [Google Scholar] [CrossRef]
- Karaarslan, S.; Tatlı, O.; Kaya, M.; Türkyılmaz, M.K.; Oral Toplu, H.D.; Dereli Fidan, E.; Nazlıgül, A.; Okur, E.Z. Effects of barrier perch access and early dietary protein and energy dilution on some welfare parameters, tibiotarsus measurements, fear and mobility level in broiler chickens. Br. Poult. Sci. 2022, 63, 99–107. [Google Scholar] [CrossRef]
- Lin Law, F.; Idrus, Z.; Soleimani Farjam, A.; Juan Boo, L.; Awad, E.A. Effects of protease supplementation of low protein and/or energy diets on growth performance and blood parameters in broiler chickens under heat stress condition. Ital. J. Anim. Sci. 2019, 18, 679–689. [Google Scholar] [CrossRef]
- Najafi, P.; Zulkifli, I.; Amat Jajuli, N.; Farjam, A.S.; Ramiah, S.K.; Amir, A.A.; O’Reily, E.; Eckersall, D. Environmental temperature and stocking density effects on acute phase proteins, heat shock protein 70, circulating corticosterone and performance in broiler chickens. Int. J. Biometeorol. 2015, 59, 1577–1583. [Google Scholar] [CrossRef]
- Kim, C.H.; Kim, K.H.; Chun, J.L.; Lim, S.J.; Jeon, J.H. Animal welfare indicators and stress response of broiler chickens raised at low and high stocking density. J. Anim. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Chuppava, B.; Visscher, C.; Kamphues, J. Effect of different flooring designs on the performance and foot pad health in broilers and turkeys. Animals 2018, 8, 70. [Google Scholar] [CrossRef] [PubMed]
Items | Starter (0 to 7 d) | Grower (8 to 21 d) | Finisher (22 to 35 d) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Decreased CP Level in Diets (%) 1 | Decreased CP Level in Diets (%) | ||||||||||
CON | 1 | 2 | 3 | 4 | CON | 1 | 2 | 3 | 4 | ||
Ingredient, % | |||||||||||
Corn | 53.88 | 57.27 | 58.44 | 59.62 | 60.79 | 61.96 | 59.50 | 60.23 | 60.96 | 61.69 | 62.42 |
Soybean meal | 38.23 | 33.76 | 30.30 | 26.84 | 23.38 | 19.92 | 31.40 | 27.86 | 24.32 | 20.78 | 17.24 |
Wheat bran | - | - | 2.14 | 4.28 | 6.42 | 8.56 | - | 2.57 | 5.14 | 7.71 | 10.28 |
Limestone | 1.91 | 1.96 | 1.98 | 2.00 | 2.02 | 2.04 | 1.86 | 1.88 | 1.91 | 1.93 | 1.95 |
Monocalcium phosphate | 0.30 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Vegetable oil | 4.30 | 5.40 | 5.30 | 5.20 | 5.10 | 5.00 | 5.84 | 5.83 | 5.82 | 5.81 | 5.80 |
DL-Methionine | 0.38 | 0.34 | 0.37 | 0.40 | 0.43 | 0.46 | 0.28 | 0.31 | 0.34 | 0.37 | 0.40 |
L-Threonine | 0.07 | 0.07 | 0.12 | 0.17 | 0.21 | 0.26 | 0.04 | 0.09 | 0.14 | 0.19 | 0.24 |
L-Lysine-HCl | 0.33 | 0.32 | 0.47 | 0.62 | 0.77 | 0.92 | 0.27 | 0.42 | 0.57 | 0.72 | 0.87 |
Vitamin-mineral premix 2 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Calculated composition | |||||||||||
MEn, kcal/kg | 3025 | 3098 | 3098 | 3099 | 3100 | 3100 | 3150 | 3150 | 3151 | 3151 | 3151 |
Crude protein, % | 22.0 | 20.2 | 19.3 | 18.4 | 17.5 | 16.6 | 19.0 | 18.3 | 17.4 | 16.5 | 15.6 |
Calcium, % | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
Available phosphate, % | 0.45 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
Lysine, % | 1.42 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 |
Met + Cys, % | 1.08 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 |
Analyzed composition, % | |||||||||||
Crude protein | 21.9 | 20.45 | 19.24 | 18.61 | 17.28 | 16.12 | 19.79 | 18.69 | 16.89 | 16.09 | 15.32 |
Items | Decreased CP Level in Diets (%) 1 | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | 1 | 2 | 3 | 4 | Linear | Quadratic | ||
7 to 21 d | ||||||||
BW gain, g/bird 3 | 488.8 | 496.3 | 462.2 | 442.1 | 437.3 | 7.922 | 0.008 | 0.854 |
Feed intake, g/bird | 724.3 | 772.0 | 733.2 | 726.0 | 754.6 | 11.823 | 0.813 | 0.954 |
FCR, gain/intake 4 | 1.48 | 1.56 | 1.59 | 1.64 | 1.73 | 0.025 | 0.007 | 0.773 |
CPC 5 | 0.593 | 0.591 | 0.571 | 0.559 | 0.553 | 0.008 | 0.031 | 0.971 |
22 to 35 d | ||||||||
BW gain, g/bird | 847.2 | 838.9 | 849.2 | 866.8 | 806.1 | 10.643 | 0.476 | 0.298 |
Feed intake, g/bird | 1554.1 | 1521.2 | 1576.7 | 1566.0 | 1548.5 | 17.580 | 0.580 | 0.811 |
FCR, gain/intake | 1.70 | 1.82 | 1.86 | 1.81 | 1.92 | 0.033 | 0.042 | 0.452 |
CPC | 0.629 | 0.655 | 0.632 | 0.579 | 0.572 | 0.014 | 0.054 | 0.419 |
7 to 35 d | ||||||||
BW gain, g/bird | 1336.0 | 1335.2 | 1311.4 | 1308.9 | 1243.4 | 11.821 | 0.315 | 0.970 |
Feed intake, g/bird | 2278.4 | 2293.3 | 2309.8 | 2292.0 | 2303.1 | 21.994 | 0.811 | 0.767 |
FCR, gain/intake | 1.71 | 1.72 | 1.76 | 1.75 | 1.85 | 0.023 | 0.441 | 0.826 |
CPC | 0.333 | 0.318 | 0.308 | 0.289 | 0.285 | 0.005 | <0.001 | 0.794 |
Feed cost/kg BW gain, USD | 0.85 | 0.84 | 0.84 | 0.82 | 0.85 | 0.010 | 0.849 | 0.562 |
Total feed cost/bird, USD | 1.13 | 1.12 | 1.10 | 1.07 | 1.05 | 0.012 | 0.017 | 0.726 |
Total revenue, USD | 2.36 | 2.36 | 2.32 | 2.32 | 2.22 | 0.019 | 0.008 | 0.242 |
Net profit, USD | 1.23 | 1.24 | 1.22 | 1.25 | 1.17 | 0.019 | 0.368 | 0.441 |
Benefit/cost ratio | 2.10 | 2.12 | 2.11 | 2.16 | 2.11 | 0.024 | 0.733 | 0.737 |
Items | Decreased CP Level in Diets (%) 1 | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | 1 | 2 | 3 | 4 | Linear | Quadratic | ||
Gross energy, % | 75.50 | 74.82 | 72.72 | 73.04 | 74.38 | 0.352 | 0.005 | 0.481 |
Dry matter, % | 85.16 | 82.72 | 73.86 | 78.21 | 70.08 | 1.645 | 0.008 | 0.199 |
Crude protein, % | 69.44 | 69.68 | 64.50 | 63.48 | 65.77 | 0.620 | <0.001 | 0.041 |
Ether extract, % | 87.59 | 87.25 | 91.90 | 91.40 | 86.05 | 0.558 | 0.686 | <0.001 |
Items | Decreased CP Level in Diets (%) 1 | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | 1 | 2 | 3 | 4 | Linear | Quadratic | ||
N intake, g/bird | 73.35 | 69.59 | 65.60 | 61.18 | 57.92 | 1.357 | <0.001 | 0.928 |
N excretion, g/bird | 35.84 | 34.43 | 32.86 | 31.54 | 30.75 | 0.359 | <0.001 | 0.969 |
N retention, g/bird | 37.51 | 35.16 | 32.74 | 29.64 | 27.17 | 1.032 | <0.001 | 0.882 |
N retention efficiency, % | 53.09 | 55.88 | 58.01 | 62.02 | 62.28 | 0.990 | <0.001 | 0.687 |
Items | Decreased CP Level in Diets (%) 1 | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | 1 | 2 | 3 | 4 | Linear | Quadratic | ||
TCHO, mg/dL 3 | 177.8 | 186.3 | 189.4 | 194.5 | 185.8 | 2.542 | 0.180 | 0.130 |
TG, mg/dL 4 | 70.7 | 67.1 | 72.1 | 69.7 | 74.2 | 3.209 | 0.694 | 0.706 |
GLU, mg/dL 5 | 202.6 | 218.3 | 212.2 | 232.6 | 227.0 | 7.395 | 0.251 | 0.760 |
TP, g/dL 6 | 3.65 | 3.71 | 3.62 | 3.38 | 3.05 | 0.064 | <0.001 | 0.064 |
ALB, g/dL 7 | 1.36 | 1.43 | 1.38 | 1.30 | 1.20 | 0.019 | 0.194 | 0.050 |
AST, U/L 8 | 258.0 | 256.8 | 240.7 | 252.2 | 255.0 | 3.702 | 0.686 | 0.259 |
ALT, U/L 9 | 2.40 | 1.74 | 1.81 | 1.98 | 1.91 | 0.116 | 0.271 | 0.195 |
Ca, mg/dL 10 | 12.79 | 12.04 | 12.28 | 12.58 | 12.62 | 0.247 | 0.106 | 0.026 |
IP, mg/dL 11 | 5.12 | 4.88 | 4.46 | 3.99 | 3.77 | 0.160 | 0.005 | 0.980 |
CREA, mg/dL 12 | 0.25 | 0.24 | 0.24 | 0.24 | 0.21 | 0.003 | 0.213 | 0.926 |
LDH, mg/dL 13 | 2458.0 | 2390.0 | 2467.6 | 2758.2 | 2525.6 | 60.75 | 0.111 | 0.190 |
Items | Decreased CP Level in Diets (%) 1 | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | 1 | 2 | 3 | 4 | Linear | Quadratic | ||
pH | 5.69 | 5.85 | 5.71 | 5.71 | 5.75 | 0.016 | 0.834 | 0.440 |
Cooking loss, % | 23.8 | 21.6 | 22.3 | 22.5 | 22.5 | 0.249 | 0.320 | 0.066 |
WHC, % 3 | 57.1 | 67.2 | 58.6 | 59.8 | 44.7 | 1.144 | 0.927 | <0.001 |
Shear force, N | 23.2 | 24.7 | 20.2 | 23.9 | 21.3 | 0.478 | 0.131 | 0.986 |
Meat color | ||||||||
CIE L* | 53.4 | 50.6 | 52.4 | 49.9 | 52.0 | 0.369 | 0.139 | 0.061 |
CIE a* | 1.65 | 2.06 | 2.27 | 3.13 | 3.06 | 0.173 | 0.006 | 0.582 |
CIE b* | 4.75 | 4.08 | 4.41 | 3.59 | 4.32 | 0.199 | 0.122 | 0.864 |
Composition | ||||||||
Moisture, % | 74.4 | 73.8 | 72.8 | 72.9 | 73.0 | 0.118 | <0.001 | 0.058 |
Crude protein, % | 22.8 | 23.4 | 23.0 | 23.1 | 22.2 | 0.093 | 0.465 | 0.097 |
Crude fat, % | 1.15 | 1.18 | 1.19 | 1.49 | 1.44 | 0.041 | 0.004 | 0.104 |
Crude ash, % | 1.51 | 1.48 | 1.49 | 1.46 | 1.39 | 0.014 | 0.266 | 0.973 |
Items | Decreased CP Level in Diets (%) 1 | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | 1 | 2 | 3 | 4 | Linear | Quadratic | ||
Footpad dermatitis score | 1.40 | 1.23 | 1.17 | 0.70 | 0.97 | 0.063 | <0.001 | 0.359 |
Hock burn score | 1.10 | 1.13 | 1.60 | 0.80 | 0.83 | 0.056 | 0.027 | 0.008 |
Feather cleanliness score | 1.23 | 0.87 | 0.90 | 0.37 | 0.30 | 0.056 | <0.001 | 0.934 |
Litter quality | ||||||||
Moisture, % | 65.7 | 62.4 | 65.2 | 63.5 | 60.0 | 0.490 | 0.006 | 0.199 |
pH | 8.76 | 8.49 | 8.48 | 8.04 | 8.08 | 0.058 | <0.001 | 0.466 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, J.; Lee, W.-D.; Kim, C.-H.; Kim, H.; Hong, E.-C.; Kim, H.-J. Effect of Dietary Crude Protein Reduction Levels on Performance, Nutrient Digestibility, Nitrogen Utilization, Blood Parameters, Meat Quality, and Welfare Index of Broilers in Welfare-Friendly Environments. Animals 2024, 14, 3131. https://doi.org/10.3390/ani14213131
Son J, Lee W-D, Kim C-H, Kim H, Hong E-C, Kim H-J. Effect of Dietary Crude Protein Reduction Levels on Performance, Nutrient Digestibility, Nitrogen Utilization, Blood Parameters, Meat Quality, and Welfare Index of Broilers in Welfare-Friendly Environments. Animals. 2024; 14(21):3131. https://doi.org/10.3390/ani14213131
Chicago/Turabian StyleSon, Jiseon, Woo-Do Lee, Chan-Ho Kim, Hyunsoo Kim, Eui-Chul Hong, and Hee-Jin Kim. 2024. "Effect of Dietary Crude Protein Reduction Levels on Performance, Nutrient Digestibility, Nitrogen Utilization, Blood Parameters, Meat Quality, and Welfare Index of Broilers in Welfare-Friendly Environments" Animals 14, no. 21: 3131. https://doi.org/10.3390/ani14213131
APA StyleSon, J., Lee, W. -D., Kim, C. -H., Kim, H., Hong, E. -C., & Kim, H. -J. (2024). Effect of Dietary Crude Protein Reduction Levels on Performance, Nutrient Digestibility, Nitrogen Utilization, Blood Parameters, Meat Quality, and Welfare Index of Broilers in Welfare-Friendly Environments. Animals, 14(21), 3131. https://doi.org/10.3390/ani14213131