Dietary Zn Deficiency Inhibits Cell Proliferation via the GPR39-Mediated Suppression of the PI3K/AKT/mTOR Signaling Pathway in the Jejunum of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experiment Design, Treatments, and Diets
2.2. Sample Collections and Preparations
2.3. Analyses of Dietary Crude Protein, Calcium and Zn Contents, and Zn Concentration in Tap Water
2.4. Measurements of the Small Intestine’s Histological Morphology
2.5. Analysis of the Jejunal PCNA-Positive Cells
2.6. RT-qPCR
2.7. Western Blot
2.8. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. Intestinal Histological Morphology
3.3. The Number of PCNA-Positive Cells
3.4. mRNA Expression Levels
3.5. Protein Expression Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bortoluzzi, C.; Vieira, B.S.; Applegate, T.J. Influence of dietary zinc, copper, and manganese on the intestinal health of broilers under eimeria challenge. Front. Vet. Sci. 2020, 7, 13–19. [Google Scholar] [CrossRef]
- Hudson, B.P.; Dozier, W.A.; Wilson, J.L. Broiler live performance response to dietary zinc source and the influence of zinc supplementation in broiler breeder diets. Anim. Feed. Sci. Technol. 2005, 118, 329–335. [Google Scholar] [CrossRef]
- Reed, S.; Neuman, H.; Moscovich, S.; Glahn, R.P.; Koren, O.; Tako, E. Chronic zinc deficiency alters chick gut microbiota composition and function. Nutrients 2015, 7, 9768–9784. [Google Scholar] [CrossRef]
- Sunder, G.S.; Panda, A.K.; Gopinath, N.C.S.; Rao, S.V.R.; Raju, M.V.L.N.; Reddy, M.R.; Kumar, C.V. Effects of higher levels of zinc supplementation on performance, mineral availability, and immune competence in broiler chickens. J. Appl. Poult. Res. 2008, 17, 79–86. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Kwiecień, M.; Winiarska-Mieczan, A.; Świetlicka, I.; Wawrzyniak, A. Effect of zinc level and source (zinc oxide vs. Zinc glycine) on bone mechanical and geometric parameters, and histomorphology in male ross 308 broiler chicken. Rev. Bras. Ciência Avícola 2017, 19, 159–170. [Google Scholar] [CrossRef]
- Ogbuewu, I.P.; Mbajiorgu, C.A. Potentials of dietary zinc supplementation in improving growth performance, health status, and meat quality of broiler chickens. Biol. Trace Elem. Res. 2023, 201, 1418–1431. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, Y.; Tanabe, S.; Suzuki, T. Cellular zinc is required for intestinal epithelial barrier maintenance via the regulation of claudin-3 and occludin expression. Am. J. Physiol.-Gastrointest. Liver Physiol. 2016, 311, G105–G116. [Google Scholar] [CrossRef]
- Proszkowiec, W.M.; Schreier, L.L.; Kahl, S.; Miska, K.B.; Russell, B.; Elsasser, T.H. Effect of delayed feeding post-hatch on expression of tight junction- and gut barrier-related genes in the small intestine of broiler chickens during neonatal development. Poult. Sci. 2020, 99, 4714–4729. [Google Scholar] [CrossRef]
- Jin, X.J.; Song, Y.F.; An, Z.L.; Wu, S.S.; Cai, D.H.; Fu, Y.; Zhang, C.; Chen, L.; Tang, W.; Zheng, Z.; et al. A predictive model for prognosis and therapeutic response in hepatocellular carcinoma based on a panel of three med8-related immunomodulators. Front. Oncol. 2022, 12, 868411. [Google Scholar] [CrossRef]
- Shao, Y.X.; Wolf, P.G.; Guo, S.S.; Guo, Y.M.; Gaskins, H.R.; Zhang, B.K. Zinc enhances intestinal epithelial barrier function through the pi3k/akt/mtor signaling pathway in caco-2 cells. J. Nutr. Biochem. 2017, 43, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Guo, Y. Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (zo-1) expression in weaning piglets. Br. J. Nutr. 2009, 102, 687–693. [Google Scholar] [CrossRef]
- Haagenson, K.K.; Wu, G.S. Mitogen activated protein kinase phosphatases and cancer. Cancer Biol. Ther. 2010, 9, 337–340. [Google Scholar] [CrossRef]
- Ohashi, K.; Nagata, Y.; Wada, E.; Zammit, P.S.; Shiozuka, M.; Matsuda, R. Zinc promotes proliferation and activation of myogenic cells via the pi3k/akt and erk signaling cascade. Exp. Cell Res. 2015, 333, 228–237. [Google Scholar] [CrossRef]
- Dong, X.Y.; Tang, S.Q.; Zhang, W.; Gao, W.H.; Chen, Y.F. Gpr39 activates proliferation and differentiation of porcine intramuscular preadipocytes through targeting the pi3k/akt cell signaling pathway. J. Recept. Signal Transduct. 2016, 36, 130–138. [Google Scholar] [CrossRef]
- Liang, D.; Yang, M.W.; Guo, B.L.; Cao, J.J.; Yang, L.; Guo, X.D. Zinc upregulates the expression of osteoprotegerin in mouse osteoblasts mc3t3-e1 through pkc/mapk pathways. Biol. Trace Elem. Res. 2012, 146, 340–348. [Google Scholar] [CrossRef]
- Qu, H.Y.; Sun, H.B.; Wang, X.P. Neogenin-1 promotes cell proliferation, motility, and adhesion by up-regulation of zinc finger e-box binding homeobox 1 via activating the rac1/pi3k/akt pathway in gastric cancer cells. Cell Physiol. Biochem. 2018, 48, 1457–1467. [Google Scholar] [CrossRef]
- Kaltenberg, J.; Plum, L.M.; Ober-Blobaum, J.L.; Honscheid, A.; Rink, L.; Haase, H. Zinc signals promote il-2-dependent proliferation of t cells. Eur. J. Immunol. 2010, 40, 1496–1503. [Google Scholar] [CrossRef]
- Xia, P.P.; Yan, L.; Ji, X.D.; Wu, Y.P.; Lian, S.Q.; Zhu, G.Q. Functions of the zinc-sensing receptor gpr39 in regulating intestinal health in animals. Int. J. Mol. Sci. 2022, 23, 12133. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Sekler, I.; Hershfinkel, M. The zinc sensing receptor, znr/gpr39, controls proliferation and differentiation of colonocytes and thereby tight junction formation in the colon. Cell Death Dis. 2014, 5, e1307. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.X.; Lei, Z.; Wolf, P.G.; Gao, Y.; Guo, Y.M.; Zhang, B.K. Zinc supplementation, via gpr39, upregulates pkczeta to protect intestinal barrier integrity in caco-2 cells challenged by salmonella enterica serovar typhimurium. J. Nutr. 2017, 147, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Zhang, H.J.; Wang, J.; Wu, S.G.; Yue, H.Y.; Jiang, X.R.; Qi, G.H. Effects of dietary grape proanthocyanidins on the growth performance, jejunum morphology and plasma biochemical indices of broiler chicks. Animal 2017, 11, 762–770. [Google Scholar] [CrossRef] [PubMed]
- NY/T 33-2004; Feeding Standard of Chicken. Agricultural Press of China: Beijing, China, 2004.
- NRC. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Huang, Y.L.; Lu, L.; Luo, X.G.; Liu, B. An optimal dietary zinc level of broiler chicks fed a corn-soybean meal diet. Poult. Sci. 2007, 86, 2582–2589. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.D.; Li, A.; Lu, L.; Liu, S.B.; Li, S.F.; Zhang, L.Y.; Wang, G.; Luo, X. Optimal dietary zinc levels of broiler chicks fed a corn–soybean meal diet from 22 to 42 days of age. Anim. Prod. Sci. 2013, 53, 388–394. [Google Scholar] [CrossRef]
- Devita, L.; Nurilmala, M.; Lioe, H.A.U.; Suhartono, M.T. Chemical and antioxidant characteristics of skin-derived collagen obtained by acid-enzymatic hydrolysis of bigeye tuna (Thunnus obesus). Mar. Drugs 2021, 19, 222. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.D.; Shao, Y.X.; Sun, G.M.; Yang, Y.F.; Zhang, L.Y.; Guo, Y.L.; Luo, X.; Lu, L. The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers. Poult. Sci. 2020, 99, 5883–5895. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Li, C.C.; Peng, M.; Wang, L.; Zhao, D.; Wu, T.; Yi, D.; Hou, Y.; Wu, G. N-acetylcysteine improves intestinal function and attenuates intestinal autophagy in piglets challenged with β-conglycinin. Sci. Rep. 2021, 11, 1261. [Google Scholar] [CrossRef] [PubMed]
- Krishna, K.R.; Latha, M.J.; Lakshman, M.; Rani, U.; Kumar, Y.R.; Swathi, B. Expression pattern of pcna and ki-67 biomarkers in canine mammary tumours. Pharma Innov. J. 2022, 11, 233–237. [Google Scholar]
- Hu, Y.; Huang, Y.H.; Wang, C.L.; Zhang, W.Y.; Qu, Y.C.; Li, D.; Wu, W.; Gao, F.; Zhu, L.; Wu, B.; et al. The organic zinc with moderate chelation strength enhances the expression of related transporters in the jejunum and ileum of broilers. Poult. Sci. 2023, 102, 102477. [Google Scholar] [CrossRef]
- Nakamura, Y.; Matsumoto, H.; Wu, C.H.; Fukaya, D.; Uni, R.; Hirakawa, Y.; Katagiri, M.; Yamada, S.; Ko, T.; Nomura, S.; et al. Alpha 7 nicotinic acetylcholine receptors signaling boosts cell-cell interactions in macrophages effecting anti-inflammatory and organ protection. Commun. Biol. 2023, 6, 666. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Feng, L.; Jiang, W.D.; Wu, P.; Liu, Y.; Kuang, S.Y.; Tang, L.; Zhou, X. Lysine deficiency impaired growth performance and immune response and aggravated inflammatory response of the skin, spleen and head kidney in grown-up grass carp (Ctenopharyngodon idella). Anim. Nutr. 2021, 7, 556–568. [Google Scholar] [CrossRef]
- Wu, W.; Hu, Y.Y.; Gao, F.Y.; Zhang, W.Y.; Wu, B.X.; Zhang, L.Y.; Cui, X.Y.; Li, T.T.; Wang, S.C.; Hu, Y.; et al. Effects of dietary zinc deficiency on growth performance, small intestinal morphology, barrier function and mrna expression of tight junction proteins in jejunum of broilers during 22 to 42 days of age. Chin. J. Anim. Nutr. 2024, 36, 235–244. [Google Scholar]
- Wu, T.; Li, K.; Yi, D.; Wang, L.; Zhao, D.; Yang, L.; Lv, Y.; Zhang, L.; Chen, H.; Ding, B.; et al. Dietary supplementation with trihexanoin enhances intestinal function of weaned piglets. Mol. Sci. 2018, 19, 3277. [Google Scholar] [CrossRef] [PubMed]
- Song, B.A.-O.; Yan, S.; Li, P.; Li, G.; Gao, M.; Yan, L.; Lv, Z.; Guo, Y. Comparison and correlation analysis of immune function and gut microbiota of broiler chickens raised in double-layer cages and litter floor pens. Microbiol. Spectr. 2022, 10, e00045-22. [Google Scholar] [CrossRef]
- Nessabian, S.; Zarei, A.; Chamani, M.; Sadeghi, A.A.; Seidavi, A. Effects of different levels of zinc-glycine and zinc hydroxide on the performance, carcass quality, immunity and duodenum morphometric of the broiler chickens. Ital. J. Anim. Sci. 2021, 20, 1791–1800. [Google Scholar] [CrossRef]
- Kang, X.Q.; Song, Z.Y.; McClain, C.J.; Kang, Y.J.; Zhou, Z.X. Zinc supplementation enhances hepatic regeneration by preserving hepatocyte nuclear factor-4α in mice subjected to long-term ethanol administration. Am. J. Pathol. 2008, 172, 916–925. [Google Scholar] [CrossRef]
- Scott, P.H.; Brunn, G.J.; Kohn, A.D.; Roth, R.A.; Lawrence, J.C. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a proteinkinase b signaling pathway. Proc. Natl. Acad. Sci. USA 1998, 95, 7772–7777. [Google Scholar] [CrossRef] [PubMed]
- Markman, B.; Dienstmann, R.; Tabernero, J. Targeting the pi3k/akt/mtor pathway–beyond rapalogs. Oncotarget 2010, 1, 530–543. [Google Scholar] [CrossRef]
- Xu, F.; Lv, Y.M.; Wang, H.B.; Song, Y.C. Mir-31-5p/sox4 axis affects autophagy and apoptosis of chondrocytes by regulating extracellular regulated protein kinase/mechanical target of rapamycin kinase signalling. Pathobiology 2022, 89, 63–73. [Google Scholar] [CrossRef]
- Dai, W.; Dai, Y.G.; Ren, D.F.; Zhu, D.W. Dieckol, a natural polyphenolic drug, inhibits the proliferation and migration of colon cancer cells by inhibiting pi3k, akt, and mtor phosphorylation. J. Biochem. Mol. Toxicol. 2023, 37, e23313. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, A.A.-O.; Liu, S.; Sun, H. Identification of an 11-autophagy-related-gene signature as promising prognostic biomarker for bladder cancer patients. Biology 2021, 10, 375. [Google Scholar] [CrossRef]
- Chou, S.S.; Clegg, M.S.; Momma, T.Y.; Niles, B.J.; Duffy, J.Y.; Daston, G.P.; Keen, C.L. Alterations in protein kinase c activity and processing during zinc-deficiency-induced cell death. Biochem. J. 2004, 383, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.H.; Su, Y.C.; Zheng, Y.F.; Fu, B.M.; Tang, L.P.; Qin, Y.X. Zinc regulates vascular endothelial cell activity through zinc-sensing receptor znr/gpr39. Am. J. Physiol. Cell Physiol. 2018, 314, C404–C414. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.K.; Wang, L.; Chen, T.X.; Yao, B.W.; Wang, Y.F.; Li, Q.; Yang, W.; Liu, Z. Microrna-1914, which is regulated by lncrna duxap10, inhibits cell proliferation by targeting the gpr39-mediated pi3k/akt/mtor pathway in hcc. J. Cell. Mol. Med. 2019, 23, 8292–8304. [Google Scholar] [CrossRef] [PubMed]
Ingredient | 1 to 21 Days of Age | 22 to 42 Days of Age | |
---|---|---|---|
Control Group | Zn Deficiency Group | ||
Corn (%) | 54.75 | 58.78 | 58.78 |
Soybean meal (%) | 36.31 | 32.56 | 32.56 |
Soybean oil (%) | 4.95 | 5.15 | 5.15 |
CaHPO4 (%) a | 1.87 | 1.67 | 1.67 |
CaCO3 (%) a | 1.20 | 1.09 | 1.09 |
NaCl (%) a | 0.30 | 0.30 | 0.30 |
DL-methionine (%) b | 0.31 | 0.15 | 0.15 |
Micronutrient (%) c | 0.31 | 0.20 | 0.20 |
Corn starch (%) d | 0.00 | 0.08 | 0.10 |
ZnSO4·7H2O (%) a | 0.00 | 0.02 | 0.00 |
Total (%) | 100.00 | 100.00 | 100.00 |
Nutrient composition | |||
Metabolizable energy (MJ/kg) e | 12.75 | 12.98 | 12.98 |
Crude protein (%) f | 21.44 | 20.08 | 20.08 |
Lysine (%) e | 1.10 | 1.01 | 1.01 |
Methionine (%) e | 0.61 | 0.44 | 0.44 |
L-threonine (%) e | 0.80 | 0.75 | 0.75 |
Tryptophan (%) e | 0.24 | 0.22 | 0.22 |
Methionine + cysteine (%) e | 0.91 | 0.72 | 0.72 |
Ca (%) f | 1.01 | 0.92 | 0.92 |
Non-phytate P (%) e | 0.45 | 0.40 | 0.40 |
Zn (mg/kg) f | 84.40 | 64.36 | 22.23 |
Genes | GenBank ID | Primer Sequences | Product Length (bp) |
---|---|---|---|
PI3K | XM_046923916.1 | F: 5′-CTTCTGGAGTCCTATTGTCG-3′ | 132 |
R: 5′-CACCTTCTGGGTCTCATCTT-3′ | |||
AKT | NM_205055 | F: 5′-GCCGTGAGCCCAGTTAGG-3′ | 153 |
R: 5′-AGCTACTTATGGCTGCGGGA-3′ | |||
mTOR | XM_417614.6 | F: 5′-AACCACTGCTCGCCACAATGC-3′ | 120 |
R: 5′-CATAGGATCGCCACACGGATTAGC-3′ | |||
P38 MAPK | XM_040691290.1 | F: 5′-ACGTGCAGTTCCTCATATACCA-3′ | 145 |
R: 5′-TGTCGAGCCAAGCCAAAATC-3′ | |||
ERK | NM_204150.1 | F: 5′-TCTTACTGCGCTTCAGGCAT-3′ | 158 |
R: 5′-AATGTGGTCGTTGCTGAGGT-3′ | |||
JNK1 | XM_040675398.1 | F:5′-GCTGGTTATAGACGCCTCGA-3′ | 137 |
R: 5′-GCTCCCTCTCATCTAACTGCT-3′ | |||
JNK2 | NM_001396829.1 | F: 5′-AGAATCAAACCCACGCAAAA-3′ | 148 |
R: 5′-ATCAGTTCCATAACCAAATA-3′ | |||
PKC | NM_001012804.2 | F: 5′-GGCGGACAGGAAGAATACAGAGG-3′ | 146 |
R: 5′-GAAGCTGTGTCAGGAATGGTGGTT-3′ | |||
GPR39 | NM_001080105.1 | F: 5′-GCTGTAAAGATTGGTAAGCACTGA-3′ | 151 |
R: 5′-ATATGCACAAGTCTGAGCGGT-3′ | |||
β-actin | NM_205518.1 | F: 5′-CAGCCATCTTTCTTGGGTAT-3′ | 169 |
R: 5′-CTGTGATCTCCTTCTGCATCC-3′ | |||
GAPDH | NM_204305.1 | F: 5′-CTTTGGCATTGTGGAGGGTC-3′ | 128 |
R: 5′-ACGCTGGGATGATGTTCTGG-3′ |
Intestinal Region | D 28 | D 35 | |||||||
---|---|---|---|---|---|---|---|---|---|
CON 1 | Zn Deficiency Group 1 | SEM | p-Value | CON 1 | Zn Deficiency Group 1 | SEM | p-Value | ||
Duodenum | Villus height (μm) | 2071 | 1939 | 54.8 | 0.177 | 1612 | 1546 | 26.0 | 0.133 |
Crypt depth (μm) | 199 b | 218 a | 3.10 | 0.003 | 169 | 166 | 2.54 | 0.534 | |
Villus height/crypt depth | 10.35 a | 8.96 b | 0.261 | 0.008 | 9.70 | 9.30 | 0.170 | 0.282 | |
Villus surface area (mm2) | 1.299 | 1.264 | 0.031 | 0.555 | 1.135 | 1.113 | 0.032 | 0.734 | |
Jejunum | Villus height (μm) | 1736 | 1577 | 96.4 | 0.282 | 1521 a | 1303 b | 43.0 | 0.029 |
Crypt depth (μm) | 186 b | 208 a | 11.89 | 0.031 | 168 b | 180 a | 0.703 | 0.050 | |
Villus height/crypt depth | 9.65 a | 7.73 b | 0.207 | 0.032 | 8.73 a | 7.39 b | 0.276 | 0.009 | |
Villus surface area (mm2) | 1.030 | 0.818 | 0.072 | 0.066 | 0.936 a | 0.731 b | 0.026 | 0.009 | |
Ileum | Villus height (μm) | 910 | 871 | 18.9 | 0.324 | 819 | 770 | 13.7 | 0.241 |
Crypt depth (μm) | 185 | 213 | 10.19 | 0.084 | 158 b | 175 a | 0.644 | 0.001 | |
Villus height/crypt depth | 5.16 a | 4.29 b | 0.222 | 0.020 | 5.21 a | 4.43 b | 0.080 | 0.002 | |
Villus surface area (mm2) | 0.405 | 0.360 | 0.016 | 0.254 | 0.504 a | 0.400 b | 0.008 | 0.003 |
Groups | PCNA-Positive Cells (AOD Value) |
---|---|
CON 1 | 0.3591 a |
Zn deficiency group 1 | 0.1235 b |
SEM | 0.0034 |
p-value | <0.0001 |
Groups | CON 1 | Zn Deficiency Group 1 | SEM | p-Value |
---|---|---|---|---|
PI3K 2 mRNA | 1.209 a | 0.970 b | 0.0658 | <0.0001 |
AKT 2 mRNA | 1.011 | 1.016 | 0.0581 | 0.9598 |
mTOR 2 mRNA | 0.997 | 1.009 | 0.0492 | 0.8739 |
P38 MAPK 2 mRNA | 0.621 b | 1.003 a | 0.0375 | <0.0001 |
JNK1 2 mRNA | 0.826 b | 1.006 a | 0.0454 | 0.0254 |
JNK2 2 mRNA | 0.728 b | 1.004 a | 0.0300 | 0.0002 |
ERK 2 mRNA | 1.210 a | 1.004 b | 0.0358 | 0.0018 |
PKC 2 mRNA | 1.020 | 1.002 | 0.0264 | 0.7378 |
GPR39 2 mRNA | 1.669 a | 1.004 b | 0.0360 | <0.0001 |
Groups | CON 1 | Zn Deficiency Group 1 | SEM | p-Value |
---|---|---|---|---|
PI3K 2 | 0.59 | 0.54 | 0.0111 | 0.0717 |
p-PI3K 2 | 0.48 a | 0.29 b | 0.0102 | 0.0012 |
AKT 2 | 0.81 | 0.86 | 0.0097 | 0.1414 |
p-AKT 2 | 0.62 a | 0.43 b | 0.0109 | 0.0008 |
mTOR 2 | 0.58 | 0.54 | 0.0203 | 0.2690 |
p-mTOR 2 | 0.33 a | 0.29 b | 0.0084 | 0.0213 |
P38 MAPK 2 | 0.64 | 0.65 | 0.0058 | 0.7956 |
p-P38 MAPK 2 | 0.48 | 0.48 | 0.0129 | 0.8395 |
JNK 2 | 0.67 | 0.63 | 0.0152 | 0.1793 |
p-JNK 2 | 0.24 | 0.22 | 0.0204 | 0.6197 |
ERK 2 | 0.57 | 0.58 | 0.0115 | 0.9842 |
p-ERK 2 | 0.51 | 0.46 | 0.0180 | 0.2416 |
PKC 2 | 0.52 | 0.52 | 0.0068 | 0.7377 |
p-PKC 2 | 0.30 b | 0.33 a | 0.0063 | 0.0142 |
GPR39 2 | 0.84 a | 0.74 b | 0.0211 | 0.0081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Yang, K.; Zhang, W.; Xue, M.; Li, T.; Wang, S.; Cui, X.; Zhang, L.; Hu, Y.; Luo, X. Dietary Zn Deficiency Inhibits Cell Proliferation via the GPR39-Mediated Suppression of the PI3K/AKT/mTOR Signaling Pathway in the Jejunum of Broilers. Animals 2024, 14, 979. https://doi.org/10.3390/ani14060979
Hu Y, Yang K, Zhang W, Xue M, Li T, Wang S, Cui X, Zhang L, Hu Y, Luo X. Dietary Zn Deficiency Inhibits Cell Proliferation via the GPR39-Mediated Suppression of the PI3K/AKT/mTOR Signaling Pathway in the Jejunum of Broilers. Animals. 2024; 14(6):979. https://doi.org/10.3390/ani14060979
Chicago/Turabian StyleHu, Yangyang, Ke Yang, Weiyun Zhang, Mengxiao Xue, Tingting Li, Shengchen Wang, Xiaoyan Cui, Liyang Zhang, Yun Hu, and Xugang Luo. 2024. "Dietary Zn Deficiency Inhibits Cell Proliferation via the GPR39-Mediated Suppression of the PI3K/AKT/mTOR Signaling Pathway in the Jejunum of Broilers" Animals 14, no. 6: 979. https://doi.org/10.3390/ani14060979
APA StyleHu, Y., Yang, K., Zhang, W., Xue, M., Li, T., Wang, S., Cui, X., Zhang, L., Hu, Y., & Luo, X. (2024). Dietary Zn Deficiency Inhibits Cell Proliferation via the GPR39-Mediated Suppression of the PI3K/AKT/mTOR Signaling Pathway in the Jejunum of Broilers. Animals, 14(6), 979. https://doi.org/10.3390/ani14060979