Sales of Veterinary Antibiotics in Serbia: Identification of Problem Areas Using Standardized Metrics
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Data Extraction
- Antimicrobial substances for intestinal use (QA07AA and QA07AB);
- Antimicrobial substances for intrauterine use (QG01AA, QG01AE, QG01BA, QG01BE, QG51AA, and QG51AG);
- Antimicrobial substances for systemic use (QJ01);
- Antimicrobial substances for intramammary use (QJ51);
- Antimicrobial substances used as antiprotozoals (QP51AG).
2.2. Metrics
2.3. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Tomas, A.; Pavlović, N.; Stilinović, N.; Horvat, O.; Paut-Kusturica, M.; Dugandžija, T.; Tomić, Z.; Sabo, A. Increase and change in the pattern of antibiotic use in Serbia (2010–2019). Antibiotics 2021, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, S.P.; Jarocki, V.M.; Seemann, T.; Cummins, M.L.; Watt, A.E.; Drigo, B.; Wyrsch, E.R.; Reid, C.J.; Donner, E.; Howden, B.P. Genomic Surveillance for Antimicrobial Resistance—A One Health Perspective. Nat. Rev. Genet. 2024, 25, 142–157. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Boxall, A.B.; Kolpin, D.W.; Leung, K.M.; Lai, R.W.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- Paut Kusturica, M.; Tomas, A.; Sabo, A. Disposal of unused drugs: Knowledge and behavior among people around the world. Rev. Environ. Contam. Toxicol. 2017, 240, 71–104. [Google Scholar]
- aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment—Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Law on Veterinary Medicine. Official Gazette of the Republic of Serbia. No. 91/2005, 30/2010, 93/2012 and 17/2019. Available online: https://www.paragraf.rs/propisi/zakon_o_veterinarstvu.html (accessed on 20 August 2024).
- Law on Medicines and Medical Devices of Serbia. Official Gazette of the Republic of Serbia. No. 30/2010, 107/2012, 113/2017 and 105/2017. Available online: https://www.paragraf.rs/propisi/zakon_o_lekovima_i_medicinskim_sredstvima.html (accessed on 20 August 2024).
- Regulation on the National Program for Control of Bacterial Resistance Antibiotics. Official Gazette of the Republic of Serbia. No. 8/2019. Available online: https://reg.pravno-informacioni-sistem.rs/api/Attachment/prilozi/427789/1.html (accessed on 21 August 2024).
- European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2022 (Thirteenth ESVAC Report); (EMA/299538/2023); European Medicines Agency: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Medicines and Medical Devices Agency of Serbia. Sales of Veterinary Medicinal Products in the Republic of Serbia for the Period 2017–2018; Medicines and Medical Devices Agency of Serbia: Belgrade, Serbia, 2020. [Google Scholar]
- Medicines and Medical Devices Agency of Serbia. Sales of Veterinary Medicinal Products in the Republic of Serbia for the Period 2019–2020; Medicines and Medical Devices Agency of Serbia: Belgrade, Serbia, 2021. [Google Scholar]
- World Health Organization Collaborating Centre for Drug Statistics Methodology. ATC Vet Codes. Available online: https://atcddd.fhi.no/atcvet/ (accessed on 25 August 2024).
- ESVAC. Interactive ESVAC Database. Available online: https://esvacbi.ema.europa.eu/analytics/saw.dll?Dashboard&PortalPath=%2Fshared%2FESVAC%20Public%2F_portal%2FAnnual%20Report&Page=Population%20corrected%20sales%20by%20class (accessed on 27 August 2024).
- European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2021 (Twelfth ESVAC Report); (EMA/795956/2022); European Medicines Agency: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Statistical Office of the Republic of Serbia. Statistical Yearbook of the Republic of Serbia 2017; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2017. [Google Scholar]
- Statistical Office of the Republic of Serbia. Statistical Yearbook of the Republic of Serbia 2018; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2018. [Google Scholar]
- Statistical Office of the Republic of Serbia. Statistical Yearbook of the Republic of Serbia 2019; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2019. [Google Scholar]
- Statistical Office of the Republic of Serbia. Statistical Yearbook of the Republic of Serbia 2020; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2020. [Google Scholar]
- Gehring, R.; Mochel, J.P.; Schmerold, I. Understanding the background and clinical significance of the WHO, WOAH, and EMA classifications of antimicrobials to mitigate antimicrobial resistance. Front. Vet. Sci 2023, 10, 1153048. [Google Scholar] [CrossRef]
- European Medicines Agency. Categorisation of Antibiotics in the European Union; European Medicines Agency: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Wesseler, J. The EU’s farm-to-fork strategy: An assessment from the perspective of agricultural economics. Appl. Econ. Perspect. Policy 2022, 44, 1826–1843. [Google Scholar] [CrossRef]
- Jansen, L.J.; van de Schans, M.G.; de Boer, D.; Bongers, I.E.; Schmitt, H.; Hoeksma, P.; Berendsen, B.J. A new extraction procedure to abate the burden of non-extractable antibiotic residues in manure. Chemosphere 2019, 224, 544–553. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 2010, 408, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA), & European Medicines Agency (EMA). Fourth Joint Inter-Agency Report on Integrated Analysis of Antimicrobial Consumption and Occurrence of Antimicrobial Resistance in Bacteria from Humans and Food-Producing Animals in the European Union (JIACRA IV—2019–2021); ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- European Centre for Disease Prevention and Control; World Health Organization. Antimicrobial Resistance Surveillance in Europe 2023–2021 Data; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2023. [Google Scholar]
- Zhao, C.; Wang, Y.; Mulchandani, R.; Van Boeckel, T.P. Global Surveillance of Antimicrobial Resistance in Food Animals Using Priority Drugs. Nat. Commun. 2024, 15, 763. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, P.; Petrovic, O. Antibiotic Resistance of Commensal Escherichia coli of Food-Producing Animals from Three Vojvodinian Farms, Serbia. Int. J. Antimicrob. Agents 2008, 31, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Jovčić, B.; Novović, K.; Filipić, B.; Velhner, M.; Todorović, D.; Matović, K.; Rašić, Z.; Nikolić, S.; Kiškarolj, F.; Kojić, M. Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia. Antibiotics 2020, 9, 886. [Google Scholar] [CrossRef]
- Adamie, B.A.; Akwar, H.T.; Arroyo, M.; Bayko, H.; Hafner, M.; Harrison, S.; Jeannin, M.; King, D.; Eweon, S.; Kyeong, N.D.; et al. Forecasting the Fallout from AMR: Economic Impacts of Antimicrobial Resistance in Food-Producing Animals. A Report from the EcoAMR Series. World Organisation for Animal Health and World Bank 2024. Available online: https://www.woah.org/app/uploads/2024/09/ecoamr-woah-animal-sector-web-reduced-23924.pdf (accessed on 30 October 2024).
- Pokharel, S.; Raut, S.; Adhikari, B. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Glob. Health 2019, 4, e002104. [Google Scholar] [CrossRef]
- Patel, S.J.; Wellington, M.; Shah, R.M.; Ferreira, M.J. Antibiotic Stewardship in Food-producing Animals: Challenges, Progress, 399 and Opportunities. Clin. Ther. 2020, 42, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef]
- Vidović, J.; Stojanović, D.; Cagnardi, P.; Kladar, N.; Horvat, O.; Ćirković, I.; Bijelić, K.; Stojanac, N.; Kovačević, Z. Farm animal veterinarians’ knowledge and attitudes toward antimicrobial resistance and antimicrobial use in the Republic of Serbia. Antibiotics 2022, 11, 64. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Yao, Z.; Li, M. A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. Sci. Total Environ. 2024, 926, 171757. [Google Scholar] [CrossRef]
- Groot, M.J.; Berendsen, B.J.A.; Cleton, N.B. The Next Step to Further Decrease Veterinary Antibiotic Applications: Phytogenic Alternatives and Effective Monitoring; the Dutch Approach. Front. Vet. Sci. 2021, 8, 709750. [Google Scholar] [CrossRef]
- Kovačević, Z.; Mihajlović, J.; Mugoša, S.; Horvat, O.; Tomanić, D.; Kladar, N.; Samardžija, M. Pharmacoeconomic Analysis of the Different Therapeutic Approaches in Control of Bovine Mastitis: Phytotherapy and Antimicrobial Treatment. Antibiotics 2023, 12, 11. [Google Scholar] [CrossRef] [PubMed]
Class | Year | ||||
---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | Relative Change 2017–2020 | |
mg/PCU | mg/PCU | mg/PCU | mg/PCU | % | |
Aminoglycosides | 10.59 | 11.47 | 8.77 | 12.84 | +21 |
Amphenicols | 3.45 | 3.26 | 3.71 | 5.38 | +56 |
Cephalosporins | 0.27 | 0.25 | 0.29 | 0.38 | +40 |
Macrolides and lincosamides | 4.27 | 4.15 | 7.17 | 8.88 | +108 |
Other antibacterials * | 4.13 | 10.79 | 2.81 | 2.53 | −39 |
Penicillins | 30.47 | 27.32 | 16.58 | 27.62 | −9 |
Pleuromutilins | 4.90 | 4.46 | 6.17 | 5.06 | +3 |
Polymyxins | 4.78 | 5.71 | 4.50 | 5.08 | +6 |
Quinolones | 1.88 | 2.66 | 2.35 | 2.82 | +50 |
Sulfonamides and trimethoprim | 9.68 | 11.08 | 10.08 | 11.36 | +17 |
Tetracyclines | 22.78 | 14.99 | 26.92 | 27.54 | +21 |
Total | 97.21 | 96.15 | 89.35 | 109.49 | +13 |
Subclass | Year | Relative Change 2017–2020 | |||
---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | ||
mg/PCU | mg/PCU | mg/PCU | mg/PCU | % | |
1st-generation cephalosporins | 0.11 | 0.12 | 0.10 | 0.12 | +9 |
3rd-generation cephalosporins | 0.14 | 0.11 | 0.17 | 0.23 | +64 |
4th-generation cephalosporins | 0.02 | 0.02 | 0.02 | 0.03 | +50 |
Aminoglycosides | 10.59 | 11.47 | 8.77 | 12.84 | +21 |
Amphenicols | 3.45 | 3.26 | 3.71 | 5.38 | +56 |
Beta-lactamase-resistant penicillins | 0.10 | 0.15 | 0.15 | 0.22 | +120 |
Beta-lactamase-sensitive penicillins | 17.26 | 10.70 | 1.94 | 9.40 | −46 |
Penicillins with extended spectrum | 13.12 | 16.47 | 14.50 | 17.99 | +37 |
Fluoroquinolones | 1.54 | 2.33 | 2.04 | 2.82 | +58 |
Lincosamides | 0.69 | 0.86 | 0.56 | 0.50 | −28 |
Macrolides | 3.58 | 3.29 | 6.61 | 8.38 | +134 |
Other antibacterials * | 4.13 | 10.79 | 2.81 | 2.53 | −39 |
Other quinolones | 0.34 | 0.33 | 0.30 | 0.38 | +12 |
Pleuromutilins | 4.90 | 4.46 | 6.17 | 5.06 | +3 |
Polymyxins | 4.78 | 5.71 | 4.50 | 5.08 | +6 |
Sulfonamides | 9.13 | 10.41 | 9.33 | 10.41 | +14 |
Tetracyclines | 22.78 | 14.99 | 26.92 | 27.54 | +21 |
Trimethoprim | 0.55 | 0.67 | 0.75 | 0.95 | +72 |
Total | 97.21 | 96.15 | 89.35 | 109.49 | +13 |
Year | Category | |||
---|---|---|---|---|
(A) AVOID (%) | (B) RESTRICT (%) | (C) CAUTION (%) | (D) PRUDENCE (%) | |
2017 | 22.00 | 7.02 | 37.49 | 33.49 |
2018 | 22.35 | 8.84 | 41.53 | 27.27 |
2019 | 5.32 | 7.87 | 45.24 | 41.58 |
2020 | 10.90 | 7.45 | 45.92 | 35.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomas, A.; Pavlović, N.; Vukmirović, S.; Kovačević, Z.; Dugandžija, T.; Radovanović, D.; Stilinović, N. Sales of Veterinary Antibiotics in Serbia: Identification of Problem Areas Using Standardized Metrics. Animals 2024, 14, 3201. https://doi.org/10.3390/ani14223201
Tomas A, Pavlović N, Vukmirović S, Kovačević Z, Dugandžija T, Radovanović D, Stilinović N. Sales of Veterinary Antibiotics in Serbia: Identification of Problem Areas Using Standardized Metrics. Animals. 2024; 14(22):3201. https://doi.org/10.3390/ani14223201
Chicago/Turabian StyleTomas, Ana, Nebojša Pavlović, Saša Vukmirović, Zorana Kovačević, Tihomir Dugandžija, Dragana Radovanović, and Nebojša Stilinović. 2024. "Sales of Veterinary Antibiotics in Serbia: Identification of Problem Areas Using Standardized Metrics" Animals 14, no. 22: 3201. https://doi.org/10.3390/ani14223201
APA StyleTomas, A., Pavlović, N., Vukmirović, S., Kovačević, Z., Dugandžija, T., Radovanović, D., & Stilinović, N. (2024). Sales of Veterinary Antibiotics in Serbia: Identification of Problem Areas Using Standardized Metrics. Animals, 14(22), 3201. https://doi.org/10.3390/ani14223201