Effects of Dietary Forage Proportion on Feed Intake, Growth Performance, Nutrient Digestibility, and Enteric Methane Emissions of Holstein Heifers at Various Growth Stages
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Diets
2.2. Enteric Methane Emission Measurement
2.3. Nutrient Digestibility and Laboratory Analyses
2.4. Statistical Analyses
3. Results
3.1. Effects on Nutrient Intake and Growth Performance
3.2. Effects on Apparent Nutrient Digestibility
3.3. Effects on Enteric CH4 Emission
3.4. Development of Prediction Equations
4. Discussion
4.1. Effects on Feed Intake and Growth Performance
4.2. Effects on Apparent Nutrient Digestibility
4.3. Effects on Enteric Methane Emissions
4.4. Prediction Equations for Enteric Methane Emissions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dong, L.F.; Ferris, C.P.; McDowell, D.A.; Yan, T. Effects of diet forage proportion on maintenance energy requirement and the efficiency of metabolizable energy use for lactation by lactating dairy cows. J. Dairy Sci. 2015, 98, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Second National Communication on Climate Change of China (SNCCCC). National Development and Reform Commission of the People’s Republic of China. Available online: http://www.ccchina.gov.cn/archiver/ccchinaen/UpFile/Files/Default/20130218145208096785.pdf/ (accessed on 2 December 2015).
- Zhu, G.D.; Ma, X.Y.; Gao, Z.L.; Ma, W.Q.; Li, J.G.; Cai, Z.J. Characterizing CH4 and N2O emissions from an intensive dairy operation in summer and fall in China. Atmos. Environ. 2014, 38, 245–253. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.J.; Wang, C. Forecasting China’s Carbon Intensity—Is China on Track to Comply with Its Copenhagen Commitment? Energy J. 2018, 39, 63–86. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006. [Google Scholar]
- Bannink, A.; van Schijndel, M.W.; Dijkstra, J. A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach. Anim. Feed Sci. Technol. 2011, 166, 603–618. [Google Scholar] [CrossRef]
- Appuhamy, J.A.D.R.N.; France, J.; Kebreab, E. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Glob. Chang. Biol. 2016, 22, 3039–3056. [Google Scholar] [CrossRef]
- Xue, B.; Wang, L.Z.; Yan, T. Methane emission inventories for enteric fermentation and manure management of yak, buffalo and dairy and beef cattle in China from 1988 to 2009. Agric. Ecosyst. Environ. 2014, 195, 202–210. [Google Scholar] [CrossRef]
- Deighton, M.H.; Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Boland, T.M.; Wales, W.J.; Moate, P.J. A modified sulphur hexafluoride tracer technique enables accurate determination of enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2014, 197, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Van Keulen, J.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1997, 44, 282–287. [Google Scholar] [CrossRef]
- Kljak, K.; Heinrichs, B.S.; Heinrichs, A.J. Fecal particle dry matter and fiber distribution of heifers fed ad libitum and restricted with low and high forage quality. J. Dairy Sci. 2019, 102, 4694–4703. [Google Scholar] [CrossRef]
- Aguerre, M.J.; Wattiaux, M.A.; Powell, J.M.; Broderick, G.A.; Arndt, C. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. J. Dairy Sci. 2011, 94, 3081–3093. [Google Scholar] [CrossRef]
- Kljak, K.; Pino, F.; Heinrichs, A.J. Effect of forage to concentrate ratio with sorghum silage as a source of forage on rumen fermentation, N balance, and purine derivative excretion in limit-fed dairy heifers. J. Dairy Sci. 2017, 100, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.K.; Tyrrell, H.F.; Reynolds, P.J. Effects of diet forage-to-concentrate ratio and intake on energy metabolism in growing beef heifers: Net nutrient metabolism by visceral tissues. J. Nutr. 1991, 121, 1004–1015. [Google Scholar] [CrossRef]
- Moody, M.L.; Zanton, G.I.; Daubert, J.M.; Heinrichs, A.J. Nutrient utilization of differing forage-to-concentrate ratios by growing Holstein heifers. J. Dairy Sci. 2007, 90, 5580–5586. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.P.; Dale, A.J.; Carson, A.F.; Murray, S.; Gordon, A.W.; Ferris, C.P. Effect of concentrate feed level on methane emissions from grazing dairy cows. J. Dairy Sci. 2014, 97, 7043–7053. [Google Scholar] [CrossRef]
- Nakamura, T.; Owen, F.G. High amounts of soyhulls for pelleted concentrate diets. J. Dairy Sci. 1989, 72, 988–994. [Google Scholar] [CrossRef]
- Sarwar, M.; Firkins, J.L.; Eastridge, M.L. Effects of varying forage and concentrate carbohydrates on nutrient digestibilities and milk production by dairy cows. J. Dairy Sci. 1992, 75, 1533–1542. [Google Scholar] [CrossRef]
- Drewnoski, M.E.; Poore, M.H. Effect of supplementation frequency on ruminal fermentation and digestion by steers fed medium-quality hay and supplemented with a soybean hull and corn gluten feed blend. J. Anim. Sci. 2012, 90, 881–891. [Google Scholar] [CrossRef]
- Trotta, R.J.; Klotz, J.L.; Harmon, D.L. Effects of source and level of dietary energy supplementation on in vitro digestibility and methane production from tall fescue-based diets. Anim. Feed Sci. Technol. 2018, 242, 41–47. [Google Scholar] [CrossRef]
- Nousiainen, J.; Rinne, M.; Huhtanen, P. A meta-analysis of feed digestion in dairy cows. 1. The effects of forage and concentrate factors on total diet digestibility. J. Dairy Sci. 2009, 92, 5019–5030. [Google Scholar] [CrossRef] [Green Version]
- Huhtanen, P.; Kaustell, K.; Jaakkola, S. The use of internal markers to predict total digestibility and duodenal flow of nutrients in cattle given six different diets. Anim. Feed Sci. Technol. 1994, 48, 211–227. [Google Scholar] [CrossRef]
- Rice, E.M.; Aragona, K.M.; Moreland, S.C.; Erickson, P.S. Supplementation of sodium butyrate to postweaned heifer diets: Effects on growth performance, nutrient digestibility, and health. J. Dairy Sci. 2019, 102, 1–10. [Google Scholar] [CrossRef]
- Nikkhah, A.; Alikhani, M.; Amanlou, H. Effects of Feeding Ground or Steam-Flaked Broom Sorghum and Ground Barley on Performance of Dairy Cows in Midlactation. J. Dairy Sci. 2004, 87, 122–130. [Google Scholar] [CrossRef]
- Lee, C.; Hristov, A.N. Evaluation of acid-insoluble ash and indigestible neutral detergent fiber as total-tract digestibility markers in dairy cows fed corn silage-based diets. J. Dairy Sci. 2013, 96, 5295–5299. [Google Scholar] [CrossRef]
- De Marco, M.; Miraglia, N.; Peiretti, P.G.; Bergero, D. Apparent digestibility of wheat bran and extruded flax in horses determined from the total collection of feces and acid-insoluble ash as an internal marker. Animal 2012, 6, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Boland, T.M.; Quinlan, C.; Pierce, K.M.; Lynch, M.B.; Kenny, D.A.; Kelly, A.K.; Purcell, P.J. The effect of pasture pregrazing herbage mass on methane emissions, ruminal fermentation, and average daily gain of grazing beef heifers. J. Anim. Sci. 2013, 91, 3867–3874. [Google Scholar] [CrossRef]
- Morrison, S.J.; McBride, J.; Gordon, A.W.; Wylie, A.R.G.; Yan, T. Methane Emissions from Grazing Holstein-Friesian Heifers at Different Ages Estimated Using the Sulfur Hexafluoride Tracer Technique. Eng. 2017, 3, 753–759. [Google Scholar] [CrossRef]
- Muñoz, C.; Hube, S.; Morales, J.M.; Yan, T.; Ungerfeld, E.M. Effects of concentrate supplementation on enteric methane emissions and milk production of grazing dairy cows. Livest. Sci. 2015, 175, 37–46. [Google Scholar] [CrossRef]
- Zhang, X.M.; Wang, M.; Wang, R.; Ma, Z.Y.; Long, D.L.; Mao, H.X.; Wen, J.N.; Bernard, L.A.; Beauchemin, K.A.; Tan, Z.L. Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduced methane production in in vitro ruminal culture. J. Sci. Food Agric. 2018, 98, 5205–5211. [Google Scholar] [CrossRef]
- Lan, W.; Yang, C.L. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef]
- Cunha, C.S.; Marcondes, M.I.; Veloso, C.M.; Mantovani, H.C.; Pereira, L.G.R.; Tomich, T.R.; Dill-McFarland, K.A.; Suen, G. Compositional and structural dynamics of the ruminal microbiota in dairy heifers and its relationship to methane production. J. Sci. Food Agric. 2019, 99, 210–218. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change, IPCC/OECD/IEA: Bracknell, UK, 1997. [Google Scholar]
- Boadi, D.A.; Wittenberg, K.M. Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Can. J. Anim. Sci. 2011, 82, 201–206. [Google Scholar] [CrossRef]
- Van Wyngaard, J.D.V.; Meeske, R.; Erasmus, L.J. Effect of concentrate level on enteric methane emissions, production performance, and rumen fermentation of Jersey cows grazing kikuyu-dominant pasture during summer. J. Dairy Sci. 2018, 101, 1–13. [Google Scholar] [CrossRef]
- Hristov, A.N.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.R.; Boland, T.B.; Brito, A.F.; Casper, D.P.; Crompton, L.A.; et al. Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 2018, 101, 1–20. [Google Scholar] [CrossRef]
- Yan, T.; Porter, M.G.; Mayne, C.S. Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal 2009, 3, 1455–1462. [Google Scholar] [CrossRef] [Green Version]
- Hess, P.S.A.; Eckard, R.J.; Jacobs, J.L.; Hannah, M.C.; Moate, P.J. Comparison of five methods for the estimation of methane production from vented in vitro systems. J. Sci. Food Agric. 2019, 99, 109–116. [Google Scholar] [CrossRef]
- Charmley, E.; Williams, S.R.O.; Moate, P.J.; Hegarty, R.S.; Herd, R.M.; Oddy, V.H.; Reyenga, P.; Staunton, K.M.; Anderson, A.; Hannah, M.C. A universal equation to predict methane production of forage-fed cattle in Australia. Anim. Prod. Sci. 2016, 56, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Mills, J.A.N.; Kebreab, E.; Yates, C.M.; Crompton, L.A.; Cammell, S.B.; Dhanoa, M.S.; Agnew, R.E.; France, J. Alternative approaches to predicting methane emissions from dairy cows. J. Anim. Sci. 2003, 81, 3141–3150. [Google Scholar] [CrossRef]
- Patra, A.K.; Lalhriatpuii, M. Development of statistical models for prediction of enteric methane emission from goats using nutrient composition and intake variables. Agric. Ecosyst. Environ. 2016, 215, 89–99. [Google Scholar] [CrossRef]
Item | Period 1 (9 months) | Periods 2 and 3 (12 and 15 months) | |||||
---|---|---|---|---|---|---|---|
C30 | C40 | C50 | C30 | C40 | C50 | ||
Ingredient | |||||||
Corn silage | 42 | 36 | 30 | 42 | 36 | 30 | |
Chinese wildrye hay | 28 | 24 | 20 | 14 | 12 | 10 | |
Alfalfa | - | - | - | 14 | 12 | 10 | |
Concentrate | 30 | 40 | 50 | 30 | 40 | 50 | |
Nutrient, DM basis | |||||||
Dry matter | 93.6 | 93.5 | 93.6 | 93.9 | 93.7 | 93.3 | |
Organic matter, % | 91.8 | 91.7 | 91.2 | 93.1 | 92.8 | 92.2 | |
Gross energy, MJ kg-1 | 18.0 | 18.1 | 18.1 | 16.8 | 16.7 | 16.6 | |
Crude protein, % | 15.7 | 17.8 | 18.7 | 14.1 | 14.5 | 14.7 | |
Ether extract, % | 4.1 | 4.0 | 4.0 | 3.7 | 3.8 | 3.8 | |
Ash, % | 8.2 | 8.3 | 8.8 | 6.9 | 7.2 | 7.8 | |
Neutral detergent fiber, % | 37.8 | 34.2 | 31.4 | 36.8 | 32.6 | 29.3 | |
Acid detergent fiber, % | 15.6 | 14.0 | 12.0 | 19.8 | 17.5 | 14.8 | |
Ca, % | 0.5 | 0.5 | 0.5 | 0.3 | 0.5 | 0.6 | |
P, % | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.3 |
Item | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
C30 | C40 | C50 | ||||
9 months | ||||||
Age, month | 9.5 | 9.5 | 9.4 | 1.46 | 0.987 | |
BW, kg | 246.2b | 274.3a | 282.7a | 5.16 | 0.046 | |
DM intake, kg/day | 5.61b | 6.47a | 6.90a | 0.164 | <0.01 | |
OM intake, kg/day | 5.15b | 5.94a | 6.30a | 0.152 | 0.007 | |
NDF intake, kg/day | 2.12 | 2.21 | 2.17 | 0.093 | 0.07 | |
NFC intake, kg/day | 1.92b | 2.31a | 2.57a | 0.041 | 0.024 | |
GE intake, MJ/day | 100.8b | 117.4a | 124.9a | 2.74 | <0.01 | |
ADG, kg/day | 1.10b | 1.33a | 1.36a | 0.085 | 0.448 | |
12 months | ||||||
Age, month | 11.7 | 11.6 | 12.4 | 0.72 | 0.477 | |
BW, kg | 326.8b | 336.0b | 363.6a | 10.27 | 0.036 | |
DM intake, kg/day | 6.98b | 7.06b | 7.18a | 0.233 | 0.001 | |
OM intake, kg/day | 6.50b | 6.56b | 6.62a | 0.227 | 0.017 | |
NDF intake, kg/day | 2.57a | 2.30b | 2.10b | 0.100 | 0.038 | |
NFC intake, kg/day | 2.69b | 2.96b | 3.19a | 0.106 | 0.001 | |
GE intake, MJ/day | 115.9b | 117.9b | 124.6a | 0.500 | <0.01 | |
ADG, kg/day | 0.97b | 1.14b | 1.39a | 0.062 | 0.010 | |
15 months | ||||||
Age, month | 14.7 | 14.6 | 14.9 | 0.33 | 0.965 | |
BW, kg | 402.2b | 424.4a | 429.3a | 8.82 | 0.945 | |
DM intake, kg/day | 7.44c | 7.78b | 7.96a | 0.234 | 0.014 | |
OM intake, kg/day | 6.86c | 7.22b | 7.42a | 0.126 | <0.01 | |
NDF intake, kg/day | 2.93a | 2.53b | 2.18c | 0.228 | 0.031 | |
NFC intake, kg/day | 3.06b | 3.26a | 3.30a | 0.179 | <0.01 | |
GE intake, MJ/day | 124.9c | 129.9b | 132.2a | 1.69 | <0.01 | |
ADG, kg/day | 0.87b | 0.99a | 1.05a | 0.026 | 0.005 |
Item | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
C30 | C40 | C50 | ||||
9 months | ||||||
Dry matter | 73.3 | 74.8 | 75.3 | 1.00 | 0.710 | |
Organic matter | 75.3 | 76.8 | 77.2 | 1.00 | 0.740 | |
Crude protein | 65.6c | 69.3b | 76.5a | 1.53 | 0.003 | |
Neutral detergent fiber | 69.2c | 72.4b | 76.9a | 1.52 | 0.012 | |
Acid detergent fiber | 63.0c | 69.4b | 72.9a | 1.87 | 0.041 | |
12 months | ||||||
Dry matter | 73.5b | 74.7b | 78.3a | 0.96 | 0.017 | |
Organic matter | 77.1b | 78.6b | 81.9a | 0.92 | 0.047 | |
Crude protein | 65.6b | 69.3b | 76.5a | 1.53 | 0.002 | |
Neutral detergent fiber | 60.8b | 65.4a | 66.9a | 1.66 | 0.029 | |
Acid detergent fiber | 68.4 | 69.4 | 71.1 | 1.46 | 0.141 | |
15 months | ||||||
Dry matter | 75.7b | 76.5b | 83.2a | 1.04 | <0.01 | |
Organic matter | 77.9b | 78.7b | 84.9a | 0.99 | <0.01 | |
Crude protein | 72.7b | 72.2b | 79.6a | 1.10 | <0.01 | |
Neutral detergent fiber | 73.1b | 75.4a | 76.7a | 0.92 | 0.028 | |
Acid detergent fiber | 71.3b | 73.5b | 77.2a | 1.11 | 0.046 |
Item | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
C30 | C40 | C50 | ||||
9 months | ||||||
CH4, g/day | 114.90a | 107.10b | 93.66c | 2.584 | <0.01 | |
CH4/MBW, g/kg0.75 | 1.68a | 1.59b | 1.42c | 0.031 | 0.002 | |
CH4/DM intake, g/kg | 20.57a | 16.56b | 13.57c | 0.643 | <0.01 | |
CH4/OM intake, g/kg | 26.15a | 21.39b | 17.15c | 0.734 | <0.01 | |
CH4/NDF intake, g/kg | 60.66a | 47.55b | 35.40c | 2.99 | <0.01 | |
CH4-E, MJ/day | 6.40a | 5.96b | 5.21c | 0.131 | <0.01 | |
CH4-E/GE intake | 0.0686a | 0.0552b | 0.0454c | 0.00264 | <0.01 | |
12 months | ||||||
CH4, g/day | 159.68a | 133.16b | 119.32c | 5.054 | <0.01 | |
CH4/MBW, gkg0.75 | 2.09a | 1.71b | 1.50c | 0.079 | 0.001 | |
CH4/DM intake, g/kg | 22.88a | 18.85b | 16.63c | 0.903 | <0.01 | |
CH4/OM intake, g/kg | 27.13a | 22.65b | 20.40c | 0.958 | <0.01 | |
CH4/NDF intake, g/kg | 63.77a | 55.81b | 54.60b | 1.744 | 0.019 | |
CH4-E, MJ/day-1 | 7.89a | 7.41b | 6.64c | 0.281 | <0.001 | |
CH4-E/GE intake | 0.0742a | 0.0618b | 0.0558b | 0.00321 | <0.001 | |
15 months | ||||||
CH4, g/day | 219.58a | 214.86b | 193.77c | 4.17 | <0.01 | |
CH4/MBW, g/kg0.75 | 2.39a | 2.26a | 2.02b | 0.058 | 0.013 | |
CH4/DM intake, g/kg | 23.17a | 19.94b | 16.92c | 0.776 | <0.01 | |
CH4/OM intake, g/kg | 24.95a | 21.54b | 18.20c | 0.837 | <0.01 | |
CH4/NDF intake, g/kg | 69.39a | 67.12b | 64.83c | 1.312 | 0.039 | |
CH4-E, MJ/day | 12.77a | 11.96b | 10.78c | 0.232 | <0.01 | |
CH4-E/GE intake | 0.0769a | 0.0665b | 0.0568c | 0.00374 | <0.01 |
Item | Equations | SE | R2 | Eq. |
---|---|---|---|---|
CH4 | = 0.13 (0.106) × BW + 68.6 (29.15) | 0.330 | 0.47 | (1) |
= 24.21 (1.133) × DM intake − 51.3 (7.34) | 0.999 | 0.67 | (2) | |
CH4-E | = 0.08 (0.004) × GE intake − 2.72 (0.467) | 0.999 | 0.69 | (3) |
CH4 | = 0.19 (0.151) × BW + 78.6 (49.64) | 0.461 | 0.42 | (4) |
= 36.27 (6.712) × DM intake − 87.8 (12.24) | 0.782 | 0.71 | (5) | |
CH4-E | = 0.11 (0.012) × GE intake − 4.65 (1.785) | 0.766 | 0.72 | (6) |
CH4 | = 0.29 (0.161) × BW + 84.9 (68.61) | 0.461 | 0.46 | (7) |
= 51.72 (4.640) × DM intake − 193.9 (22.49) | 0.979 | 0.74 | (8) | |
CH4-E | = 0.18 (0.042) × GE intake − 9.70 (2.071) | 0.973 | 0.67 | (9) |
Item1 | Equations | SE | R2 | Eq. |
---|---|---|---|---|
Linear models | ||||
CH4-E (MJ/day) | 0.026 (0.0043) × BW (kg) + 0.69 (0.431) × DM intake (kg/day) − 5.564 (1.1940) | 0.337 | 0.742 | (10) |
3.18 (0.408) × DM intake (kg/day) + 1.74 (0.598) × NDF intake (kg/day) − 9.426 (2.6003) | 0.682 | 0.593 | (11) | |
1.75 (0.399) × DM intake (kg/d) - 2.71 (0.648) × NFC intake (kg/day) − 8.552 (2.4150) | 0.549 | 0.655 | (12) | |
0.024 (0.0041) × BW (kg) + 1.22 (0.456) × DM intake (kg/day) + 1.15 (0.459) × NDF intake (kg/day) − 5.389 (2.0681) | 0.261 | 0.777 | (13) | |
0.023 (0.0037) × BW (kg) + 0.28 (0.038) × DM intake (kg/day) − 2.04 (0.486) × NFC intake (kg/day) − 4.872 (1.8634) | 0.132 | 0.820 | (14) | |
Non-linear models | ||||
CH4-E (MJ/day) | 5.564 (1.1206) × exp (0.0276(0.0037) × DM intake (kg/day)) | 0.396 | 0.461 | (15) |
4.333 (1.0177) × DM intake (kg/day) 0.232(0.0452) | 0.601 | 0.446 | (16) | |
2.465 (0.7452) × exp (0.0075(0.0008) × NDF intake (kg/d)) | 0.452 | 0.411 | (17) | |
2.204 (0.6514) × NDF intake (kg/day) 0.084 (0.0072) | 0.377 | 0.489 | (18) | |
0.926 (0.0452) × exp (0.0672(0.00121) × NFC intake (kg/day)) | 0.514 | 0.385 | (19) | |
0.527 (0.0271) × NDF intake (kg/day) 0.541 (0.0362) | 0.602 | 0.434 | (20) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Li, B.; Diao, Q. Effects of Dietary Forage Proportion on Feed Intake, Growth Performance, Nutrient Digestibility, and Enteric Methane Emissions of Holstein Heifers at Various Growth Stages. Animals 2019, 9, 725. https://doi.org/10.3390/ani9100725
Dong L, Li B, Diao Q. Effects of Dietary Forage Proportion on Feed Intake, Growth Performance, Nutrient Digestibility, and Enteric Methane Emissions of Holstein Heifers at Various Growth Stages. Animals. 2019; 9(10):725. https://doi.org/10.3390/ani9100725
Chicago/Turabian StyleDong, Lifeng, Binchang Li, and Qiyu Diao. 2019. "Effects of Dietary Forage Proportion on Feed Intake, Growth Performance, Nutrient Digestibility, and Enteric Methane Emissions of Holstein Heifers at Various Growth Stages" Animals 9, no. 10: 725. https://doi.org/10.3390/ani9100725
APA StyleDong, L., Li, B., & Diao, Q. (2019). Effects of Dietary Forage Proportion on Feed Intake, Growth Performance, Nutrient Digestibility, and Enteric Methane Emissions of Holstein Heifers at Various Growth Stages. Animals, 9(10), 725. https://doi.org/10.3390/ani9100725