Impact of Low Inclusion Rate of Olive Cake in Dairy Cow Rations on Uterine Health and Fertility Indices During Early Lactation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Clinical Examinations
2.3. Post-Partum Uterine Examinations
2.4. Ovarian Resumption, Estrus Expression, Artificial Insemination and Pregnancy Diagnosis
2.5. Hematological and Biochemical Examinations
2.6. Cytology
2.7. Uterine Biopsy
2.8. RNA Extraction and cDNA Synthesis
2.9. Gene Expression Analysis
2.10. Statistical Analysis
- The Shapiro test was applied in each gene to test for deviations from the normal distribution and select the appropriate statistical tests for the differential gene expression.
- The Wilcoxon test statistic among the groups fed with different was computed using the function wilcox.test for each gene (threshold p < 0.05).
- Spearman correlation coefficients were computed for each pair of genes in each group using the cor function since correlated gene expression may be indicative of a similar regulation mechanism underlying gene expression.
- Boxplots and correlation coefficient plots for the gene expression data were designed using ggplot2 (version 3.5.1).
3. Results
3.1. Milk Yield
3.2. General and Uterine Health
3.3. Estrus Expression, Progesterone, and Conception Rate
3.4. Glucose and BHBA
3.5. Acute Phase Proteins
3.6. Uterine Cytology
3.7. Differential Gene Expression and Correlation Coefficients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, P.; Cecchi, L.; Bellumori, M.; Balli, D.; Giovannelli, L.; Huang, L.; Mulinacci, N. Phenolic compounds and triterpenes in different olive tissues and olive oil by-products, and cytotoxicity on human colorectal cancer cells: The case of frantoio, moraiolo and leccino cultivars (Olea europaea L.). Foods 2021, 10, 2823. [Google Scholar] [CrossRef]
- Tzamaloukas, O.; Neofytou, M.C.; Simitzis, P.E. Application of olive by-products in livestock with emphasis on small ruminants: Implications on rumen function, growth performance, milk and meat quality. Animals 2021, 11, 531. [Google Scholar] [CrossRef] [PubMed]
- Suárez, M.; Romero, M.-P.; Ramo, T.; Macià, A.; Motilva, M.-J. Methods for preparing phenolic extracts from olive cake for potential application as food antioxidants. J. Agric. Food Chem. 2009, 57, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Alu’datt, M.H.; Alli, I.; Ereifej, K.; Alhamad, M.; Al-Tawaha, A.R.; Rababah, T. Optimisation, characterisation and quantification of phenolic compounds in olive cake. Food Chem. 2010, 123, 117–122. [Google Scholar] [CrossRef]
- Guiné, R.D.P.F. Health effects associated with bioactive molecules in olive oil. Int. J. Med. Biol. Front. 2014, 20, 33. [Google Scholar]
- Seidita, A.; Soresi, M.; Giannitrapani, L.; Di Stefano, V.; Citarrella, R.; Mirarchi, L.; Cusimano, A.; Augello, G.; Carroccio, A.; Iovanna, J.L. The clinical impact of an extra virgin olive oil enriched mediterranean diet on metabolic syndrome: Lights and shadows of a nutraceutical approach. Front. Nutr. 2022, 9, 980429. [Google Scholar] [CrossRef] [PubMed]
- Chiavarini, M.; Rosignoli, P.; Giacchetta, I.; Fabiani, R. Health Outcomes Associated with Olive Oil Intake: An Umbrella Review of Meta-Analyses. Foods 2024, 13, 2619. [Google Scholar] [CrossRef] [PubMed]
- Kerasioti, E.; Terzopoulou, Z.; Komini, O.; Kafantaris, I.; Makri, S.; Stagos, D.; Gerasopoulos, K.; Anisimov, N.Y.; Tsatsakis, A.M.; Kouretas, D. Tissue specific effects of feeds supplemented with grape pomace or olive oil mill wastewater on detoxification enzymes in sheep. Toxicol. Rep. 2017, 4, 364–372. [Google Scholar]
- Neofytou, M.C.; Miltiadou, D.; Sfakianaki, E.; Constantinou, C.; Symeou, S.; Sparaggis, D.; Hagger-Theodorides, A.L.; Tzamaloukas, O. The use of ensiled olive cake in the diets of Friesian cows increases beneficial fatty acids in milk and Halloumi cheese and alters the expression of SREBF1 in adipose tissue. J. Dairy Sci. 2020, 103, 8998–9011. [Google Scholar] [PubMed]
- Luciano, G.; Pauselli, M.; Servili, M.; Mourvaki, E.; Serra, A.; Monahan, F.J.; Lanza, M.; Priolo, A.; Zinnai, A.; Mele, M. Dietary olive cake reduces the oxidation of lipids, including cholesterol, in lamb meat enriched in polyunsaturated fatty acids. Meat Sci. 2013, 93, 703–714. [Google Scholar] [PubMed]
- Ingvartsen, K.L. Feeding-and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim. Feed Sci. Technol. 2006, 126, 175–213. [Google Scholar] [CrossRef]
- Contreras, G.A.; Sordillo, L.M. Lipid mobilization and inflammatory responses during the transition period of dairy cows. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef]
- Wathes, D.C.; Fenwick, M.; Cheng, Z.; Bourne, N.; Llewellyn, S.; Morris, D.G.; Kenny, D.; Murphy, J.; Fitzpatrick, R. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. Theriogenology 2007, 68, S232–S241. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.R.; Burke, C.R.; Crookenden, M.A.; Heiser, A.; Loor, J.L.; Meier, S.; Mitchell, M.D.; Phyn, C.V.C.; Turner, S.-A. Fertility and the transition dairy cow. Reprod. Fertil. Dev. 2018, 30, 85–100. [Google Scholar] [CrossRef]
- Ingvartsen, K.L.; Moyes, K. Nutrition, immune function and health of dairy cattle. Animal 2013, 7, 112–122. [Google Scholar] [CrossRef]
- Trevisi, E.; Minuti, A. Assessment of the innate immune response in the periparturient cow. Res. Vet. Sci. 2018, 116, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Fair, T. The contribution of the maternal immune system to the establishment of pregnancy in cattle. Front. Immunol. 2015, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Sauvant, D.; Delaby, L.; Nozière, P. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017; ISBN 9086862926. [Google Scholar]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Souza, A.H.; Ayres, H.; Ferreira, R.M.; Wiltbank, M.C. A new presynchronization system (Double-Ovsynch) increases fertility at first postpartum timed AI in lactating dairy cows. Theriogenology 2008, 70, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Nanas, I.; Chouzouris, T.-M.; Dovolou, E.; Dadouli, K.; Stamperna, K.; Kateri, I.; Barbagianni, M.; Amiridis, G.S. Early embryo losses, progesterone and pregnancy associated glycoproteins levels during summer heat stress in dairy cows. J. Therm. Biol. 2021, 98, 102951. [Google Scholar] [CrossRef]
- Nanas, I.; Dokou, S.; Athanasiou, L.V.; Dovolou, E.; Chouzouris, T.M.; Vasilopoulos, S.; Grigoriadou, K.; Giannenas, I.; Amiridis, G.S. Feeding Flaxseed and Lupins during the Transition Period in Dairy Cows: Effects on Production Performance, Fertility and Biochemical Blood Indices. Animals 2023, 13, 1972. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.O.; Shin, S.T.; Guard, C.L.; Erb, H.N.; Frajblat, M. Prevalence of endometritis and its effects on reproductive performance of dairy cows. Theriogenology 2005, 64, 1879–1888. [Google Scholar] [CrossRef] [PubMed]
- Melcher, Y.; Prunner, I.; Drillich, M. Degree of variation and reproducibility of different methods for the diagnosis of subclinical endometritis. Theriogenology 2014, 82, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Mallamaci, R.; Budriesi, R.; Clodoveo, M.L.; Biotti, G.; Micucci, M.; Ragusa, A.; Curci, F.; Muraglia, M.; Corbo, F.; Franchini, C. Olive tree in circular economy as a source of secondary metabolites active for human and animal health beyond oxidative stress and inflammation. Molecules 2021, 26, 1072. [Google Scholar] [CrossRef] [PubMed]
- Zilio, D.M.; Bartocci, S.; Di Giovanni, S.; Servili, M.; Chiariotti, A.; Terramoccia, S. Evaluation of dried stoned olive pomace as supplementation for lactating Holstein cattle: Effect on milk production and quality. Anim. Prod. Sci. 2014, 55, 185–188. [Google Scholar] [CrossRef]
- Castellani, F.; Vitali, A.; Bernardi, N.; Marone, E.; Palazzo, F.; Grotta, L.; Martino, G. Dietary supplementation with dried olive pomace in dairy cows modifies the composition of fatty acids and the aromatic profile in milk and related cheese. J. Dairy Sci. 2017, 100, 8658–8669. [Google Scholar] [CrossRef]
- Cibik, M.; Keles, G. Effect of stoned olive cake on milk yield and composition of dairy cows. Cellulose 2016, 15, 27–28. [Google Scholar]
- Chaves, B.W.; Valles, G.A.F.; Scheibler, R.B.; Schafhäuser Júnior, J.; Nörnberg, J.L. Milk yield of cows submitted to different levels of olive pomace in the diet. Acta Sci. Anim. Sci. 2020, 43, e51158. [Google Scholar] [CrossRef]
- Chiofalo, B.; Di Rosa, A.R.; Lo Presti, V.; Chiofalo, V.; Liotta, L. Effect of supplementation of herd diet with olive cake on the composition profile of milk and on the composition, quality and sensory profile of cheeses made therefrom. Animals 2020, 10, 977. [Google Scholar] [CrossRef]
- Zarrin, M.; De Matteis, L.; Vernay, M.; Wellnitz, O.; van Dorland, H.A.; Bruckmaier, R.M. Long-term elevation of β-hydroxybutyrate in dairy cows through infusion: Effects on feed intake, milk production, and metabolism. J. Dairy Sci. 2013, 96, 2960–2972. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.-K.; Jeong, J.-K.; Choi, I.-S.; Kang, H.-G.; Hur, T.-Y.; Jung, Y.-H.; Kim, I.-H. Relationships among ketosis, serum metabolites, body condition, and reproductive outcomes in dairy cows. Theriogenology 2015, 84, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Opsomer, G.; Gröhn, Y.T.; Hertl, J.; Coryn, M.; Deluyker, H.; de Kruif, A. Risk factors for post partum ovarian dysfunction in high producing dairy cows in Belgium: A field study. Theriogenology 2000, 53, 841–857. [Google Scholar] [CrossRef] [PubMed]
- Chagas, L.M.; Bass, J.J.; Blache, D.; Burke, C.R.; Kay, J.K.; Lindsay, D.R.; Lucy, M.C.; Martin, G.B.; Meier, S.; Rhodes, F.M. Invited review: New perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows. J. Dairy Sci. 2007, 90, 4022–4032. [Google Scholar] [CrossRef]
- Gautam, G.; Nakao, T.; Yamada, K.; Yoshida, C. Defining delayed resumption of ovarian activity postpartum and its impact on subsequent reproductive performance in Holstein cows. Theriogenology 2010, 73, 180–189. [Google Scholar] [CrossRef]
- Bradford, B.J.; Yuan, K.; Farney, J.K.; Mamedova, L.K.; Carpenter, A.J. Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J. Dairy Sci. 2015, 98, 6631–6650. [Google Scholar] [CrossRef]
- Zachut, M.; Contreras, G.A. Symposium review: Mechanistic insights into adipose tissue inflammation and oxidative stress in periparturient dairy cows. J. Dairy Sci. 2022, 105, 3670–3686. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhu, Z.; Lu, Y.; Granneman, J.G. Metabolic and cellular plasticity in white adipose tissue II: Role of peroxisome proliferator-activated receptor-α. Am. J. Physiol. Metab. 2005, 289, E617–E626. [Google Scholar] [CrossRef]
- Drackley, J.K. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Kvidera, S.K.; Horst, E.A.; Abuajamieh, M.; Mayorga, E.J.; Fernandez, M.V.S.; Baumgard, L.H. Glucose requirements of an activated immune system in lactating Holstein cows. J. Dairy Sci. 2017, 100, 2360–2374. [Google Scholar] [CrossRef]
- Herdt, T.H. Ruminant adaptation to negative energy balance: Influences on the etiology of ketosis and fatty liver. Vet. Clin. North Am. Food Anim. Pract. 2000, 16, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Eagon, J.C.; Trujillo, M.E.; Scherer, P.E.; Klein, S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007, 56, 1010–1013. [Google Scholar] [CrossRef] [PubMed]
- Pascottini, O.B.; Leroy, J.L.M.R.; Opsomer, G. Metabolic stress in the transition period of dairy cows: Focusing on the prepartum period. Animals 2020, 10, 1419. [Google Scholar] [CrossRef]
- Petersen, H.; Nielsen, J.; Heegaard, P.M.H. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 2004, 35, 163–187. [Google Scholar] [CrossRef]
- Eckersall, P.D.; Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010, 185, 23–27. [Google Scholar] [CrossRef]
- Ametaj, B.N.; Bradford, B.J.; Bobe, G.; Nafikov, R.A.; Lu, Y.; Young, J.W.; Beitz, D.C. Strong relationships between mediators of the acute phase response and fatty liver in dairy cows. Can. J. Anim. Sci. 2005, 85, 165–175. [Google Scholar] [CrossRef]
- Du, X.; Chen, L.; Huang, D.; Peng, Z.; Zhao, C.; Zhang, Y.; Zhu, Y.; Wang, Z.; Li, X.; Liu, G. Elevated apoptosis in the liver of dairy cows with ketosis. Cell. Physiol. Biochem. 2017, 43, 568–578. [Google Scholar] [CrossRef]
- Yasui, T.; McArt, J.A.A.; Ryan, C.M.; Gilbert, R.O.; Nydam, D.V.; Valdez, F.; Griswold, K.E.; Overton, T.R. Effects of chromium propionate supplementation during the periparturient period and early lactation on metabolism, performance, and cytological endometritis in dairy cows. J. Dairy Sci. 2014, 97, 6400–6410. [Google Scholar] [CrossRef] [PubMed]
- Brandão, A.P.; Cooke, R.F.; Corrá, F.N.; Piccolo, M.B.; Gennari, R.; Leiva, T.; Vasconcelos, J.L.M. Physiologic, health, and production responses of dairy cows supplemented with an immunomodulatory feed ingredient during the transition period. J. Dairy Sci. 2016, 99, 5562–5572. [Google Scholar] [CrossRef]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunology E-Book: Cellular and Molecular Immunology E-Book; Elsevier Health Sciences: Edinburgh, UK, 2014; ISBN 0323286453. [Google Scholar]
- Kraus, R.F.; Gruber, M.A. Neutrophils—From bone marrow to first-line defense of the innate immune system. Front. Immunol. 2021, 12, 767175. [Google Scholar] [CrossRef] [PubMed]
- Noakes, D.E.; Parkinson, T.J.; England, G.C.W. Veterinary Reproduction and Obstetrics; Saunders: London, UK, 2019. [Google Scholar]
- Liu, W.-J.; Hansen, P.J. Effect of the progesterone-induced serpin-like proteins of the sheep endometrium on natural-killer cell activity in sheep and mice. Biol. Reprod. 1993, 49, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martinez, H.; McKenna, D.; Weston, P.G.; Whitmore, H.L.; Gustafsson, B.K. Uterine motility in the cow during the estrous cycle. I. Spontaneous activity. Theriogenology 1987, 27, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Abdel-Razek, A.K.; Abdel-Ghaffar, S.; Glatzel, P.S. Ovarian follicular dynamics in buffalo cows (Bubalus bubalis). Reprod. Domest. Anim. 2003, 38, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Wira, C.R.; Rossoll, R.M. Antigen-presenting cells in the female reproductive tract: Influence of the estrous cycle on antigen presentation by uterine epithelial and stromal cells. Endocrinology 1995, 136, 4526–4534. [Google Scholar] [CrossRef] [PubMed]
- Vergani, L.; Vecchione, G.; Baldini, F.; Grasselli, E.; Voci, A.; Portincasa, P.; Ferrari, P.F.; Aliakbarian, B.; Casazza, A.A.; Perego, P. Polyphenolic extract attenuates fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. Eur. J. Nutr. 2018, 57, 1793–1805. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [PubMed]
- Goya, L.; Mateos, R.; Bravo, L. Effect of the olive oil phenol hydroxytyrosol on human hepatoma HepG2 cells: Protection against oxidative stress induced by tert-butylhydroperoxide. Eur. J. Nutr. 2007, 46, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, G.; Pesca, M.S.; De Caprariis, P.; Braca, A.; Severino, L.; De Tommasi, N. Phenolic compounds in olive oil and olive pomace from Cilento (Campania, Italy) and their antioxidant activity. Food Chem. 2010, 121, 105–111. [Google Scholar] [CrossRef]
- Bogani, P.; Galli, C.; Villa, M.; Visioli, F. Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis 2007, 190, 181–186. [Google Scholar] [CrossRef]
- Tripoli, E.; Giammanco, M.; Tabacchi, G.; Di Majo, D.; Giammanco, S.; La Guardia, M. The phenolic compounds of olive oil: Structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 2005, 18, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; De Castro, A.; Romero, C.; Brenes, M. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: Correlation with antimicrobial activity. J. Agric. Food Chem. 2006, 54, 4954–4961. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Geng, C.; Jiang, L.; Cao, J.; Yoshimura, H.; Zhong, L. Effects of hydroxytyrosol-20 on carrageenan-induced acute inflammation and hyperalgesia in rats. Phyther. Res. An Int. J. Devoted to Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009, 23, 646–650. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, J.; Zhong, L. Hydroxytyrosol inhibits pro-inflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn. Schmiedebergs. Arch. Pharmacol. 2009, 379, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, D.; Esposito, E.; Mazzon, E.; Paterniti, I.; Di Paola, R.; Bramanti, P.; Morittu, V.M.; Procopio, A.; Britti, D.; Cuzzocrea, S. The effects of oleuropein aglycone, an olive oil compound, in a mouse model of carrageenan-induced pleurisy. Clin. Nutr. 2011, 30, 533–540. [Google Scholar] [CrossRef]
- Ballas, P.; Gabler, C.; Wagener, K.; Drillich, M.; Ehling-Schulz, M. Streptococcus uberis strains originating from bovine uteri provoke upregulation of pro-inflammatory factors mRNA expression of endometrial epithelial cells in vitro. Vet. Microbiol. 2020, 245, 108710. [Google Scholar] [CrossRef]
- Gabler, C.; Drillich, M.; Fischer, C.; Holder, C.; Heuwieser, W.; Einspanier, R. Endometrial expression of selected transcripts involved in prostaglandin synthesis in cows with endometritis. Theriogenology 2009, 71, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Gabler, C.; Fischer, C.; Drillich, M.; Einspanier, R.; Heuwieser, W. Time-dependent mRNA expression of selected pro-inflammatory factors in the endometrium of primiparous cows postpartum. Reprod. Biol. Endocrinol. 2010, 8, 152. [Google Scholar] [CrossRef]
- Bisinotto, R.S.; Greco, L.F.; Ribeiro, E.S.; Martinez, N.; Lima, F.S.; Staples, C.R.; Thatcher, W.W.; Santos, J.E.P. Influences of nutrition and metabolism on fertility of dairy cows. Anim. Reprod. 2018, 9, 260–272. [Google Scholar]
- Kadokawa, H.; Blache, D.; Martin, G.B. Plasma leptin concentrations correlate with luteinizing hormone secretion in early postpartum Holstein cows. J. Dairy Sci. 2006, 89, 3020–3027. [Google Scholar] [PubMed]
- Lucy, M.C.; Staples, C.R.; Michel, F.M.; Thatcher, W.W.; Bolt, D.J. Effect of feeding calcium soaps to early postpartum dairy cows on plasma prostaglandin F2α, luteinizing hormone, and follicular growth. J. Dairy Sci. 1991, 74, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Beam, S.W.; Butler, W.R. Energy balance and ovarian follicle development prior to the first ovulation postpartum in dairy cows receiving three levels of dietary fat. Biol. Reprod. 1997, 56, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.S.; Pushpakumara, P.G.A.; Cheng, Z.; Peters, A.R.; Abayasekara, D.R.E.; Wathes, D.C. Effects of dietary polyunsaturated fatty acids on ovarian and uterine function in lactating dairy cows. Reproduction-Cambridge 2002, 124, 119–131. [Google Scholar] [CrossRef]
- Wehrman, M.E.; Welsh Jr, T.H.; Williams, G.L. Diet-induced hyperlipidemia in cattle modifies the intrafollicular cholesterol environment, modulates ovarian follicular dynamics, and hastens the onset of postpartum luteal activity. Biol. Reprod. 1991, 45, 514–522. [Google Scholar] [CrossRef]
- Wathes, D.C.; Cheng ZhangRui, C.Z.; Marei, W.; Fouladi-Nashta, A. Polyunsaturated fatty acids and fertility in female mammals: An update. CABI Rev. 2013, 1–14. [Google Scholar] [CrossRef]
Chemical Composition | Ruminolive |
---|---|
CP, % | 8.50 |
EE, % | 10.50 |
NDF, % | 56.60 |
ADF, % | 37.90 |
ADL, % Fatty acid composition of olive cake | 14.0 |
Lauric acid (C12:0), % | 0.05 |
Myristic acid (C14:0), % | 0.05 |
Myristoleic acid (C14:1), % | 11.09 |
Palmitic acid (C16:0), % | 0.69 |
Palmitoleic acid (C16:1), % | 0.19 |
Heptadecanoic acid (C17:0), % | 0.09 |
Stearic acid (C18:0), % | 2.71 |
Oleic acid (C18:1), % | 70.77 |
Linoleic acid (C18:2) (ω-6), % | 10.77 |
Linolenic acid (C18:3) (ω-3), % | 0.48 |
Arachidic acid (C20:0), % | 0.85 |
Eicosenoic acid (C20:1), % | 0.11 |
Arachidonic acid (C20:4), % (ω-6) | 0.13 |
Behenic acid (C22:0), % | 0.12 |
Group C | Group T | |
---|---|---|
Ingredient composition (kg) | ||
Maize silage | 33 | 33 |
Alfalfa hay | 2 | 2 |
Wheat straw | 0.7 | 0.6 |
Grounded corn | 4.0 | 5 |
Soybean meal (47%) | 5.4 | 5.4 |
Cottonseed with lint | 2.1 | 2.1 |
Molasses | 1.4 | 1.4 |
Lipid supplement | 0.25 | 0.17 |
Ruminolive | - | 1 |
Sodium bicarbonate | 0.15 | 0.15 |
Sodium chloride | 0.03 | 0.3 |
Mineral-vitamin premix | 0.5 | 0.5 |
Chemical composition | ||
DM, % | 52.90 | 53.22 |
CP, % DM | 18.08 | 17.93 |
EE, % DM | 4.65 | 4.57 |
NFC, % DM | 41.76 | 41.66 |
NDF, % DM | 30.02 | 30.60 |
Ash, % DM | 5.49 | 5.24 |
ME (Mcal/kg) | 2527 | 2509 |
Gene Name | Gene ID | Gene Description | Forward Primer | Reverse Primer | Product Size (bp) |
---|---|---|---|---|---|
CXCL8 | ENSBTAG00000019716 | C-X-C motif chemokine ligand 8 | CACATTCCACACCTTTCCAC | AAGCAGACCTCGTTTCCATT | 80 |
TLR2 | ENSBTAG00000008008 | toll-like receptor 2 | ACTGGACTGACTTTTCTTGAGG | TGGCTAATGTTCTGGATTGACT | 88 |
TGFB2 | ENSBTAG00000005359 | transforming growth factor beta 2 | CGGAGCGACGAGGAATAC | GTAGAAAGTGGGCGGGATG | 176 |
TLR4 | ENSBTAG00000006240 | toll-like receptor 4 | AGGTAGCCCAGACAGCATTT | GAGCGAGTGGAGTGGTTCA | 77 |
NLRP3 | ENSBTAG00000001273 | NLR family pyrin domain containing 3 | TAGGCAACAACGACTTGGGT | TCAGGCTTTTCAGGAGGCAG | 80 |
TNF | ENSBTAG00000025471 | tumor necrosis factor | CCCTTCTCATCCCCTTCTGG | GCCTCACTTCCCTACATCCC | 79 |
IL1B | ENSBTAG00000001321 | interleukin 1 beta | CCTCCGACGAGTTTCTGTGT | GCCAGCACCAGGGATTTTTG | 79 |
S100A8 | ENSBTAG00000062307 | S100 calcium-binding protein A8 | GAAGAAAAAGGATGCGGACA | TTATCACCAGCACGAGGAACT | 92 |
IL1A | ENSBTAG00000047637 | interleukin 1 alpha | CTGAGGCTACTATCTGTGGCT | CACGGCTTATTCCAACTGCT | 105 |
YWHAZ | ENSBTAG00000046019 | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta | CTGTAACTGAGCAAGGAGC | CCAAGATGACCTACGGGC | 95 |
GUSB | ENSBTAG00000000236 | glucuronidase beta | GCCGTTGTAATGTGGTCCTT | GGGCTTTAGTGTGGGCAATC | 81 |
SDHA | ENSBTAG00000000704 | succinate dehydrogenase complex flavoprotein subunit A | GCCCAGTGTGACCTCCTC | CATCATCAGAGCCCATCCCC | 97 |
Gene | p-Value |
---|---|
TNFA | 0.849 |
CXCL8 | 0.117 |
IL1B | 0.633 |
TGFB2 | 0.703 |
ILA1 | 0.026 |
NRLP3 | 0.443 |
S100A8 | 0.289 |
TLR4 | 0.246 |
TLR2 | 0.289 |
Gene 1 | Gene 2 | Coefficient |
---|---|---|
CXCL8 | ILA1 | 0.9 |
NRLP3 | TNFA | 0.9 |
NRLP3 | TGFB2 | 0.8 |
NRLP3 | TLR4 | 0.8 |
TLR4 | TNFA | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanas, I.; Giannoulis, T.; Dovolou, E.; Giannenas, I.; Amiridis, G.S. Impact of Low Inclusion Rate of Olive Cake in Dairy Cow Rations on Uterine Health and Fertility Indices During Early Lactation. Animals 2025, 15, 269. https://doi.org/10.3390/ani15020269
Nanas I, Giannoulis T, Dovolou E, Giannenas I, Amiridis GS. Impact of Low Inclusion Rate of Olive Cake in Dairy Cow Rations on Uterine Health and Fertility Indices During Early Lactation. Animals. 2025; 15(2):269. https://doi.org/10.3390/ani15020269
Chicago/Turabian StyleNanas, Ioannis, Themistoklis Giannoulis, Eleni Dovolou, Ilias Giannenas, and Georgios S. Amiridis. 2025. "Impact of Low Inclusion Rate of Olive Cake in Dairy Cow Rations on Uterine Health and Fertility Indices During Early Lactation" Animals 15, no. 2: 269. https://doi.org/10.3390/ani15020269
APA StyleNanas, I., Giannoulis, T., Dovolou, E., Giannenas, I., & Amiridis, G. S. (2025). Impact of Low Inclusion Rate of Olive Cake in Dairy Cow Rations on Uterine Health and Fertility Indices During Early Lactation. Animals, 15(2), 269. https://doi.org/10.3390/ani15020269