A Lacustrine Record for the Cretaceous–Paleogene Boundary—Yacoraite Fm., (Northwest Argentina)
Abstract
:1. Introduction
2. Geological Context
3. Materials and Methods
3.1. Field Survey and Sampling Different
3.2. Petrography
3.3. Micro-Raman Spectroscopy
3.4. C-O Stable Isotope Analysis
4. Results
4.1. Field Acquisitions
4.2. Carbonate Petrography
4.3. Petrography and Raman Spectroscopy of Spherulites
4.4. C-O Stable Isotope Data
5. Discussion
5.1. K–Pg Transition in the Yacoraite Fm.
5.2. Spherulites from the Yacoraite Fm.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V. Extraterrestrial cause for the cretaceous-tertiary extinction. Science 1980, 208, 1095–1108. [Google Scholar] [CrossRef] [Green Version]
- Swisher, C.C.; Grajales-Nishimura, J.M.; Montanari, A.; Margolis, S.V.; Claeys, P.; Alvarez, W.; Renne, P.; Cedillo-Pardoa, E.; Maurrasse, F.J.-M.R.; Curtis, G.H.; et al. Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science 1992, 257, 954–958. [Google Scholar] [CrossRef]
- Renne, P.R.; Deino, A.L.; Hilgen, F.J.; Kuiper, K.F.; Mark, D.F.; Mitchell, W.S.; Morgan, L.E.; Mundil, R.; Smit, J. Time scales of critical events around the Cretaceous–Paleogene boundary. Science 2013, 339, 684–687. [Google Scholar] [CrossRef] [Green Version]
- Clyde, W.C.; Ramezani JJohnson, K.R.; Bowring, S.A.; Jones, M.M. Direct high-precision U–Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth Planet. Sci. Lett. 2016, 452, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Sprain, C.J.; Renne, P.R.; Vanderkluysen, L.; Pande, K.; Self, S.; Mittal, T. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 2019, 363, 866–870. [Google Scholar] [CrossRef]
- Sprain, C.J.; Renne, P.R.; Clemens, W.A.; Wilson, G.P. Calibration of chron C29r: New high-precision geochronologic and paleomagnetic constraints from the Hell Creek region, Montana. GSA Bull. 2018, 130, 1615–1644. [Google Scholar] [CrossRef]
- Hull, P.M.; Bornemann, A.; Penman, D.E.; Henehan, M.J.; Norris, R.D.; Wilson, P.A.; Blum, P.; Alegret, L.; Batenburg, S.J.; Bown, P.R.; et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 2020, 367, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Schoene, B.; Samperton, K.M.; Eddy, M.P.; Keller, G.; Adatte, T.; Bowring, S.A.; Khadri, S.F.R.; Gertsch, B. U-Pb geochronology of the Deccan Traps and relation to the end Cretaceous mass extinction. Science 2015, 347, 182–184. [Google Scholar] [CrossRef]
- Schoene, B.; Eddy, M.P.; Samperton, K.M.; Keller, C.B.; Keller, G.; Adatte, T.; Khadri, S.F.R. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 2019, 363, 862–866. [Google Scholar] [CrossRef]
- Schoene, B.; Eddy, M.P.; Keller, C.B.; Samperton, K.M. An evaluation of Deccan Traps eruption rates using geochronologic data. Geochronology 2021, 3, 181–198. [Google Scholar] [CrossRef]
- Gilabert, V.; Batenburg, S.J.; Arenillas, I.; Arz, J.A. Contribution of orbital forcing and Deccan volcanism to global climatic and biotic changes across the Cretaceous-Paleogene boundary at Zumaia, Spain. Geology 2022, 50, 21–25. [Google Scholar] [CrossRef]
- Bohor, B.F.; Triplehorn, D.M.; Nichols, D.J.; Millard, H.T., Jr. Dinosaurs, spherules, and the “magic” layer: A new K-T boundary clay site in Wyoming. Geology 1987, 15, 896–899. [Google Scholar] [CrossRef]
- Bohor, B.F.; Betterton, W.J. K-T spherules—Clarifying the concept. Lunar Planet. Sci. 1990, XXI, 107–108. [Google Scholar]
- King, D., Jr.; Petruny, L. Impact spherule-bearing, Cretaceous-Tertiary boundary sand body, Shell Creek stratigraphic section, Alabama, USA. Spec. Pap. Geol. Soc. Am. 2007, 437, 179–187. [Google Scholar] [CrossRef]
- Belza, J.; Goderis, S.; Montanari, F.; Vanhaecke, F.; Claeys, P. Petrography and geochemistry of distal spherules from the K–Pg boundary in the Umbria–Marche region (Italy) and their origin as fractional condensates and melts in the Chicxulub impact plume. Geochim. Cosmochim. Acta 2017, 202, 231–263. [Google Scholar] [CrossRef]
- Goderis, S.; Sato, H.; Ferrière, L.; Schmitz, B.; Burney, D.; Kaskes, P.; Vellekoop, J.; Wittmann, A.; Schulz, T.; Chernonozhkin, S.M.; et al. Globally distributed iridium layer preserved within the Chicxulub impact structure. Sci. Adv. 2021, 7, eabe3647. [Google Scholar] [CrossRef] [PubMed]
- Therrien, F.; Eberth, D.A.; Braman, D.R.; Zelenitsky, D.K. High-resolution organic carbon isotope record across the Cretaceous-Tertiary boundary in south-central Alberta: Implications for the post-impact recovery rate of terrestrial ecosystems and use of d13C as a boundary marker. Can. J. Earth Sci. 2007, 44, 529–542. [Google Scholar] [CrossRef]
- Grandpre, R.; Schauer, A.; Samek, K.; Veeger, A.; Ward, P.; Fastovsky, D. Testing the terrestrial δ13C Cretaceous–Paleogene (K–Pg) chemostratigraphic marker. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 381–382, 67–75. [Google Scholar] [CrossRef]
- Witts, J.D.; Newton, R.J.; Mills, B.J.W.; Wignall, P.B.; Bottrell, S.H.; Hall, J.L.O.; Francis, J.E.; Crame, J.A. The impact of the Cretaceous–Paleogene (K–Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica. Geochim. Cosmochim. Acta 2018, 230, 17–45. [Google Scholar] [CrossRef]
- Claeys, P.; Kiessling, W.; Alvarez, W. Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. Geol. Soc. Am. 2002, 356, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Nichols, D.J.; Johnson, K.R. Plants and the K–T Boundary; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Schulte, P.; Alegret, L.; Arenillas, I.; Arz, J.A.; Barton, P.J.; Bown, P.R.; Bralower, T.J.; Christeson, G.L.; Claeys, P.; Cockell, C.S.; et al. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science 2010, 327, 1214–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punekar, J.; Keller, G.; Khozyem, H.; Hamming, C.; Adatte, T.; Tantawy, A.A.; Spangenberg, J.E. Late Maastrichtian–early Danian high-stress environments and delayed recovery linked to Deccan volcanism. Cretac. Res. 2014, 49, 63–82. [Google Scholar] [CrossRef]
- Vajda, V.; Bercovici, A. The Global Vegetation Pattern across the Cretaceous-Paleogene Mass Extinction Interval: A Template for Other Extinction Events. Glob. Planet. Chang. 2014, 122, 29–49. [Google Scholar] [CrossRef]
- Sial, A.N.; Chen, J.; Lacerda, L.D.; Frei, R.; Higgins, J.A.; Tewari, V.C.; Gaucher, C.; Ferreira, V.P.; Cirilli, S.; Korte, C.; et al. Chemostratigraphy Across the Cretaceous-Paleogene (K-Pg) Boundary. In Chemostratigraphy across Major Chronological Boundaries: Testing the Impact and Volcanism Hypotheses; American Geophysical Union: Washington, DC, USA, 2019; Volume 240, pp. 223–257. [Google Scholar] [CrossRef]
- Albertão, G.A.; Grassi, A.D.A.; Marini, F.; Martins, P.P.M., Jr.; De Ros, L.F. The K-T boundary in Brazilian marginal sedimentary basins and related spherules. Geochem. J. 2004, 38, 121–128. [Google Scholar] [CrossRef]
- Rodrigues, G.B.; Fauth, G.; Santos, R.V.; Koutsoukos, E.A.M.; Colin, J.P. Tracking paleoecological and isotopic changes through the K-Pg boundary from marine ostracodes: The Poty quarry section, northeastern Brazil. Cretac. Res. 2014, 47, 105–116. [Google Scholar] [CrossRef]
- Bermúdez, H.D.; Arenillas, I.; Arz, J.A.; Vajda, V.; Renne, P.R.; Gilabert, V.; Rodríguez, J.V. The Cretaceous/Paleogene boundary deposits on Gorgonilla Island. In The Geology of Colombia, Volume 3 Paleogene—Neogene. Servicio Geológico Colombiano; Gómez, J., Mateus–Zabala, D., Eds.; Publicaciones Geológicas Especiales: Bogotá, Colombia, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Marquillas, R.A.; Salfity, J.A. Distribución Regional de los Miembros de la Formación Yacoraite (Cretácico Superior) en el Noroeste Argentino; Contribuciones de los Simposios sobre Cretácico de América Latina, Parte A, Eventos y Registro Sedimentario: Buenos Aires, Argentina, 1989; pp. 253–272. [Google Scholar]
- Deschamps, R.; Rohais, S.; Hamon, Y.; Gasparrini, M. Dynamic of a lacustrine sedimentary system during late rifting at the Cretaceous-Palaeocene transition: Example of the Yacoraite Formation, Salta Basin, Argentina. Depos. Rec. 2020, 6, 490–523. [Google Scholar] [CrossRef]
- Cónsole-Gonella, C.; De Valais, S.; Marquillas, R.A.; Sánchez, M.C. The Maastrichtian–Danian Maimará tracksite (Yacoraite Formation, Salta Group), Quebrada de Humahuaca, Argentina: Environments and ichnofacies implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 468, 327–350. [Google Scholar] [CrossRef]
- Llorens, M.; Pérez Loinaze, V.S.; Narváez, P.L.; Zelaya, A.M.; Pincheira, E.P.; Gorustovich, S. A mid-latitude Maastrichtian palynological record from the Yacoraite Formation (Salta Group), northwestern Argentina. Cretac. Res. 2022, 140, 105332. [Google Scholar] [CrossRef]
- Kring, D.A. The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 255, 4–21. [Google Scholar] [CrossRef]
- Sial, A.; Ferreira, V.; Toselli, A.; Parada, M.; Aceñolaza, F.; Pimentel MAlonso, R. Carbon and Oxygen Isotope Compositions of Some Upper Cretaceous–Paleocene Sequences in Argentina and Chile. Int. Geol. Rev. 2001, 43, 892–909. [Google Scholar] [CrossRef]
- Marquillas, R.A.; del Papa, C.; Sabino, I.; Heredia, J. Prospección del límite K/T en la cuenca del Noroeste, Argentina. Rev. Asoc. Geol. Argent. 2003, 58, 271–274. [Google Scholar]
- Marquillas, R.A.; Sabino, I.; Sial, N.A.; Del Papa, C.; Ferreira, V.; Matthews, S. Carbon and oxygen isotopes of Maastrichtian-Danian shallow marine carbonates: Yacoraite Formation, northwestern Argentina. J. S. Am. Earth Sci. 2007, 23, 304–320. [Google Scholar] [CrossRef] [Green Version]
- Sial, A.; Lacerda, L.; Ferreira, V.; Frei, R.; Marquillas, R.; Barbosa, J.; Gaucher, C.; Windmöller, C.; Pereira, N. Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous-Paleogene transition. Palaeogeogr. Palaeoclim. Palaeoecol. 2013, 387, 153–164. [Google Scholar] [CrossRef]
- Rohais, S.; Hamon, Y.; Deschamps, R.; Beaumont, V.; Gasparrini, M.; Pillot, D.; Romero-Sarmiento, M.-F. Patterns of organic carbon enrichment in a lacustrine system across the K-T boundary: Insight from a multi-proxy analysis of the Yacoraite Formation, Salta rift basin, Argentina. Int. J. Coal Geol. 2019, 210, 103208. [Google Scholar] [CrossRef]
- Montano, D. Carbonate U-Pb Dating via LA-ICPMS: Insights into Chronostratigraphy in Lacustrine Settings. Ph.D. Thesis, Earth Sciences, Sorbonne Université, Paris, France, 2021. [Google Scholar]
- Montano, D.; Gasparrini, M.; Rohais, S.; Albert, R.; Gerdes, A. Depositional age models in lacustrine systems from zircon and carbonate U-Pb geochronology. Sedimentology 2022, 69, 2507–2534. [Google Scholar] [CrossRef]
- De la Parra, F.; Jaramillo, C.; Kaskes, P.; Goderis, S.; Claeys, P.; Villasante-Marcos, V.; Bayona, G.; Hatsukawa, Y.; Caballero, D. Unraveling the record of a tropical continental Cretaceous-Paleogene boundary in northern Colombia, South America. J. S. Am. Earth Sci. 2022, 114, 103717. [Google Scholar] [CrossRef]
- Schulte, P.; Deutsch, A.; Salge, T.; Berndt, J.; Kontny, A.; MacLeod, K.G.; Neuser, R.D.; Krumm, S. A dual-layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous–Paleogene (K–Pg) boundary, Demerara Rise, western Atlantic. Geochim. Cosmochim. Acta 2009, 73, 1180–1204. [Google Scholar] [CrossRef]
- Scasso, R.A.; Concheyro, A.; Kiessling, W.; Aberhan, M.; Hecht, L.; Medina, F.A.; Tagle, R. A tsunami deposit at the Cretaceous/Paleogene boundary in the Neuquén Basin of Argentina. Cretac. Res. 2005, 26, 283–297. [Google Scholar] [CrossRef]
- Sial, A.; Chen, J.; Lacerda, L.; Frei, R.; Tewari, V.; Pandit, M.; Gaucher, C.; Ferreira, V.; Cirilli, S.; Peralta, S.; et al. Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts. Cretac. Res. 2016, 66, 60–81. [Google Scholar] [CrossRef]
- Clyde, W.C.; Krause, J.M.; De Benedetti, F.; Ramezani, J.; Cúneo, N.R.; Gandolfo, M.A.; Haber, P.; Whelan, C.; Smith, T. New South American record of the Cretaceous–Paleogene boundary interval (La Colonia Formation, Patagonia, Argentina). Cretac. Res. 2021, 126, 104889. [Google Scholar] [CrossRef]
- Scasso, R.; Aberhan, M.; Ruiz, L.; Weidemeyer, S.; Medina, F.; Kiessling, W. Integrated bio- and lithofacies analysis of coarse-grained, tide-dominated deltaic marginal marine environments across the Cretaceous/Paleogene boundary in Patagonia, Argentina. Cretac. Res. 2012, 36, 37–57. [Google Scholar] [CrossRef]
- Stiles, E.; Wilf, P.; Iglesias, A.; Gandolfo, M.A.; Cúneo, N.R. Cretaceous–Paleogene plant extinction and recovery in Patagonia. Paleobiology 2020, 46, 445–469. [Google Scholar] [CrossRef]
- Elliot, D.H.; Askin, R.A.; Kyte, F.T.; Zinsmeister, W.J. Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: Implications for the K-T event. Geology 1994, 22, 675–678. [Google Scholar] [CrossRef]
- Williams, D.F.; Thunell, R.C.; Hodel, D.A.; Vergnaud-Grazzini, C. Synthesis of late Cretaceous, Tertiary and Quaternary stable isotope records of the South Atlantic based on Leg 72 DSDP core material. In South Atlantic Paleoceanography; Hsfi, K.J., Weissert, H.J., Eds.; Cambridge University Press: Cambridge, UK, 1985; pp. 205–242. [Google Scholar]
- Uliana, M.A.; Biddle, K.T.; Cerdan, T. Mesozoic extension and the formation of Argentine sedimentary basins. In Extensional Tectonics and Stratigraphy of the North Atlantic Margins; Tankard, A.J., Balkwill, H.R., Eds.; GeoScienceWorld: McLean, VA, USA, 1989; AAPG Memoir; Volume 46, pp. 599–614. [Google Scholar] [CrossRef]
- Viramonte, J.G.; Kay, S.M.; Becchio, R.; Escayola, M.; Novitski, I. Cretaceous rift related magmatism in central-western South America. J. South Am. Earth Sci. 1999, 12, 109–121. [Google Scholar] [CrossRef]
- Marquillas, R.A.; Del Papa, C.E.; Sabino, I.F. Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous-Paleogene), northwestern Argentina. Int. J. Earth Sci. 2005, 54, 94–113. [Google Scholar] [CrossRef]
- Mon, R.; Salfity, J.A. Tectonic Evolution of the Andes of Northern Argentina. In Petroleum Basins of South America; Tankard, A.J., Suárez, W.R., Eds.; AAPG: Tulsa, OK, USA, 1995; Volume 62, pp. 269–283. [Google Scholar]
- Gomez Omil, R.J.; Boll, A.; Hernandez, R.M. Cuenca cretacicoterciaria del Noroeste argentino (Grupo Salta). In Cuencas Sedimentarias Argentinas; Chebli, G.A., Spalletti, L.A., Eds.; Serie de Correlacion Geologica; Universidad Nacional de Tucuman: Tucumán, Argentina, 1989; Volume 6, pp. 43–64. [Google Scholar]
- Turner, J.C.M. Estratigrafia del cordon de Escaya y de la sierra Rinconada (Jujuy). Rev. Asoc. Geológica Argent. 1959, 13, 15–39. [Google Scholar]
- Salfity, J.A. Paleogeologıa de la cuenca del Grupo Salta (Cretacico-Eogenico) del norte de Argentina. Actas VII Congreso Geológico Argentino, Neuquén, Asociación Geológica Argentina. Volume 1, pp. 505–515. Available online: https://www.academia.edu/96370100/La_cuenca_c%C3%A1mbrica_del_Grupo_Mes%C3%B3n_en_el_Noroeste_Argentino_desarrollo_estratigr%C3%A1fico_y_paleogeogr%C3%A1fico (accessed on 19 July 2023).
- Marquillas, R.A. Estratigrafıa, Sedimentologıa y Paleoambientes de la Formacion Yacoraite (Cretacico Superior) en el Tramo Austral de la Cuenca, Norte Argentino. Ph.D. Thesis, Universidad Nacional de Salta, Salta, Argentina, 1985; pp. 1–139. [Google Scholar]
- Salfity, J.A.; Marquillas, R.A. Tectonic and sedimentary evolution of the Cretaceous-Eocene Salta Group Basin, Argentina. In Cretaceous Tectonics of the Andes; Earth Evolution Sciences; Salfity, J.A., Ed.; Friedrich Vieweg & Sohn: Hamburg, Germany, 1994; pp. 266–315. [Google Scholar] [CrossRef]
- Hernandez, R.; Disalvo, A.; Boll, A.; Gomez Omil, R. Sequence Stratigraphy of Salta Group, focusing at sub-basins Metan-Alemania, Northwest Argentine. In Congreso Geologico Argentino; National University of Salta: Salta, Argentina, 1999; pp. 264–284. [Google Scholar]
- Romero-Sarmiento, M.-F.; Rohais, S.; Littke, R. Lacustrine type I kerogen characterization at different thermal maturity levels: Application to the late cretaceous Yacoraite Formation in the Salta Basin—Argentina. Int. J. Coal Geol. 2019, 203, 15–27. [Google Scholar] [CrossRef]
- Granier, B.; Lapointe, P. The Kalkowsky Project—Chapter II. Wobbly ooids in a stromatolite from the Yacoraite Formation (Argentina). Carnets Géologie Noteb. Geol. 2022, 22, 149–160. [Google Scholar] [CrossRef]
- Granier, B.; Lapointe, P. The Kalkowsky Project—Chapter III. Significance of primary radial fabrics associated with ancient partly leached or recrystallized calcareous ooids. Carnets Géologie Noteb. Geol. 2022, 22, 149–160. [Google Scholar] [CrossRef]
- Mutti, M.; Vallati, M.; Tomás, S.; Galli, C.; Bahniuk Rumbelsperger, A.M.; Maerz, A.; Coira, B. Constraining depositional evolution and reservoir compartmentalization in a mixed carbonate-siliciclastic lacustrine system: The Yacoraite formation, Salta Group, NW Argentina. Mar. Pet. Geol. 2023, 149, 106049. [Google Scholar] [CrossRef]
- Raskovsky, M.A. Relevamiento Geológico del Sector sur Delyacimiento Los Berthos [Seminario II]; Universidad Nacional de Tucumán, Facultad de Ciencias Naturales: Salta, Argentina, 1968; Volume 41. [Google Scholar]
- Reyes, F.C. Correlaciones en el Cretácico de la cuenca andinade Bolivia, Perú y Chile: La Paz. Rev. Técnica De Yaci-Mientos Pet. Fisc. Boliv. 1972, 1, 101–144. [Google Scholar]
- Moroni, A.M. Correlación palinológica en la Formaciones Olmedo y Yacoraite. Cuenca del Noroeste Argentino. 3th Congreso Geológico Chileno (Concepción). Actas 1982, 340–349. [Google Scholar]
- Alonso, R.N.; Marquillas, R.A. Nueva localidad con huellas de dinosaurios y primer hallazgo de huellas de aves en la Formacion Yacoraite (Maastrichtiano) del Norte Argentino. Actas 1986, 2, 33–41. [Google Scholar]
- Quattrocchio, M.; Volkheimer, W.; Marquillas, R.; Salfity, J. Palynostratigraphy, palaeobiogeography and evolutionary significance of the Late Senonian and Early Palaeogene palynofloras of the Salta Group, northern Argentina. Rev. Española Micropaleontol. 2005, 37, 259–272. [Google Scholar]
- Quattrocchio, M. Palynology and palaeocommunities of the Paleogene of Argentina. Rev. Bras. De Paleontol. 2006, 9, 101–108. [Google Scholar] [CrossRef]
- Cónsole-Gonella, C.; De Valais, S.; Sánchez, M.C.; Marquillas, R. Nuevo registro de huellas de vertebrados en la Formación Yacoraite (Mastrichtiano-Daniano), Maimará, Cordillera Oriental argentina. Ameghiana 2012, 49, R141. [Google Scholar]
- Cónsole-Gonella, C.; De Valais, S.; Zelayac, A.; Gorustovichc, S. Vertebrate trace fossils and environments of the Yacoraite Formation (Maastrichtian-Danian). New records from the Valle del Tonco tracksite, northwestern Argentina. Terc. Simp. Lationoamericano Icnología 2015. [Google Scholar]
- Díaz-Martínez, I.; De Valais, S.; Cónsole-Gonella, C. First evidence of Hadrosauropodus in Gondwana (Yacoraite Formation, Maastrichtian–Danian), northewestern Argentina. J. Afr. Earth Sci. 2016, 122, 79–87. [Google Scholar] [CrossRef]
- Díaz-Martínez, I.; De Valais, S.; Cónsole-Gonella, C. New sauropod tracks from the Yacoraite Formation (Maastrichtian–Danian), Valle del Tonco tracksite, Salta, northwestern Argentina. J. Iber. Geol. 2018, 44, 113–127. [Google Scholar] [CrossRef]
- De Valais, S.; Cónsole Gonella, C.A. An Updated Review of the Avian Footprint Record from the Yacoraite Formation (Maastrichtian-Danian), Northwestern Argentina. Ichnos 2019, 26, 224–241. [Google Scholar] [CrossRef]
- Ceolin, D.; Dos Santos Filho, M.A.B.; Salamoni Terra, G.J.; Carnier Fragoso, D.G.; Bunevich, R.B.; Fauth, G.; Hernández, J.I.; Hernández, R.M. Ostracods from upper Yacoraite Formation (Danian), Salta Basin, Western Argentina: Taxonomy and paleoenvironmental indicators of climatic signals in lacustrine deposits. J. S. Am. Earth Sci. 2022, 116, 103836. [Google Scholar] [CrossRef]
- Gomes JP, B.; Bunevich, R.B.; Tonietto, S.N.; Alves, D.B.; Santos, J.F.; Whitaker, F.F. Climatic signals in lacustrine deposits of the Upper Yacoraite Formation, Western Argentina: Evidence from clay minerals, analcime, dolomite and fibrous calcite. Sedimentology 2020, 67, 2282–2309. [Google Scholar] [CrossRef]
- Magalhães, A.; Gabaglia, G.R.; Fragoso, D.; Freire, E.B.; Lykawka, R.; Arregui, C.; Silveira, M.; Carpio, K.; De Gasperi, A.; Pedrinha, S.; et al. High-resolution sequence stratigraphy applied to reservoir zonation and characterisation, and its impact on production performance—Shallow marine, fluvial downstream, and lacustrine carbonate settings. Earth Sci. Rev. 2020, 210, 26. [Google Scholar] [CrossRef]
- Vallati, M.; Tomás, S.; Winterleitner, G.; Galli, C.; Mutti, M. Exploring Hypotheses about Mixed Carbonate-Siliciclastic Successions in Lacustrine Settings: A Case Study from the Yacoraite Formation, Tres Cruces Sub-Basin, Argentina; SEG/AAPG International Meeting for Applied Geoscience & Energy: Houston, TX, USA, 2022. [Google Scholar] [CrossRef]
- Teles, V.; Hamon, Y.; Deschamps, R.; Rohais, S.; Nader, F.H.; Heckenmeyer, E.; Gasparrini, M.; Barbier, M.; Lerat, O.; Joseph, P.; et al. Modelling the coupled heterogeneities of the lacustrine microbialite-bearing carbonate reservoir of the Yacoraite Formation (Salta, Argentina). Comptes Rendus. Géosci. 2023, 355 (Suppl. S1), 1–20. [Google Scholar] [CrossRef]
- Ellis, D.V.; Singer, J.M. Well Logging for Earth Scientists; Springer: New York, NY, USA, 2008. [Google Scholar]
- Dickson, J.A.D. Carbonate identification and genesis as revealed by staining. J. Sediment. Res. 1966, 36, 491–505. [Google Scholar] [CrossRef]
- Dunham, R.J. Classification of Carbonate Rocks according to depositional texture. In Classification of Carbonate Rocks; Ham, W.E., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1962; Volume 1, pp. 108–121. [Google Scholar]
- Riding, R. Microbial carbonates: The geological record of calcified bacterial–algal mats and biofilms. Sedimentology 2000, 47, 179–214. [Google Scholar] [CrossRef]
- Riding, R.E. Abiogenic, microbial and hybrid authigenic carbonate crusts: Components of Precambrian stromatolites. Geol. Croat. 2008, 6, 73–103. [Google Scholar] [CrossRef]
- Flügel, E. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application; Springer: Berlin/Heidelberg, Germany, 2004; Volume 976. [Google Scholar]
- Laetsch, T.; Downs, R. Software For Identification and Refinement of Cell Parameters From Powder Diffraction Data of Minerals Using the RRUFF Project and American Mineralogist Crystal Structure Databases. In Proceedings of the 19th General Meeting of the International Mineralogical Association, Kobe, Japan, 23–28 July 2006. [Google Scholar]
- Rosenbaum, J.; Sheppard, S.M.F. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim. Cosmochim. Acta 1986, 50, 1147–1150. [Google Scholar] [CrossRef]
- DeFaria, D.L.A.; Lopez, F.N. Heated Goethite and Natural Hematite: Can Raman Spectroscopy be Used to Differentiate Them? Vib. Spectrosc. 2007, 45, 117–121. [Google Scholar] [CrossRef]
- Presser, V.; Kloužková, A.; Mrázová, M.; Kohoutková, M.; Berthold, C. Micro-raman spectroscopy on analcime and pollucite in comparison to X-ray diffraction. J. Raman Spectrosc. 2008, 39, 587–592. [Google Scholar] [CrossRef]
- Buzgar, N.; Buzatu, A.; Sanislav, I.V. The Raman study on certain sulfates. Ann. Stiintifice Ale Univ. 2009, 55, 5–23. [Google Scholar]
- Palma, R.M. Característica Sedimentológicas y Estratigraficas de las Formaciones en el Limite CRETÁCICO Superior-Terciario Inferior, en la Cuenca Salteña; Universidad Nacional de Tucuman, Facultad de Ciencias Naturales: Tucumán, Argentina, 1984; Volume 239. [Google Scholar]
- Moroni, A.M. Mtchedlishvilia saltenia n. sp. en sedimentitasdel Grupo Salta, provincia de Salta. In Actas, Congreso Argentino de Paleontología y Bioestratigrafía, 3rd ed.; Buenos Aires, Asociación Paleontológica Argentina: Corrientes, Argentina, 1984; pp. 129–139. [Google Scholar]
- Marquillas, R.A.; Salfity, J.A.; Matthews, S.J.; Matteini, M.; Dantas, E. U-Pb zircon age of the Yacoraite Formation and its significance to the Cretaceous-Tertiary boundary in the Salta Basin, Argentina. In Cenezoic Geology of the Central Andes of Argentina; Salfity, J.A., Marquillas, R.A., Eds.; SCS Publisher: Prague, Czech Republic, 2011; pp. 227–246. [Google Scholar]
- Rossignol, C.; Hallot, E.; Bourquin, S.; Poujol, M.; Jolivet, M.; Pellenard, P.; Ducassou, C.; Nalpas, T.; Heilbronn, G.; Yu, J.; et al. Using volcaniclastic rocks to constrain sedimentation ages: To what extent are volcanism and sedimentation synchronous? Sed. Geo. 2019, 381, 46–64. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, M.; Carmo, I.O.; Terra, G.J.S. U-Pb Age of Tuffs from the Balbuena Group, Salta Basin, NW Argentina. In VIII Simposio Sudamericano de Geologia Isotopica, Medellın. Resumos; Universidad Nacional de Colombia: Medellın, Colombia, 2012. [Google Scholar]
- Montano, D.; Gasparrini, M.; Gerdes, A.; Albert, R.; Della Porta, G. In-situ U-Pb dating of Ries Crater lacustrine carbonates (Miocene, South-West Germany): Implications for continental carbonate chronostratigraphy. Earth Planet. Sci. Lett. 2021, 568, 117011. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Drost, K.; Horstwood, M.S.A.; Condon, D.J.; Chew, D.; Drake, H.; Milodowski, A.E.; McLean, N.M.; Smye, A.J.; Walker, R.J.; et al. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: Strategies, progress, and limitations. Geochronology 2020, 2, 33–61. [Google Scholar] [CrossRef] [Green Version]
- Volkheimer, W.; Novara, M.; Narváez, P.; Marquillas, R. Palynology and paleoenvironmental significance of the Tunal Formation (Danian) at its type locality, El Chorro creek (Salta, Argentina). Ameghiniana 2006, 43, 567–584. [Google Scholar]
- Montanari, A.; RLHay Alvarez, W.; Asaro, F.; Michel, H.V.; Alvarez LWSmit, J. Spheroids at the Cretaceous-Tertiary boundary are altered impact droplets of basaltic composition. Geology 1983, 11, 668–671. [Google Scholar] [CrossRef]
- Smit, J.; Alvarez, W.; Montanari, A.; Swinburne, N.; Kempen Van, T.M.; Klaver, G.T.; Lustenhouwer, W.J. “Tektites” and microtektites at the Cretaceous Tertiary boundary: Two strewn fields, one crater? Proc. Lunar Planet. Sci. 1992, 22, 87–100. [Google Scholar]
- Robin, E.; Froget, L.; Jehanno, C.; Rocchia, R. Geochemistry of DSDP Hole 86-577B samples. Pangea 1993, 83, 137–158. [Google Scholar] [CrossRef]
- Glass, B.P.; Simonson, B.M. Distal Impact Ejecta Layers: Spherules and more. Elements 2012, 8, 43–48. [Google Scholar] [CrossRef]
- Chafetz, H.; Barth, J.; Cook, M.; Guo, X.; Zhou, J. Origins of carbonate spherulites: Implications for Brazilian Aptian pre-salt reservoir. Sediment. Geol. 2018, 365, 21–33. [Google Scholar] [CrossRef]
- Bunevich, R.B.; Borghi, L.; Gabaglia, G.P.R.; Terra, G.J.S.; Bento Freire, E.; Lykawka, R.; Fragoso, D.G.C. Microbialitos de Sequência Balbuena IV (Daniano), Bacia de Salta, Argentina: Caracterização de intrabioarquiteturas e de microciclos. Pesqui. Em Geociências 2017, 44, 177–202. [Google Scholar] [CrossRef] [Green Version]
- Wallace, M.W.; Gostin, V.A.; Keays, R.R. Spherules and shard-like clasts from the late Proterozoic Acraman impact ejecta horizon, South Australia. Meteoritics 1990, 25, 161–165. [Google Scholar] [CrossRef]
- Bohor, B.F.; Glass, B.P. Origin and diagenesis of K/T impact spherules—From Haiti to Wyoming and beyond. Meteoritics 1990, 30, 182–198. [Google Scholar] [CrossRef]
- Sweeney, D.; Simonson, B.M. Textural constraints on the formation of impact spherules: A case study from the Dales Gorge BIF, Paleoproterozoic Hamersley Group of Western Australia. Meteorit. Planet. Sci. 2008, 43, 2073–2087. [Google Scholar] [CrossRef]
- Huber, M.S.; Crne, A.E.; Lepland, A.; Melezhik, V.A.; Koeberl, C. Far Deep Science Team. Possible occurrence of distal impact ejecta from the Vredefort impact event in drill cores from the Onega Basin, Russia. In Proceedings of the 42nd Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 7–11 March 2011; pp. 1487–1488. [Google Scholar]
- Schulte, P.; Stinnesbeck, W.; Stüben, D.; Kramar, U.; Berner, Z.A.; Keller, G.; Adatte, T. Fe-rich and K-rich mafic spherules from slumped and channelized Chicxulub ejecta deposits in the northern La Sierrita area, NE Mexico. Int. J. Earth Sci. 2003, 92, 114–142. [Google Scholar] [CrossRef]
- Smit, J.; Kyte, F.T. Siderophile-rich magnetic spheroids from the Cretaceous-Tertiary boundary in Umbria, Italy. Nature 1984, 310, 403–405. [Google Scholar] [CrossRef]
- Hansen, H.J.; Gwozdz, R.; Bromley, R.G.; Rasmussen, K.L.; Vogensen, E.W.; Pedersen, K.R. Cretaceous-Tertiary boundary spherules from Denmark, New Zealand and Spain. Bull. Geol. Soc. 1986, 35, 75–82. [Google Scholar] [CrossRef]
- Kyte, F.T.; Smit, J. Regional variations in spinel compositions: An important key to the Cretaceous/Tertiary event. Geology 1986, 14, 485–487. [Google Scholar] [CrossRef]
- Martínez Ruiz, F.; Ortega Huertas, M.; Palomo, I.; Acquafredda, P. Quench textures in altered spherules from the Cretaceous-Tertiary boundary layer at Agost and Caravaca, SE Spain. Sediment. Geol. 1997, 113, 137–147. [Google Scholar] [CrossRef]
- Montanari, A. Authigenesis of impact spheroids in the K/T boundary clay from Italy: New constraints for high-resolution stratigraphy of terminal cretaceous events. J. Sediment. Petrol. 1991, 61, 315–339. [Google Scholar] [CrossRef]
- Smit, J. The Global Stratigraphy of the Cretaceous Tertiary boundary Impact Ejecta. Annu. Rev. Earth. Planet. Sci. 1999, 27, 75–113. [Google Scholar] [CrossRef]
- Rodriguez-Tovar, F.J. Fe-oxide spherules infilling Thalassinoides burrows at the Cretaceous-Paleogene (K-P) boundary: Evidence of a near-contemporaneous macrobenthic colonization during the K-P event. Geology 2005, 33, 585–588. [Google Scholar] [CrossRef]
- Kuebler, K.; Wang, A.; Haskin, L.; Jolliff, B. A Study of Olivine Alteration to Iddingsite Using Raman Spectroscopy. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 17–21 March 2003. [Google Scholar]
- Schmitz, B. Metal Precipitation in the Cretaceous–Tertiary Boundary Clay at Stevns Klint, Denmark. Geochim. Cosmochim. Acta 1985, 49, 2361–2370. [Google Scholar] [CrossRef]
- Hay, R.L.; Sheppard, R.A. Occurrence of zeolites in sedimentary rocks: An overview. Rev. Mineral. Geochem. 2011, 45, 217–234. [Google Scholar] [CrossRef]
- Pitakpaivan, K.; Byerly, G.R.; Hazel, J.E. Pseudomorphs of impact spherules from a Cretaceous-Tertiary boundary section at Shell Creek, Alabama. Earth Planet. Sci. Lett. 1994, 124, 49–56. [Google Scholar] [CrossRef]
- Stinnesbeck, W.; Keller, G.; Adatte, T.; Stuben, D.; Kramar, U.; Berner, Z.; Desremeaux, C.; Moliere, E. Beloc, Haiti, revisited: Multiple events across the KT boundary in the Caribbean. Terra Nova 2002, 11, 303–310. [Google Scholar] [CrossRef]
- Keller, G.; Stinnesbeck, W.; Adatte, T.; Holland, B.; StÜben, D.; Harting, M.; Leon, C.; Cruz, J. Spherule deposits in Cretaceous–Tertiary boundary sediments in Belize and Guatemala. J. Geol. Soc. 2003, 160, 783–795. [Google Scholar] [CrossRef] [Green Version]
- De Palma, R.A.; Smit, J.; Burnham, D.A.; Kuiper, K.; Manning, P.L.; Oleinik, A.; Larson, P.; Maurasse, F.J.; Vellekoop, J.; Richards, M.A.; et al. A seismically induced onshore deposit at the K-Pg boundary, North Dakota. Proc. Natl. Acad. Sci. USA 2019, 116, 8190–8199. [Google Scholar] [CrossRef] [Green Version]
Strat. Seq. | Strat. Height (m) | Sample Name | Facies | Carbonate Phase | δ13C (‰) | δ180 (‰) |
---|---|---|---|---|---|---|
Sequence 4 | 238.0 | UJ78 | Oolitic grainstone with carbonate mudclasts | OC | −1.8 | −6.2 |
237.0 | UJ77 | Thrombolite-to-microbialite boundstone | MIC-C | −1.4 | −5.9 | |
236.0 | UJ76 | Oolitic grapestone-to-packstone | OC | −0.7 | −5.7 | |
233.5 | UJ75b | Oolitic grapestone | MIC-C | 0.1 | −4.2 | |
OC | 0.0 | −6.9 | ||||
233.0 | UJ75a | Microbialite boundstone | MIC-D | 0.5 | −2.4 | |
MIC-C | 0.9 | −1.4 | ||||
230.0 | UJ74 | Oolitic sandstone with wave ripples | OC | 0.0 | −3.2 | |
227.0 | UJ73 | Microbialite boundstone | MIC-C | −0.2 | −4.8 | |
218.0 | UJ72 | Siltstone with microbial laminae | MIC-C | 0.5 | −1.0 | |
217.0 | JURD3 | Stromatolite boundstone | MIC-D | 1.1 | 1.4 | |
MIC-C | 1.4 | 0.6 | ||||
216.0 | UJ71 | Oolitic-grainstone-to-packstone with mudclasts | OC | 1.5 | 1.3 | |
MIC-C | 0.0 | −0.5 | ||||
211.0 | JURC10 | Microbialite boundstone | MIC-C | 0.5 | 1.1 | |
210.0 | UJ70 | Oolitic grainstone | OC | 1.1 | 0.0 | |
208.0 | UJ69 | Microbialite boundstone | MIC-D | 1.0 | 1.9 | |
MIC-C | 1.5 | 1.7 | ||||
206.0 | UJ68 | Oolitic grainstone with peloids | OM | 1.2 | 1.0 | |
203.0 | UJ67 | Oolitic grainstone with microbial intraclasts and silty mudstone | OM | 1.4 | 1.9 | |
200.0 | U22 | Microbialite boundstone | MIC-M | 1.1 | 0.2 | |
MIC-M | 1.4 | 1.0 | ||||
198.2 | U21 | Microbialite boundstone | MIC-C | 1.0 | 1.4 | |
198.0 | UJ66b | Oolitic grainstone and silty mudstone | OC | 0.7 | 1.1 | |
197.8 | U20 | Microbialite boundstone | MIC-M | 1.0 | 1.4 | |
197.0 | UJ66a | Microbialite breccia | MIC-D | 0.3 | 1.7 | |
MIC-C | 1.2 | 1.3 | ||||
Sequence 3 | 194.0 | UJ65 | Oolitic grainstone with gastropods and mudclasts | OC | 0.1 | 1.3 |
MIC-C | 0.4 | 1.7 | ||||
192.0 | UJ64 | Silty ooid wackestone-to-grainstone | OC | −0.9 | 0.8 | |
191.2 | U19 | Microbialite boundstone | MIC-M | 0.5 | 1.2 | |
191.0 | UJ63 | Microbialite boundstone and carbonate mudstone | MIC-C | 0.1 | 1.7 | |
186.8 | U18 | Microbialite boundstone and carbonate mudstone | MIC-M | 0.2 | 1.3 | |
185.2 | U17 | Oolitic grainstone | OD | 0.4 | 0.3 | |
MIC-D | 0.3 | 3.3 | ||||
185.0 | JURC6 | Oolitic grainstone | OC | 0.2 | 1.3 | |
185.0 | UJ62a | Grapestone-ooid grainstone-to-packstone | OM | −0.2 | −1.0 | |
184.0 | U16 | Oolitic grainstone | OC | 0.9 | 1.2 | |
181.0 | U15 | Microbialite boundstone | MIC-C | 1.0 | 1.4 | |
177.5 | U14 | Microbialite boundstone | MIC-C | −1.3 | 1.9 | |
176.8 | U13 | Microbialite boundstone | MIC-C | −1.1 | 2.9 | |
176.2 | U12 | Microbialite boundstone | MIC-D | −2.2 | 1.7 | |
OC | −2.4 | 1.9 | ||||
176.0 | U11 | Oolitic grainstone | OM | 0.2 | 1.3 | |
175.0 | UJ60 | Microbialite and thrombolite boundstone | MIC-C | −0.9 | 2.4 | |
173.2 | JURB2 | Microbialite and thrombolite boundstone | MIC-D | −2.2 | 1.7 | |
MIC-C | −2.4 | 1.9 | ||||
172.0 | U10 | Microbialite boundstone | MIC-M | −2.5 | 0.4 | |
171.5 | U9 | Microbialite boundstone | MIC-M | −1.9 | 0.8 | |
171.0 | UJ59 | Silty mudstone/wackestone with bivalve fragments | MIC-C | −2.3 | 2.9 | |
170.0 | UJ58 | Floatstone with quartz grains with spherulites | ||||
169.6 | JURB1 | Oolitic sandstone | OC | −1.3 | 0.4 | |
U8 | Microbialite boundstone | MIC-C | −1.3 | 1.9 | ||
167.2 | U7 | Microbialite boundstone | MIC-M | 0.2 | 1.3 | |
167.0 | U6 | Microbialite boundstone | MIC-C | −1.1 | 2.9 | |
166.0 | U5 | Microbialite boundstone | MIC-C | −2.4 | 1.9 | |
MIC-D | −2.2 | 0.4 | ||||
163.3 | U4 | Microbialite boundstone | MIC-M | −2.5 | 0.4 | |
163.0 | U3 | Microbialite boundstone | MID-M | −1.9 | 0.8 | |
MIC-C | −1.9 | 0.8 | ||||
161.5 | U2 | Oolitic grainstone | OM | −1.3 | 0.4 | |
161.0 | UJ56 | Laminate stromatolite boundstone and silty ostracods wackestone with carbonate mudclasts | MIC-D | 1.9 | 1.6 | |
MIC-C | 1.5 | 1.8 | ||||
156.0 | UJ54 | Carbonate mudstone with rare ostracods | MIC-C | −1.1 | −1.8 | |
Sequence 2 | 151.0 | UJ53 | Sandy gastropods rudstone–packstone | MIC-C | −1.7 | −1.8 |
147.0 | UJ51 | Thrombolite and laminated microbialite boundstone | MIC-C | 1.0 | 1.9 | |
146.0 | UJ50 | Carbonate mudstone and oolitic grainstone-to-packstone | OC | 1.2 | 1.7 | |
MIC-C | 0.7 | 1.6 | ||||
145.0 | UJ49 | Microbialite boundstone with spherulites | MIC-D | 1.3 | 2.5 | |
MIC-C | 1.5 | 2.4 | ||||
140.0 | UJ48 | Oolitic grainstone-to-packstone with microbial intraclasts | OC | 1.2 | 1.1 | |
139.0 | UJ47 | Microbialite boundstone with ooids and mudclasts | MIC-C | 1.0 | 2.0 | |
136.2 | U1 | Microbialite boundstone | MIC-D | 1.2 | −0.1 | |
136.0 | JUR25 | Microbialite boundstone | MIC-D | 1.2 | 1.2 | |
134.0 | UJ45 | Microbialite boundstone | MIC-D | 1.9 | −0.3 | |
MIC-C | 2.2 | 3.4 | ||||
131.0 | UJ44 | Oolitic grainstone | OM | 1.8 | −0.2 | |
127.0 | UJ43 | Laminated Microbialite boundstone with ooids and coated grains | MIC-D | 1.9 | 4.9 | |
MIC-C | 2.2 | 2.8 | ||||
125.0 | UJ42 | Grapestone-ooid grainstone-to-packstone | OC | 1.9 | 2.9 | |
122.0 | UJ40 | Oolitic grainstone with mudclasts | OC | 2.0 | −0.1 | |
MIC-D | 2.6 | 4.3 | ||||
120.0 | UJ39 | Oolitic grainstone | OC | 2.0 | 0.8 | |
114.0 | UJ38 | Oolitic grainstone | OC | 1.7 | 2.2 | |
105.0 | UJ36 | Oolitic grainstone | OD | 3.0 | 2.5 | |
99.0 | UJ33 | Mudstone/wackestone with coated ostracods, ooids and quartz | OC | 2.4 | 1.5 | |
MIC-C | 1.7 | 2.4 | ||||
Sequence 1 | 96.0 | UJ32 | Laminated mudstone/wackestone with ostracods and rare ooids | MIC-C | 1.8 | 0.9 |
91.0 | UJ31 | Oolitic grainstone | OM | 2.7 | 5.1 | |
88.0 | UJ30A | Oolitic grainstone | OD | 3.2 | 3.6 | |
79.0 | UJ26 | Oolitic grainstone and carbonate mudstone with ooids | OD | 3.5 | 4.7 | |
72.0 | UJ24B | Thrombolite boundstone with coated gastropod/ooid grainstone-to-rudstone | OM | 3.3 | 2.0 | |
MIC-M | 3.5 | 4.0 | ||||
71.5 | UJ24a | Coated gastropod/ooid grainstone-to-rudstone | OC | 3.7 | 6.3 | |
71.0 | JUR8 | Oolitic grainstone | OM | 2.5 | 1.3 | |
66.5 | UJ21 | Oncoidal rudstone | EC | 2.7 | 1.7 | |
65.0 | CH1 | Oncoidal rudstone | OND | 3.5 | 6.3 | |
64.8 | UJ20 | Oncoidal rudstone | EC | 3.0 | 4.4 | |
OND | 4.2 | 6.0 | ||||
63.0 | UJ19 | Oncoid rudstone with rare ooids | OND | 4.0 | 5.0 | |
59.0 | UJ18 | Thrombolite and microbialite boundstone with ooids | MIC-C | 4.4 | 8.7 | |
57.5 | UJ17 | Oolitic grainstone | OD | 3.4 | 5.1 | |
57.0 | UJ16 | Microbialite boundstone with oolitic grainstone | OC | 2.7 | 3.8 | |
MIC-D | 3.5 | 4.2 | ||||
55.8 | UJ15 | Oolitic grainstone | OC | 2.2 | 3.4 | |
55.0 | UJ14 | Sandy oolitic grainstone-to-wackestone with quartz | OC | 2.3 | 2.6 | |
42.5 | UJ13 | Microbialite boundstone and oolitic grainstone | MIC-D | 1.9 | 2.7 | |
32.5 | UJ11 | Medium grained sandstone, thrombolite and microbialite boundstone | MIC-C | 1.6 | 0.3 | |
31.5 | UJ10 | Oolitic grainstone | OC | 2.2 | 3.6 | |
30.5 | UJ9 | Laminated microbialite boundstone with ooids | MIC-C | 2.2 | 1.0 | |
28.0 | UJ8 | Grapestone-ooid grainstone-to-packstone | OC | 1.9 | 2.1 | |
25.5 | UJ6a | Laminated microbialite boundstone with ooids | MIC-D | 2.4 | 3.7 | |
MIC-C | 1.9 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montano, D.; Gasparrini, M.; Rohais, S.; De Luca, R. A Lacustrine Record for the Cretaceous–Paleogene Boundary—Yacoraite Fm., (Northwest Argentina). Geosciences 2023, 13, 227. https://doi.org/10.3390/geosciences13080227
Montano D, Gasparrini M, Rohais S, De Luca R. A Lacustrine Record for the Cretaceous–Paleogene Boundary—Yacoraite Fm., (Northwest Argentina). Geosciences. 2023; 13(8):227. https://doi.org/10.3390/geosciences13080227
Chicago/Turabian StyleMontano, Damaris, Marta Gasparrini, Sébastien Rohais, and Ramon De Luca. 2023. "A Lacustrine Record for the Cretaceous–Paleogene Boundary—Yacoraite Fm., (Northwest Argentina)" Geosciences 13, no. 8: 227. https://doi.org/10.3390/geosciences13080227
APA StyleMontano, D., Gasparrini, M., Rohais, S., & De Luca, R. (2023). A Lacustrine Record for the Cretaceous–Paleogene Boundary—Yacoraite Fm., (Northwest Argentina). Geosciences, 13(8), 227. https://doi.org/10.3390/geosciences13080227