Late Mesozoic and Cenozoic Geodynamics of the Arctic Region: Implications for Abiogenic Generation of Hydrocarbons
Abstract
:1. Introduction
2. Late Mesozoic and Cenozoic Geodynamic History of the Arctic
3. Origin of Abiotic Methane, Other Hydrocarbon Gases, CO2, and H2 in Rift Zones
Forsterite serpentine magnesite
anorthite kaoline calcite
fayalite forsterite serpentine hematite methane
fayalite forsterite serpentine hematite
fayalite forsterite enstatite hematite diopside
4. Generation of Abiotic Hydrocarbons in Subduction Zones and Transport to Rift Zones
calcite wollastonite
magnesite enstatite
magnesite forsterite
siderite fayalite
calcite magnesite diopside
calcite ilmenite perovskite magnetite
anorthite magnesite pyrope calcite corundum
anorthite siderite almandine calcite corundum
calcite forsterite monticellite periclase
calcite enstatite monticellite
wüstite magnetite
olivine forsterite serpentine hematite
5. Carbon Isotope Composition in Subduction Zones and Upper Mantle
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koven, C.D.; Ringeval, B.; Friedlingstein, P.; Ciais, P.; Cadule, P.; Khvorostyanov, D.; Krinner, G.; Tarnocai, C. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl. Acad. Sci. USA 2011, 108, 14769–14774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedlingstein, P.; Cox, P.; Betts, R.; Bopp, L.; Von Bloh, W.; Brovkin, V.; Cadule, P.; Doney, S.; Eby, M.; Fung, I.; et al. Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 2006, 19, 3337–3353. [Google Scholar] [CrossRef] [Green Version]
- Gruber, N. Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Phil. Trans. R. Soc. A 2011, 369, 1980–1996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramberg, I.S.; Kulakov, Y.N.; Pogrebitsky, Y.E.; Sorokov, D.S. Arctic Oil-Gas Superbasin. Pet. Geol. A Dig. Russ. Lit. Pet. Geol. 1985, 22, 158–161. [Google Scholar]
- Lobkovskii, L.I.; Nikiforov, S.L.; Shakhova, N.E.; Semiletov, I.P.; Libina, N.V.; Anan’ev, R.A.; Dmitrevskii, N.N. Mechanisms responsible for degradation of submarine permafrost on the eastern Arctic shelf of Russia. Dokl. Earth Sci. 2013, 449, 280–283. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. Methane hydrates and global climate. Glob. Biogeochem. Cycles 1988, 2, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Shakhova, N.; Semiletov, I.; Chuvilin, E. Understanding the permafrost–hydrate system and associated methane releases in the East Siberian Arctic Shelf. Geosciences 2019, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Rekant, P.; Salyuk, A.; Kosmach, D. Geochemical and geophysical evidence of methane release from the inner East Siberian Shelf. J. Geophys. Res. 2010, 115, C08007. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, V.; Sergienko, A.; Salyuk, D.; Kosmach, D.; Chernikh, C.; Stubbs, D.; Nicolsky, V.; Tumskoy, O.; et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Steinbach, J.; Holmstrand, H.; Scherbakova, K.; Kosmach, D.; Bruchrt, V.; Shakhova, N.; Salyuk, A.; Sapart, C.; Chernikh, D.; Noormets, R.; et al. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf. Proc. Natl. Acad. Sci. USA 2021, 118, e2019672118. [Google Scholar] [CrossRef]
- Cramer, B.; Franke, D. Indications for an Active Petroleum System in the Laptev Sea, NE Siberia. J. Petrol. Geol. 2005, 28, 369–384. [Google Scholar] [CrossRef]
- Romanovskii, N.N.; Hubberten, H.-W.; Gavrilov, A.V.; Eliseeva, A.A.; Tipenko, G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Marine Lett. 2005, 25, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Joussupov, V.; Kosmach, D.; Gustafsson, Ö. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef]
- Ruppel, C.D.; Kessler, J.D. The interaction of climate change and methane hydrates. Rev. Geophys. 2017, 55, 126–168. [Google Scholar] [CrossRef]
- Sapart, C.J.; Shakhova, N.; Semiletov, I.; Jansen, J.; Szidat, S.; Kosmach, D.; Dudarev, O.; van der Veen, C.; Egger, M.; Sergienko, V.; et al. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. Biogeosciences 2017, 14, 2283–2292. [Google Scholar] [CrossRef] [Green Version]
- Fireman, E.L. Carbon-14 in lunar soil and in meteorites. In Proceedings of the Ninth Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 1978; pp. 1647–1654. [Google Scholar]
- Fireman, E.L.; Norris, T.L. Ages and composition of gas trapped in Allan Hills and Byrd core ice. Earth Planet. Sci. Lett. 1982, 60, 339–350. [Google Scholar] [CrossRef]
- Baudin, G.; Blain, C.; Hagemann, R.; Kremer, M.; Lucas, M.; Merlivat, L.; Molina, R.; Nieff, G.; Prost Marechal, P.; Regnaud, F.; et al. Quelques données nouvelles sur les réactions nucléaires en chaine qui se sont produites dans le gisement d’Oklo, C.R. Acad. Sci. Paris 1973, 275D, 2291. (In French) [Google Scholar]
- Dmitriev, L.V.; Bazylev, B.A.; Silantiev, S.A.; Borisov, M.V.; Sokolov, S.Y.; Bugo, A. Hydrogen and methane formation with serpentization of mantle hyperbasite of the ocean and oil generation. Russ. J. Earth Sci. 1999, 1, 511–519. [Google Scholar] [CrossRef]
- Sorokhtin, O.G.; Lein, A.Y.; Balanyuk, I.E. Thermodynamics of oceanic hydrothermal systems and abiogenic methane generation. Oceanology 2001, 41, 861–872. [Google Scholar]
- Sorokhtin, O.G.; Chilingarian, G.V.; Sorokhtin, N.O. Evolution of Earth and its Climate: Birth, Life and Death of Earth. In Developments in Earth and Environmental Sciences, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 10, p. 763. [Google Scholar]
- Sorokhtin, N.O.; Lobkovsky, L.I.; Semiletov, I.P. Carbon depth cycle and formation of abiogenic hydrocarbons. Bull. Tomsk Polytech. Univ. Eng. Georesourses 2018, 329, 156–173. (In Russian) [Google Scholar]
- Sorokhtin, N.O.; Lobkovsky, L.I.; Kozlov, N.E. The crust-mantle carbon cycle and origin of abiotic hydrocarbons. Oceanology 2020, 60, 248–258. [Google Scholar] [CrossRef]
- Dmitrievsky, A.N.; Balanyuk, I.E.; Matveenkov, V.V.; Sorokhtin, O.G. Modern views on the possibility of hydrocarbon generation with the participation of oceanic crust rocks. Dokl. Earth Sci. 2000, 371, 385–387. [Google Scholar]
- Dmitrievsky, A.N.; Balanyuk, I.E. Gas Hydrates of Seas and Oceans—A Hydrocarbon Source of the Future; IRTs Gazprom Ltd.: Moscow, Russia, 2009; p. 416. [Google Scholar]
- Lein, A.Y.; Peresypkin, V.I.; Simoneit, B.R.T. Origin of hydrocarbons in hydrothermal sulfide ores in the Mid-Atlantic Ridge. Lithol. Miner. Resour. 2003, 38, 383–393. [Google Scholar] [CrossRef]
- Uspensky, V.A. Carbon Budget in the Biosphere: Implications for Carbon Distribution in the Crust; VNIGRI, Gostoptehizdat: Leningrad, Russia, 1956; p. 101. (In Russian) [Google Scholar]
- Varotsos, C.A.; Krapivin, V.F.; Soldatov, V.Y. Modeling the carbon and nitrogen cycles. Front. Environ. Sci. 2014, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Romankevich, E.A.; Vetrov, A.A. Masses of carbon in the Earth’s hydrosphere. Geochem. Int. 2013, 51, 431–455. [Google Scholar] [CrossRef]
- Krapivin, V.F.; Varotsos, C.A. Biogeochemical Cycles in Globalization and Sustainable Development; Springer/Praxis: Chichester, UK, 2008; p. 562. [Google Scholar]
- Galimov, E.M. Carbon Isotopes in Oil and Gas Geology; NASA TT F-682; National Aeronautics and Space Administration: Washington, DC, USA, 1975; p. 395.
- Dobretsov, N.L.; Shatskiy, A.F. Deep carbon cycle and geodynamics: The role of the core and carbonatite melts in the lower mantle. Russ. Geol. Geophys. 2012, 53, 1117–1132. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Koulakov, I.; Kukarina, E.V.; Litasov, K.D. An integrate model of subduction: Contributions from geology, experimental petrology, and seismic tomography. Russ. Geol. Geophys. 2015, 56, 13–38. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Dobretsov, N.L.; Ohtani, E.; Taylor, L.A.; Schertl, H.-P.; Palyanov, Y.N.; Litasov, K.D. Problems related to crystallogenesis and the deep carbon cycle. Russ. Geol. Geophys. 2015, 56, 1–12. [Google Scholar] [CrossRef]
- Lobkovsky, L.I. Deformable plate tectonics and regional geodynamic model of the Arctic region and Northeastern Asia. Russ. Geol. Geophys. 2016, 57, 371–386. [Google Scholar] [CrossRef]
- Kazmin, Y.B.; Lobkovskii, L.I.; Kononov, M.V. The geodynamic model of Cretaceous-Cenozoic evolution of the Arctic Basin. Dokl. Earth Sci. 2015, 462, 559–564. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Garagash, I.A.; Kononov, M.V.; Verzhbitsky, V.E.; Kotelkin, V.D. Tectonics of deformable plates and the Mesozoic-Cenozoic geodynamic history of the Arctic region. In Geology and Geoenvironment of Eurasian Continental Margins; GEOS: Moscow, Russia, 2010; pp. 8–40. (In Russian) [Google Scholar]
- Lobkovsky, L.I.; Alekseev, D.A.; Garagash, I.A. Geodynamic evolution model of the major structures of Amerasian Basin. Dokl. Earth Sci. 2018, 480, 753–757. [Google Scholar] [CrossRef]
- Laverov, N.P.; Lobkovsky, L.I.; Kononov, M.V.; Dobretsov, N.L.; Vernikovsky, V.A.; Sokolov, S.D.; Shipilov, E.V. A geodynamic model of the evolution of the Arctic basin and adjacent territories in the Mesozoic and Cenozoic and the outer limit of the Russian Continental Shelf. Geotectonics 2013, 354, 1–30. [Google Scholar] [CrossRef]
- Shipilov, E.V.; Lobkovsky, L.I. Tectono-geodynamic transformations of the Amerasian Basin lithosphere in the Cenozoic. Dokl. Earth Sci. 2012, 445, 979–985. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Shipilov, E.V.; Kononov, M.V. Geodynamic model of upper mantle convection and transformation of the Arctic lithosphere in the Mesozoic and Cenozoic. Izvestiya. Phys. Solid Earth 2013, 49, 767–785. [Google Scholar] [CrossRef]
- Shipilov, E.V.; Lobkovsky, L.I.; Shkarubo, S.I. Structure of the Khatanga–Lomonosov fracture zone according to seismic data. Dokl. Earth Sci. 2019, 487, 846–851. [Google Scholar] [CrossRef]
- Zhao, D. Multiscale seismic tomography and mantle dynamics. Gondwana Res. 2009, 15, 297–323. [Google Scholar] [CrossRef]
- Zhao, D.; Tian, Y.; Ley, J.; Liu, L.; Zheng, S. Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Int. 2009, 173, 197–206. [Google Scholar] [CrossRef]
- Zhao, D.; Pirajno, F.; Liu, L. Mantle structure and dynamics under East Russia and adjacent regions. Russ. Geol. Geophys. 2010, 51, 925–938. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Nikishin, A.I.; Khain, V.I. Modern Problems of Tectonics and Geodynamics; Nauchnyi Mir: Moscow, Russia, 2004; p. 612. (In Russian) [Google Scholar]
- Sorokhtin, N.O. The Origins of Natural Diamonds; Scrivener Publishing Wiley: Beverly, MA, USA, 2019; p. 532. [Google Scholar]
- Miller, E.L.; Verzhbitsky, V.E. Structural studies near Pevek, Russia: Implications for formation of the East Siberian Shelf and Makarov Basin of the Arctic Ocean. In Geology, Geophysics and Tectonics of Northeastern Russia: A Tribute to Leonid Parfenov; Stone, D.B., Fujita, K., Layer, P.W., Miller, E.L., Prokopiev, A.V., Toro, J., Eds.; EGU Stephan Mueller Publication Series: Munich, Germany, 2009; Volume 4, pp. 223–241. [Google Scholar]
- Shipilov, E.V. Generations, stages, and specifics of geodynamic evolution of young ocean formation in the Arctic. Dokl. Earth Sci. 2005, 402, 529–533. [Google Scholar]
- Shipilov, E.V. Tectono-geodynamic evolution of Arctic continental margins during epochs of young ocean formation. Geotectonics 2004, 38, 343–365. [Google Scholar]
- Shipilov, E.V. Generations of spreading basins and stages of breakdown of Wegener’s Pangea in the geodynamic evolution of the Arctic Ocean. Geotectonics 2008, 42, 105–124. [Google Scholar] [CrossRef]
- Chernykh, A.; Glebovsky, V.; Zykov, M.; Korneva, M. New insights into tectonics and evolution of the Amerasia Basin. J. Geodyn. 2018, 119, 167–182. [Google Scholar] [CrossRef]
- Faleide, J.I.; Tsikalas, F.; Eldholm, O. Evolution of conjugate continental margin in a regional rift-shear tectonic setting: The Lofoten-SW Barents Sea and NE Greenland margin in the NE Atlantic. In Arctic Geology, Hydrocarbon Resources and Environmental Challenges; Smelror, M., Bugge, T., Eds.; Norsk Geologisk Forening (NGF): Tromso, Norway, 2004; Volume 2, pp. 45–46. [Google Scholar]
- Piepjohn, K.; Lorenz, H.; Franke, F.; Brandes, C.; von Gosen, W.; Gaedicke, C.; Labrousse, L.; Sobolev, N.; Sobolev, P.; Suan, G.; et al. Mesozoic structural evolution of the New Siberian Islands. Project Circum-Arctic Lithosphere Evolution (CASE). Geol. Soc. Lond. Spec. Publ. 2018, 460, 239–262. [Google Scholar] [CrossRef]
- Drachev, S.S.; Shkarubo, S.I. Tectonics of the Laptev Shelf, Siberian Arctic. Project Circum-Arctic Lithosphere Evolution (CASE). Geol. Soc. Lond. Spec. Publ. 2017, 460, 263–284. [Google Scholar] [CrossRef]
- Drachev, S.S.; Mazur, S.; Campbel, S.; Green, C. Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic Ocean constrained by seismic data and gravity modeling results. J. Geodyn. 2018, 119, 123–148. [Google Scholar] [CrossRef]
- Gurvich, E.G. Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation; Springer: Berlin/Heidelberg, Germany, 2006; p. 416. [Google Scholar]
- Lein, A.Y.; Bogdanov, Y.A.; Lisitzin, A.P. Processes of hydrothermal ore genesis in the World Ocean: The results of 35 years of research. Dokl. Earth Sci. 2016, 466, 38–41. [Google Scholar] [CrossRef]
- Cruse, A.M.; Seewald, J.S. Chemistry of low-molecular weight hydrothermal fluids from Middle Valley, Northen Juan de Fuca Ridge. Geochim. Cosmochim. Acta 2006, 70, 2079–2092. [Google Scholar] [CrossRef]
- Proskurowski, G.; Lilley, M.D.; Seewald, J.S.; Früh-Green, G.L.; Olson, E.J.; Lupton, J.E.; Sylva, S.P.; Kelley, D.S. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 2008, 319, 604–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosolapova, T.Y. Carbides: Properties, Production, and Applications; Plenum Press: New York, NY, USA, 1971; p. 298. [Google Scholar]
- Sorokhtin, O.G.; Mitrofanov, F.P.; Sorokhtin, N.O. Origin of Diamonds and Diamond Potential of the Eastern Fennoscandian Shield; KSC: Apatity, Russia, 1996; p. 144. (In Russian) [Google Scholar]
- Zharikov, V.A.; Shmulovich, K.I.; Bulatov, V.K. Experimental studies in the system CaO-MgO-Al2O3—SiO2-CO2—H2O and conditions of high-temperature metamorphism. Tectonophysics 1977, 43, 145–162. [Google Scholar] [CrossRef]
- Cooper, B.S.; Coleman, S.H.; Barnard, P.C.; Butterworth, J.S. Paleotemperatures in the northern North Sea Basin. Petrol. and Cont. Shelf North-West Europe. Geology 1975, 1, 487–492. [Google Scholar]
- Sobolev, N.V. Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle; American Geological Union: Washington, DC, USA, 1977; p. 279. [Google Scholar]
- Ringwood, A.E.; Major, A. The system Mg2SiO4—Fe2SiO4 at high pressures and temperatures. Phys. Earth Planet. Inter. 1970, 3, 89–108. [Google Scholar] [CrossRef]
- Dawson, J.B. Kimberlites and Their Xenoliths; Springer: Heidelberg, Germany, 1980; p. 252. [Google Scholar]
- Kennedy, C.S.; Kennedy, G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 81, 2467–2470. [Google Scholar] [CrossRef]
- Bucher, K.; Frey, M. Petrogenesis of Metamorphic Rock, 7th ed.; Springer: Heidelberg, Germany, 2022; p. 341. [Google Scholar]
- Karrer, P. Lehrbuch der Organischen Chemie; Thieme: Stuttgart, Germany, 1959; p. 1216. (In German) [Google Scholar]
- Sorokhtin, O.G. Plate Tectonics and Origin of Diamondiferous Kimberlites. In General and Regional Geology; VIEMS: Moscow, Russia, 1985; p. 47. (In Russian) [Google Scholar]
- Sorokhtin, O.G.; Chilingar, G.V.; Khilyuk, L.F. Global Warming and Global Cooling: Evolution of Climate on Earth. In Developments in Earth and Environmental Sciences, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 5, p. 323. [Google Scholar]
- Naumov, G.B.; Ryzhenko, B.N.; Khodakovsky, I.L. Handbook of Thermodynamic Data; US Geological Survey, Water Resources Division: Menlo Park, CA, USA, 1974; Volume 226, p. 328.
- Kenney, J.F.; Kutcherov, V.A.; Bendeliani, N.A.; Alekseev, V.A. The evolution of multicomponent system at high pressures: VI. The thermodynamic stability of the hydrogen–carbon system: The genesis of hydrocarbons and the origin of petroleum. Proc. Natl. Acad. Sci. USA 2002, 99, 10976–10981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutcherov, V.A.; Bendeliani, N.A.; Alekseev, V.A.; Kenney, J.F. Synthesis of hydrocarbons from minerals at pressures up to 5 GPa. Dokl. Phys. Chem. 2002, 387, 328–330. [Google Scholar] [CrossRef]
- Melton, C.E.; Giardini, A.A. The composition and significance of gas released from natural diamonds from Africa and Brazil. Amer. Miner. 1974, 59, 775–782. [Google Scholar]
- Agte, C.; Moers, K. Über innerkomplexe Brenzcatechinate vierwertiger Elemente. Z. Für Anorg. Und Allg. Chemie. 1931, B198, 233. (In German) [Google Scholar] [CrossRef]
- Refractory Carbides; Samsonov, G.V. (Ed.) Springer: New York, NY, USA, 1970; p. 461. [Google Scholar]
- Campbell, I.E.; Powell, C.F.; Nowicki, D.H.; Gonser, B.W. The vapor-phase deposition of refractory materials: I. General conditions and apparatus. Electrochem. Soc. 1949, 96, 318–333. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry; Springer: Berlin/Heidelberg, Germany, 2009; p. 286. [Google Scholar]
- Swart, P.K.; Pillinger, C.T.; Milledge, H.J.; Seal, M. Carbon isotopic variation within individual diamonds. Nature 1983, 303, 793–795. [Google Scholar] [CrossRef]
- Galimov, E.M. Isotope fractionation related to kimberlite magmatism and diamond formation. Geochim. Cosmochim. Acta 1991, 55, 1697–1708. [Google Scholar] [CrossRef]
- Galimov, E.M. Origin and evolution of oceans: Evidence from 18O/16O changes in sediments through geological time. Dokl. AN SSSR 1988, 299, 977–981. (In Russian) [Google Scholar]
- Exley, R.A.; Mattey, D.P.; Clague, D.A.; Pillinger, C.T. Carbon isotope systematic of a mantle “hotspot”: A comparison of Loihi Seamount and MORB glasses. Earth Planet. Sci. Lett. 1986, 78, 189–199. [Google Scholar] [CrossRef]
- Watanabe, S.; Mishima, K.; Matsuo, S. Isotopic ratios of carbonaceous materials incorporated in olivine crystals from the Hualalai volcano Hawaii. An approach to mantle carbon. Geochim. J. 1983, 17, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Ronov, A.B.; Yaroshevskiy, A.A.; Migdisov, A.A. Chemical constitution of the Earth’s crust and geochemical balance of the major elements. Int. Geol. Rev. 1991, 33, 941–1048. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Gustafsson, Ö.; Sergienko, V.; Lobkovsky, L.; Dudarev, O.; Tumskoy, T.; Grigoriev, M.; Mazurov, A.; Salyuk, A.; et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat. Commun. 2017, 8, 15872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorokhtin, N.; Lobkovsky, L.; Semiletov, I.; Shipilov, E.; Nikiforov, S.; Kozlov, N.; Shakhova, N.; Ananiev, R.; Alekseev, D. Late Mesozoic and Cenozoic Geodynamics of the Arctic Region: Implications for Abiogenic Generation of Hydrocarbons. Geosciences 2023, 13, 68. https://doi.org/10.3390/geosciences13030068
Sorokhtin N, Lobkovsky L, Semiletov I, Shipilov E, Nikiforov S, Kozlov N, Shakhova N, Ananiev R, Alekseev D. Late Mesozoic and Cenozoic Geodynamics of the Arctic Region: Implications for Abiogenic Generation of Hydrocarbons. Geosciences. 2023; 13(3):68. https://doi.org/10.3390/geosciences13030068
Chicago/Turabian StyleSorokhtin, Nickolay, Leopold Lobkovsky, Igor Semiletov, Eduard Shipilov, Sergey Nikiforov, Nikolay Kozlov, Natalia Shakhova, Roman Ananiev, and Dmitry Alekseev. 2023. "Late Mesozoic and Cenozoic Geodynamics of the Arctic Region: Implications for Abiogenic Generation of Hydrocarbons" Geosciences 13, no. 3: 68. https://doi.org/10.3390/geosciences13030068
APA StyleSorokhtin, N., Lobkovsky, L., Semiletov, I., Shipilov, E., Nikiforov, S., Kozlov, N., Shakhova, N., Ananiev, R., & Alekseev, D. (2023). Late Mesozoic and Cenozoic Geodynamics of the Arctic Region: Implications for Abiogenic Generation of Hydrocarbons. Geosciences, 13(3), 68. https://doi.org/10.3390/geosciences13030068