Genomic Prediction and Association Analysis with Models Including Dominance Effects for Important Traits in Chinese Simmental Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Phenotypes
2.3. Genotyping and Quality Control
2.4. GBLUP-D
2.5. BayesAD
2.6. Genome-Wide Association Studies based on Dominance Effects
2.7. Model Validation and Predictive Ability
3. Result
3.1. Estimates of Variance Components and Heritability
3.2. Goodness of Fit
3.3. Predictive Ability
3.4. Genome-Wide Association Studies of Additive and Dominance Effects
4. Discussion
4.1. Additive and Dominance Genetic Variance
4.2. Genomic Prediction of Complex Traits
4.3. GWAS with Additive and Dominance Effects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Su, G.; Christensen, O.F.; Ostersen, T.; Henryon, M.; Lund, M.S. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers. PLoS ONE 2012, 7, e45293. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.; Haig, D. Genomic imprinting in mammalian development: A parental tug-of-war. Trends Genet. 1991, 7, 45–49. [Google Scholar] [CrossRef]
- Vitezica, Z.G.; Varona, L.; Legarra, A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics 2013, 195, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; VanRaden, P.M.; Cole, J.B.; O’Connell, J.R. Improvement of Prediction Ability for Genomic Selection of Dairy Cattle by Including Dominance Effects. PLoS ONE 2014, 9, e103934. [Google Scholar] [CrossRef] [PubMed]
- Bolormaa, S.; Pryce, J.E.; Zhang, Y.; Reverter, A.; Barendse, W.; Hayes, B.J.; Goddard, M.E. Non-additive genetic variation in growth, carcass and fertility traits of beef cattle. Genet. Sel. Evol. 2015, 47, 26. [Google Scholar] [CrossRef]
- Nishio, M.; Satoh, M. Including Dominance Effects in the Genomic BLUP Method for Genomic Evaluation. PLoS ONE 2014, 9, e85792. [Google Scholar] [CrossRef]
- Jiang, J.; Shen, B.; O’Connell, J.R.; VanRaden, P.M.; Cole, J.B.; Ma, L. Dissection of additive, dominance, and imprinting effects for production and reproduction traits in Holstein cattle. BMC Genom. 2017, 18, 425. [Google Scholar] [CrossRef]
- Lopes, M.S.; Bastiaansen, J.W.M.; Harlizius, B.; Knol, E.F.; Bovenhuis, H. A Genome-Wide Association Study Reveals Dominance Effects on Number of Teats in Pigs. PLoS ONE 2014, 9, e105867. [Google Scholar] [CrossRef]
- Xu, L.Y.; Yang, L.; Wang, L.; Zhu, B.; Chen, Y.; Gao, H.J.; Gao, X.; Zhang, L.P.; Liu, G.E.; Li, J.Y. Probe-based association analysis identifies several deletions associated with average daily gain in beef cattle. BMC Genom. 2019, 20, 31. [Google Scholar] [CrossRef]
- Coyne, J.M.; Evans, R.D.; Berry, D.P. Dressing percentage and the differential between live weight and carcass weight in cattle are influenced by both genetic and non-genetic factors1. J. Anim. Sci. 2019, 97, 1501–1512. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, H.; Wang, Y.; Zhang, L.; Gao, X.; Chen, Y.; Li, J.; Ren, H.; Gao, H. Genome-Wide Association Studies Using Haplotypes and Individual SNPs in Simmental Cattle. PLoS ONE 2014, 9, e109330. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Wu, Y.; Zhou, X.; Xia, J.; Zhang, W.; Song, Y.; Liu, F.; Chen, Y.; Zhang, L.; Gao, X.; et al. Pathway-Based Genome-Wide Association Studies for Two Meat Production Traits in Simmental Cattle. Sci. Rep. 2015, 5, 18389. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Niu, H.; Zhang, W.; Wang, Z.; Liang, Y.; Guan, L.; Guo, P.; Chen, Y.; Zhang, L.; Guo, Y.; et al. Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array. BMC Genom. 2017, 18, 464. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, A.R.; Gogel, R.B.J.; Cullis, B.R.; Thompson, R. Asreml User Guide Release 3.0; VSN International Ltd.: Hemel Hemptead, UK, 2009. [Google Scholar]
- Wellmann, R.; Bennewitz, J. Bayesian models with dominance effects for genomic evaluation of quantitative traits. Genet. Res. (Camb) 2012, 94, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Segura, V.; Vilhjálmsson, B.J.; Platt, A.; Korte, A.; Seren, Ü.; Long, Q.; Nordborg, M. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 2012, 44, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Slavov, G.T.; Nipper, R.; Robson, P.; Farrar, K.; Allison, G.G.; Bosch, M.; Clifton-Brown, J.C.; Donnison, I.S.; Jensen, E. Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis. New Phytol. 2014, 201, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Zimin, A.V.; Delcher, A.L.; Florea, L.; Kelley, D.R.; Schatz, M.C.; Puiu, D.; Hanrahan, F.; Pertea, G.; Van Tassell, C.P.; Sonstegard, T.S.; et al. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009, 10, R42. [Google Scholar] [CrossRef]
- Hayes, B.J.; Visscher, P.M.; Goddard, M.E. Increased accuracy of artificial selection by using the realized relationship matrix. Genet. Res. 2009, 91, 47–60. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- VanRaden, P.M.; Van Tassell, C.P.; Wiggans, G.R.; Sonstegard, T.S.; Schnabel, R.D.; Taylor, J.F.; Schenkel, F.S. Invited Review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 2009, 92, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Madsen, P.; Nielsen, U.S.; Mäntysaari, E.A.; Aamand, G.P.; Christensen, O.F.; Lund, M.S. Genomic prediction for Nordic Red Cattle using one-step and selection index blending. J. Dairy Sci. 2012, 95, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Harris, B.L.; Johnson, D.L. Genomic predictions for New Zealand dairy bulls and integration with national genetic evaluation. J. Dairy Sci. 2010, 93, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010, 42, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Wittenburg, D.; Melzer, N.; Reinsch, N. Ncluding non-additive genetic effects in Bayesian methods for the prediction of genetic values based on genome-wide markers. BMC Genet. 2011, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Ertl, J.; Legarra, A.; Vitezica, Z.G.; Varona, L.; Edel, C.; Emmerling, R.; Götz, K.U. Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle. Genet. Sel. Evol. 2014, 46, 40. [Google Scholar] [CrossRef]
- Toro, M.A.; Varona, L. A note on mate allocation for dominance handling in genomic selection. Genet. Sel. Evol. 2010, 42, 33. [Google Scholar] [CrossRef]
- Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 215–266. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, L.; Gao, H.; Wu, Y.; Gao, X.; Zhang, L.; Zhu, B.; Song, Y.; Bao, J.; Li, J.; et al. Detection of candidate genes for growth and carcass traits using genome-wide association strategy in Chinese Simmental beef cattle. Anim. Prod. Sci. 2018, 58, 224–233. [Google Scholar] [CrossRef]
- Miao, J.; Wang, X.; Bao, J.; Jin, S.; Chang, T.; Xia, J.; Yang, L.; Zhu, B.; Xu, L.; Zhang, L.; et al. Multimarker and rare variants genomewide association studies for bone weight in Simmental cattle. J. Anim. Breed. Genet. 2018, 135, 159–169. [Google Scholar] [CrossRef]
- Wang, X.; Miao, J.; Xia, J.; Chang, T.; E, G.; Bao, J.; Jin, S.; Xu, L.; Zhang, L.; Zhu, B.; et al. Identifying novel genes for carcass traits by testing G × E interaction through genome-wide meta-analysis in Chinese Simmental beef cattle. Livest. Sci. 2018, 212, 75–82. [Google Scholar] [CrossRef]
- Albagha, O.M.E.; Wani, S.E.; Rios Visconti, M.; Alonso, N.; Goodman, K.; Brandi, M.L.; Cundy, T.; Chung, P.Y.J.; Dargie, R.; Devogelaer, J.P.; et al. Genome-wide association identifies three new susceptibility loci for Paget’s disease of bone. Nat. Genet. 2011, 43, 685–689. [Google Scholar]
- Jahuey-Martínez, F.J.; Parra-Bracamonte, G.M.; Sifuentes-Rincón, A.M.; Martínez-González, J.C.; Gondro, C.; García-Pérez, C.A.; López-Bustamante, L.A. Genomewide association analysis of growth traits in Charolais beef cattle1. J. Anim. Sci. 2016, 94, 4570–4582. [Google Scholar] [CrossRef] [PubMed]
- Bochukova, E.G.; Huang, N.; Keogh, J.; Henning, E.; Purmann, C.; Blaszczyk, K.; Saeed, S.; Hamilton-Shield, J.; Clayton-Smith, J.; O’Rahilly, S.; et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 2010, 463, 666–670. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Choi, S.H.; Hong, J.; Lu, C.; Milton, J.N.; Allard, C.; Lacey, S.M.; Lin, H.; Dupuis, J. Rare genetic variant analysis on blood pressure in related samples. BMC Proc. 2014, 8 (Suppl. 1), S35. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Ji, J.; Peng, S.; Zhang, Z.; Fang, S.; Li, L.; Zhu, Y.; Huang, L.; Chen, C.; Ma, J. A GWA study reveals genetic loci for body conformation traits in Chinese Laiwu pigs and its implications for human BMI. Mamm. Genome 2016, 27, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Wagner, E.K.; Eckert, G.J.; Yu, Z.; Hannon, T.; Pratt, J.H.; He, C. Associations between menarche-related genetic variants and pubertal growth in male and female adolescents. J. Adolesc. Health 2015, 56, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Jonczyk, M.S.; Simon, M.; Kumar, S.; Fernandes, V.E.; Sylvius, N.; Mallon, A.M.; Denny, P.; Andrew, P.W. Genetic factors regulating lung vasculature and immune cell functions associate with resistance to pneumococcal infection. PLoS ONE 2014, 9, e89831. [Google Scholar] [CrossRef]
- Lee, K.T.; Byun, M.J.; Kang, K.S.; Park, E.W.; Lee, S.H.; Cho, S.; Kim, H.; Kim, K.W.; Lee, T.; Park, J.E.; et al. Neuronal genes for subcutaneous fat thickness in human and pig are identified by local genomic sequencing and combined SNP association study. PLoS ONE 2011, 6, e16356. [Google Scholar] [CrossRef] [Green Version]
- Sandell, L.L.; Sanderson, B.W.; Moiseyev, G.; Johnson, T.; Mushegian, A.; Young, K.; Rey, J.P.; Ma, J.X.; Staehling-Hampton, K.; Trainor, P.A. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev. 2007, 21, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Raven, L.A.; Cocks, B.G.; Kemper, K.E.; Chamberlain, A.J.; Vander Jagt, C.J.; Goddard, M.E.; Hayes, B.J. Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle. Mamm. Genome 2016, 27, 81–97. [Google Scholar] [CrossRef] [PubMed]
Trait | N | Mean | SD | Max | Min |
---|---|---|---|---|---|
CW (kg) | 1233 | 271.87 | 45.41 | 486 | 162.62 |
DP | 1233 | 0.54 | 0.028 | 0.68 | 0.41 |
MP | 1233 | 0.45 | 0.31 | 0.61 | 0.32 |
ADG (kg) | 1233 | 0.97 | 0.22 | 2.41 | 0.38 |
CR (kg) | 1233 | 11.59 | 3.33 | 28.68 | 4.5 |
Heritability/Variance | CW | DP | MP | ADG | CR |
---|---|---|---|---|---|
415.642 | 0.000133 | 0.000181 | 0.00147 | 1.077 | |
156.579 | 0.0000932 | 0.0000343 | 0.000242 | 0.482 | |
417.453 | 0.000352 | 0.000462 | 0.00402 | 3.394 | |
0.420 | 0.230 | 0.267 | 0.256 | 0.217 | |
0.158 | 0.161 | 0.051 | 0.042 | 0.097 | |
0.273 | 0.412 | 0.159 | 0.141 | 0.309 | |
437.036 | 0.000142 | 0.000169 | 0.00165 | 1.236 | |
557.988 | 0.000421 | 0.000523 | 0.00397 | 3.741 | |
0.439 | 0.252 | 0.244 | 0.294 | 0.248 |
Likelihood Statistic | Model | CW | DP | MP | ADG | CR |
---|---|---|---|---|---|---|
Log(L) | GBLUP | −3799.82 | 3874.55 | 3810.34 | 3873.79 | −1473.89 |
GBLUP-D | −3799.68 | 3874.67 | 3810.47 | 3873.93 | −1473.75 | |
-value a | GBLUP-D | 3.91 | 3.54 | 3.86 | 3.87 | 3.68 |
p-value | 0.03 | 0.05 | 0.04 | 0.04 | 0.05 |
CW | DP | MP | ADG | CR | |
---|---|---|---|---|---|
BayesA | 0.262 | 0.262 | 0.244 | 0.403 | 0.375 |
BayesAD | 0.273 | 0.270 | 0.249 | 0.411 | 0.381 |
GBLUP | 0.253 | 0.251 | 0.239 | 0.431 | 0.369 |
GBLUP-D | 0.262 | 0.259 | 0.244 | 0.438 | 0.374 |
Trait | SNP | A/D | BTA | Position a | Distance b | Gene Name c | p-Value pa | p-Value pd |
---|---|---|---|---|---|---|---|---|
CW | BovineHD0600026881 | A | 6 | 96,746,323 | −183 | FGF5 | 1.33 × 10−7 | - |
CW | BovineHD1400017459 | A + D | 14 | 62,788,724 | within | RIMS2 | 2.83 × 10−7 | 3.41 × 10−7 |
DP | BovineHD2100016298 | A + D | 21 | 56,606,414 | 15,215 | GPR68 | 2.41 × 10−7 | 4.08 × 10−7 |
DP | BovineHD1500004272 | A + D | 15 | 16,715,193 | within | GUCY1A2 | 1.53 × 10−7 | 3.83 × 10−7 |
DP | BovineHD1300005158 | A | 13 | 18,099,016 | within | ABI1 | 4.67 × 10−7 | - |
DP | BovineHD1400009103 | A + D | 14 | 31,569,541 | 128,114 | ARMC1 | 4.96 × 10−7 | 4.01 × 10−7 |
DP | BovineHD2400013194 | A | 24 | 47,440,919 | −43,561 | SKOR2 | 5.93 × 10−7 | - |
DP | BovineHD2600002715 | A | 26 | 10,622,551 | 5333 | STAMBPL1 | 6.84 × 10−8 | - |
MP | BovineHD1400017459 | A | 14 | 62,788,724 | within | RIMS2 | 5.26 × 10−7 | - |
ADG | BovineHD0300020097 | A | 3 | 3,948,572 | within | ST6GALNAC5 | 2.41 × 10−7 | - |
ADG | BovineHD1000015632 | A + D | 10 | 52,349,382 | within | ALDH1A2 | 2.35 × 10−7 | 2.91 × 10−7 |
ADG | BovineHD1000015492 | A + D | 10 | 52,349,964 | within | ALDH1A2 | 2.53 × 10−7 | 3.07 × 10−7 |
CR | BovineHD0500036083 | A | 5 | 75,823,709 | within | MPST | 4.98 × 10−7 | - |
CR | BovineHD0300027330 | A | 3 | 94,958,653 | within | RAB3B | 3.54 × 10−7 | - |
CR | BTB-00216812 | A | 5 | 7,314,405 | 79,333 | NAV3 | 2.23 × 10−7 | - |
CR | BovineHD1000009483 | D | 10 | 28,879,512 | within | RYR3 | - | 1.51 × 10−7 |
CR | BovineHD1100011059 | D | 11 | 37,361,510 | within | EML6 | - | 1.91 × 10−7 |
CR | BovineHD1000003443 | D | 10 | 10,362,838 | within | HOMER1 | - | 3.42 × 10−7 |
CR | BovineHD1400013490 | D | 4 | 47,683,093 | 96,642 | SAMD12 | - | 2.13 × 10−7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xu, L.; Wang, Z.; Xu, L.; Chen, Y.; Zhang, L.; Xu, L.; Gao, X.; Gao, H.; Zhu, B.; et al. Genomic Prediction and Association Analysis with Models Including Dominance Effects for Important Traits in Chinese Simmental Beef Cattle. Animals 2019, 9, 1055. https://doi.org/10.3390/ani9121055
Liu Y, Xu L, Wang Z, Xu L, Chen Y, Zhang L, Xu L, Gao X, Gao H, Zhu B, et al. Genomic Prediction and Association Analysis with Models Including Dominance Effects for Important Traits in Chinese Simmental Beef Cattle. Animals. 2019; 9(12):1055. https://doi.org/10.3390/ani9121055
Chicago/Turabian StyleLiu, Ying, Lei Xu, Zezhao Wang, Ling Xu, Yan Chen, Lupei Zhang, Lingyang Xu, Xue Gao, Huijiang Gao, Bo Zhu, and et al. 2019. "Genomic Prediction and Association Analysis with Models Including Dominance Effects for Important Traits in Chinese Simmental Beef Cattle" Animals 9, no. 12: 1055. https://doi.org/10.3390/ani9121055
APA StyleLiu, Y., Xu, L., Wang, Z., Xu, L., Chen, Y., Zhang, L., Xu, L., Gao, X., Gao, H., Zhu, B., & Li, J. (2019). Genomic Prediction and Association Analysis with Models Including Dominance Effects for Important Traits in Chinese Simmental Beef Cattle. Animals, 9(12), 1055. https://doi.org/10.3390/ani9121055