Effects of Mixtures of Engineered Nanoparticles and Metallic Pollutants on Aquatic Organisms
Abstract
:1. Introduction
2. Key Processes at The Exposure Medium—Organism Interface
2.1. Adsorption of Metallic Pollutants on Metal-Containing ENPs
2.2. Transformations of Mixture of ENPs and Metallic Pollutants in The Aquatic Environment
2.3. Adsorption and Internalization of ENPs and Metallic Pollutants in Mixtures by Aquatic Organisms
3. Toxicity of Mixtures of ENPs and Metallic Pollutants to Aquatic Organisms
3.1. No Significant Effect of ENPs on The Toxicity of Metallic Pollutants
3.2. Increase of Toxicity/Bioavailability of Metallic Pollutants by ENPs
3.3. Reduction of The Toxicity/Bioavailability of Metallic Pollutants by ENPs
4. Possible Bioaccumulation and Toxicity Outcome Scenarios during Co-Exposure to ENPs and Metallic Pollutants
4.1. Exposure of “Particle-Proof” Organisms to Mixtures of ENPs and Metallic Pollutants
- No interaction between ENPs and metallic pollutants; ENPs do not adsorb or penetrate algal cells. ENPs have no significant effect on algae. Metallic pollutants’ bioaccumulation and toxicity to the algae are unchanged.
- No interaction between ENPs and metallic pollutants; ENPs adsorb and penetrate into algal cells. Metallic pollutants’ bioaccumulation in the algae is unchanged. Effects of ENPs and metallic pollutants on the organism are independent. Combined toxicity may remain the same or increase depending on the species and concentrations of ENPs.
- No interaction between ENPs and metallic pollutants; ENPs and metallic pollutants compete for the same binding sites on algal surface. Under this condition, the metallic pollutants’ bioaccumulation decreases. Whereas the combined toxicity may increase, decrease or remain the same depending on the toxicity of ENPs.
- No interaction between ENPs and metallic pollutants; ENPs adsorb, but do not enter algal cells. ENPs affect cell membrane permeability, resulting in increase of bioaccumulation of metallic pollutants.
- No interaction between ENPs and metallic pollutants; ENPs adsorb and alter cell membrane permeability. ENPs and metallic pollutants enter the algal cells independently. Bioaccumulation of ENPs and metallic pollutants both increase.
- Metallic pollutants adsorb onto ENPs; ENPs do not interact with algal cells. Bioaccumulation and effect of metallic pollutants decrease.
- Metallic pollutants adsorb onto ENPs; ENPs with adsorbed metallic pollutants accumulate on the surface of algal cells. Bioaccumulation of metallic pollutants increases whereas the toxicity decreases.
- Metallic pollutants adsorb onto ENPs; ENPs affect membrane permeability and enter algal cells. There is no desorption of metallic pollutants from ENPs. Bioaccumulation of metallic pollutants increases whereas the toxicity decreases.
- Metallic pollutants adsorb onto ENPs; ENPs alter cell membrane permeability and enter algal cells. Metallic pollutants desorb from ENPs. In this case, the bioaccumulation of metallic pollutants increases. Desorption of chemical from ENPs is an important process for microorganisms with the food vacuoles. The pH in the food vacuoles becomes acidic (pH<4) within 1h after vacuole formation [154]. ENPs tend to release adsorbed environmental pollutants under the acidic condition [155].
- Free metal ions released from ENPs compete with metallic pollutants for algal cell binding and internalization sites. Accumulation of metallic pollutants in algal cells decreases. The biological outcome is uncertain depending the species and concentration of ENPs.
4.2. Exposure of “Particle-Ingestive” Organisms to Mixtures of ENPs and Metallic Pollutants
- No aggregation of ENPs. No interaction between ENPs and metallic pollutants. Bioaccumulation and effect of metallic pollutants are unchanged.
- No aggregation of ENPs. Adsorption of metallic pollutants onto ENPs. No desorption of metallic pollutants from ENPs in the organism. Metallic pollutants uptake is facilitated by ENPs but the bioavailability of metallic pollutants decreases because of the reduction of the concentration of free metallic pollutants.
- Aggregation of ENPs. Adsorption of metallic pollutants onto ENPs in medium. Desorption of metallic pollutant from ENPs in the organism. Increased body burden and bioavailability as a result of desorption of metallic pollutants from ENPs.
- Aggregation of ENPs. No interaction between ENPs and metallic pollutants. Bioaccumulation and toxicity of metallic pollutants are unchanged as the metallic pollutants and ENPs act independently.
- Aggregation of ENPs. Adsorption of metallic pollutants onto ENPs in medium. No desorption of metallic pollutants from ENPs in the organism. Reduced bioavailability of the metallic pollutants due to the decline in the concentration of free metallic pollutants.
- Aggregation of ENPs. Adsorption of metallic pollutants onto ENPs in medium. No desorption of metallic pollutants from ENPs in the organism. Increased body burden and toxicity as a result of desorption of metallic pollutants from ENPs.
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nanotechnology Market: By Type (Nanocomposites, Nanofibers, Nanoceramics, Nanomagnetics); By Application (Medical Diagnosis, Energy, ICT, Nano-EHS); By End-Users (Electronics, Pharmaceuticals, Biotechnology, Textile, Military)—Forecast (2016–2021); Industry ARC: Telangana, India, 2016.
- Quigg, A.; Chin, W.-C.; Chen, C.-S.; Zhang, S.; Jiang, Y.; Miao, A.-J.; Schwehr, K.A.; Xu, C.; Santschi, P.H. Direct and indirect toxic effects of engineered nanoparticles on algae: Role of natural organic matter. ACS Sustain. Chem. Eng. 2013, 1, 686–702. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, H.; Zhang, Z.; Niu, Q.; Chen, Y.; Crittenden, J.C. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 2007, 67, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, D.; Wang, J.; Wang, J. Toxicity of lead on Ceriodaphnia dubia in the presence of nano-CeO2 and nano-TiO2. Chemosphere 2012, 89, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Holden, P.A.; Gardea-Torresdey, J.L.; Klaessig, F.; Turco, R.F.; Mortimer, M.; Hund-Rinke, K.; Hubal, E.A.C.; Avery, D.; Barcelo, D.; Behra, R.; et al. Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ. Sci. Technol. 2016, 50, 6124–6145. [Google Scholar] [CrossRef]
- Ivask, A.; Juganson, K.; Bondarenko, O.; Mortimer, M.; Aruoja, V.; Kasemets, K.; Blinova, I.; Heinlaan, M.; Slaveykova, V.; Kahru, A. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review. Nanotoxicology 2014, 8, 57–71. [Google Scholar] [CrossRef]
- McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci. Total Environ. 2017, 575, 231–246. [Google Scholar] [CrossRef]
- Zhang, W.C.; Xiao, B.D.; Fang, T. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity. Chemosphere 2018, 191, 324–334. [Google Scholar] [CrossRef]
- Joonas, E.; Aruoja, V.; Olli, K.; Kahru, A. Environmental safety data on CuO and TiO2 nanoparticles for multiple algal species in natural water: Filling the data gaps for risk assessment. Sci. Total Environ. 2019, 647, 973–980. [Google Scholar] [CrossRef]
- Kumar, R.; Umar, A.; Kumar, G.; Nalwa, H.S. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 2017, 43, 3940–3961. [Google Scholar] [CrossRef]
- Lead, J.R.; Batley, G.E.; Alvarez, P.J.J.; Croteau, M.N.; Handy, R.D.; McLaughlin, M.J.; Judy, J.D.; Schirmer, K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. An updated review. Environ. Toxicol. Chem. 2018, 37, 2029–2063. [Google Scholar] [CrossRef] [PubMed]
- Slaveykova, V.I.; Li, M.; Worms, I.A.; Liu, W. When environmental chemistry meets ecotoxicology: Bioavailability of inorganic nanoparticles to phytoplankton. Chimia 2020. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.B.; Pomati, F.; Eggen, R.I.L. The toxicity of chemical pollutants in dynamic natural systems: The challenge of integrating environmental factors and biological complexity. Sci. Total Environ. 2013, 449, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Segner, H.; Schmitt-Jansen, M.; Sabater, S. Assessing the impact of multiple stressors on aquatic biota: The receptor’s side matters. Environ. Sci. Technol. 2014, 48, 7690–7696. [Google Scholar] [CrossRef]
- Heys, K.A.; Shore, R.F.; Pereira, M.G.; Jones, K.C.; Martin, F.L. Risk assessment of environmental mixture effects. RSC Adv. 2016, 6, 47844–47857. [Google Scholar] [CrossRef] [Green Version]
- Godoy, A.A.; Kummrow, F. What do we know about the ecotoxicology of pharmaceutical and personal care product mixtures? A critical review. Crit. Rev. Env. Sci. Technol. 2017, 47, 1453–1496. [Google Scholar] [CrossRef]
- Escher, B.I.; Hermens, J.L.M. Modes of Action in Ecotoxicology: Their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ. Sci. Technol. 2002, 36, 4201–4217. [Google Scholar] [CrossRef]
- Naasz, S.; Altenburger, R.; Kühnel, D. Environmental mixtures of nanomaterials and chemicals: The Trojan-horse phenomenon and its relevance for ecotoxicity. Sci. Total Environ. 2018, 635, 1170–1181. [Google Scholar] [CrossRef]
- Hartland, A.; Lead, J.R.; Slaveykova, V.; O’Carroll, D.; Valsami-Jones, E. The environmental significance of natural nanoparticles. Nat. Educ. Knowl. 2013, 4, 7. [Google Scholar]
- Slaveykova, V.I.; Wilkinson, K.J. Predicting the bioavailability of metals and metal complexes: Critical review of the biotic ligand model. Environ. Chem. 2005, 2, 9–24. [Google Scholar] [CrossRef]
- Ma, S.; Lin, D. The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: Adsorption and internalization. Env. Sci. Process. Impacts 2013, 14, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Von Moos, N.; Bowen, P.; Slaveykova, V.I. Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environ. Sci. Nano 2014, 1, 214–232. [Google Scholar] [CrossRef]
- Nelson, J.; Bargar, J.R.; Wasylenki, L.; Brown Jr, G.E.; Maher, K. Effects of nano-confinement on Zn (II) adsorption to nanoporous silica. Geochimica Cosmochimica Acta 2018, 240, 80–97. [Google Scholar] [CrossRef]
- Kumari, P.; Alam, M.; Siddiqi, W.A. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustain. Mater. Technol. 2019, 22, e00128. [Google Scholar] [CrossRef]
- Hokkanen, S.; Sillanpää, M. Nano-and microcellulose-based adsorption materials in water treatment. In Advanced Water Treatment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–83. [Google Scholar]
- Abdugaffarova, K.K.; Dorogov, M.V.; Vikarchuk, A.A.; Zabolotskikh, V.V.; Firsov, V.S. New sorption materials on the basis of aluminosilicates for wasterwater treatment. In Nano Hybrids and Composites; Trans Tech Publications Ltd.: Zurich, Switzerland, 2017; pp. 190–196. [Google Scholar]
- Xue, W.; Peng, Z.; Huang, D.; Zeng, G.; Wan, J.; Xu, R.; Cheng, M.; Zhang, C.; Jiang, D.; Hu, Z. Nanoremediation of cadmium contaminated river sediments: Microbial response and organic carbon changes. J. Hazard. Mater. 2018, 359, 290–299. [Google Scholar] [CrossRef]
- Fajardo, C.; Sánchez-Fortún, S.; Costa, G.; Nande, M.; Botías, P.; García-Cantalejo, J.; Mengs, G.; Martín, M. Evaluation of nanoremediation strategy in a Pb, Zn and Cd contaminated soil. Sci. Total Environ. 2020, 706, 136041. [Google Scholar] [CrossRef]
- Zecchina, A.; Bordiga, S.; Groppo, E. Selective Nanocatalysts and Nanoscience: Concepts for Heterogeneous and Homogeneous Catalysis; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- O’Brien, N.J.; Cummins, E.J. A risk assessment framework for assessing metallic nanomaterials of environmental concern: Aquatic exposure and behavior. Risk Anal. 2011, 31, 706–726. [Google Scholar] [CrossRef]
- Sethi, M.; Pacardo, D.B.; Knecht, M.R. Biological surface effects of metallic nanomaterials for applications in assembly and catalysis. Langmuir 2010, 26, 15121–15134. [Google Scholar] [CrossRef]
- Tauanov, Z.; Shah, D.; Inglezakis, V. Silver nanoparticles impregnated zeolites derived from coal fly ash: Effect of the silver loading on adsorption of mercury (II). In Proceedings of the Multidisciplinary Digital Publishing Institute, Lefkada Island, Greece, 27–30 June 2018; p. 647. [Google Scholar]
- Yao, C.; Chen, S.; Wang, L.; Deng, H.; Tong, S. Low cost and rapid fabrication of copper sulfides nanoparticles for selective and efficient capture of noble metal ions. Chem. Eng. J. 2019, 373, 1168–1178. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, F.; Deng, M.; Zhang, T.; Lü, C. Construction of β-cyclodextrin derived CDs-coupled block copolymer micelles loaded with CdSe/ZnS QDs via host-guest interaction for ratiometric fluorescence sensing of metal ions. Dye. Pigment. 2019, 168, 369–380. [Google Scholar] [CrossRef]
- Asadi, F.; Azizi, S.N.; Chaichi, M.J. Green synthesis of fluorescent PEG-ZnS QDs encapsulated into Co-MOFs as an effective sensor for ultrasensitive detection of copper ions in tap water. Mater. Sci. Eng. C 2019, 105, 110058. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Wang, J.; Sun, H.; Jiang, L. Double-decrease of the fluorescence of CdSe/ZnS quantum dots for the detection of zinc (II) dimethyldithiocarbamate (ziram) based on its interaction with gold nanoparticles. Microchim. Acta 2018, 185, 472. [Google Scholar] [CrossRef]
- Worms, I.A.M.; Boltzman, J.; Garcia, M.; Slaveykova, V.I. Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae. Environ. Pollut. 2012, 167, 27–33. [Google Scholar] [CrossRef]
- Slaveykova, V.I.; Pinheiro, J.P.; Floriani, M.; Garcia, M. Interactions of core–shell quantum dots with metal resistant bacterium Cupriavidus metallidurans: Consequences for Cu and Pb removal. J. Hazard. Mater. 2013, 261, 123–129. [Google Scholar] [CrossRef]
- Cumbal, L.; SenGupta, A.K. Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: Role of Donnan membrane effect. Environ. Sci. Technol. 2005, 39, 6508–6515. [Google Scholar] [CrossRef]
- Qiao, R.; Yang, C.; Gao, M. Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J. Mater. Chem. 2009, 19, 6274–6293. [Google Scholar] [CrossRef]
- Lucas, E.; Decker, S.; Khaleel, A.; Seitz, A.; Fultz, S.; Ponce, A.; Li, W.; Carnes, C.; Klabunde, K.J. Nanocrystalline metal oxides as unique chemical reagents/sorbents. Chem. A Eur. J. 2001, 7, 2505–2510. [Google Scholar] [CrossRef]
- Deiana, C.; Fois, E.; Coluccia, S.; Martra, G. Surface structure of TiO2 P25 nanoparticles: Infrared study of hydroxy groups on coordinative defect sites. J. Phys. Chem. C 2010, 114, 21531–21538. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Groenzin, H.; Shultz, M.J. Molecular species on nanoparticulate anatase TiO2 film detected by sum frequency generation: Trace hydrocarbons and hydroxyl groups. Langmuir 2003, 19, 7330–7334. [Google Scholar] [CrossRef]
- Pavlović, V.P.; Vujančević, J.D.; Mašković, P.; Ćirković, J.; Papan, J.M.; Kosanović, D.; Dramićanin, M.D.; Petrović, P.B.; Vlahović, B.; Pavlović, V.B. Structure and enhanced antimicrobial activity of mechanically activated nano TiO2. J. Am. Ceram. Soc. 2019, 102, 7735–7745. [Google Scholar] [CrossRef]
- Jhang, J.-H.; Chang, S.-J.; Pedaballi, S.; Li, C.-C. A new porous structure with dispersed nano-TiO2 in a three-dimensional carbon skeleton for achieving high photocatalytic activity. Microporous Mesoporous Mater. 2019, 276, 62–67. [Google Scholar] [CrossRef]
- Galiano, F.; Song, X.; Marino, T.; Boerrigter, M.; Saoncella, O.; Simone, S.; Faccini, M.; Chaumette, C.; Drioli, E.; Figoli, A. Novel photocatalytic PVDF/nano-TiO2 hollow fibers for environmental remediation. Polymers 2018, 10, 1134. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ding, S.; Zhang, L.; Ouyang, J.; Han, B. Effects of particle size, crystal phase and surface treatment of nano-TiO2 on the rheological parameters of cement paste. Constr. Build. Mater. 2020, 239, 117897. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Niu, Q.; Chen, Y.; Crittenden, J.C. Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water Air Soil Pollut. 2007, 178, 245–254. [Google Scholar] [CrossRef]
- Lopez-Munoz, M.J.; Arencibia, A.; Cerro, L.; Pascual, R.; Melgar, A. Adsorption of Hg (II) from aqueous solutions using TiO2 and titanate nanotube adsorbents. Appl. Surf. Sci. 2016, 367, 91–100. [Google Scholar] [CrossRef]
- Ghasemi, Z.; Seif, A.; Ahmadi, T.S.; Zargar, B.; Rashidi, F.; Rouzbahani, G.M. Thermodynamic and kinetic studies for the adsorption of Hg (II) by nano-TiO2 from aqueous solution. Adv. Powder Technol. 2012, 23, 148–156. [Google Scholar] [CrossRef]
- Afshar, E.; Mohammadi-Manesh, H.; Khavidaki, H.D. Removal of Hg (I) and Hg (II) ions from aqueous solutions, using TiO2 nanoparticles. Pollution 2017, 3, 505–516. [Google Scholar] [CrossRef]
- Zhan, H.; Jiang, Y.; Ma, Q. Determination of adsorption characteristics of metal oxide nanomaterials: Application as adsorbents. Anal. Lett. 2014, 47, 871–884. [Google Scholar] [CrossRef]
- Islam, A.; Awual, R.; Angove, M.J. A review on nickel (II) adsorption in single and binary component systems and future path. J. Environ. Chem. Eng. 2019, 103305. [Google Scholar] [CrossRef]
- Ma, Y.; Mu, B.; Zhang, X.; Yuan, D.; Ma, C.; Xu, H.; Qu, Z.; Fang, S. Graphene enhanced Mn-Ce binary metal oxides for catalytic oxidation and adsorption of elemental mercury from coal-fired flue gas. Chem. Eng. J. 2019, 358, 1499–1506. [Google Scholar] [CrossRef]
- Zheng, L.; Peng, D.; Meng, P. Corncob-supported aluminium-manganese binary oxide composite enhanced removal of cadmium ions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 561, 109–119. [Google Scholar] [CrossRef]
- Beduk, F. Superparamagnetic nanomaterial Fe3O4–TiO2 for the removal of As (V) and As (III) from aqueous solutions. Environ. Technol. 2016, 37, 1790–1801. [Google Scholar] [CrossRef]
- Zhang, G.; Qu, J.; Liu, H.; Liu, R.; Wu, R. Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res. 2007, 41, 1921–1928. [Google Scholar] [CrossRef]
- Liang, M.; Xu, S.; Zhu, Y.; Chen, X.; Deng, Z.; Yan, L.; He, H. Preparation and characterization of Fe-Mn binary oxide/mulberry stem biochar composite adsorbent and adsorption of Cr (VI) from aqueous solution. Int. J. Environ. Res. Public Health 2020, 17, 676. [Google Scholar] [CrossRef] [Green Version]
- Lanas, S.G.; Valiente, M.; Tolazzi, M.; Melchior, A. Thermodynamics of Hg2+ and Ag+ adsorption by 3-mercaptopropionic acid-functionalized superparamagnetic iron oxide nanoparticles. J. Therm. Anal. Calorim. 2019, 136, 1153–1162. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.; Wilke, C.M.; Wu, J.; Binh, C.T.T.; Kelly, J.J.; Gaillard, J.-F.O.; Gray, K.A. Combined toxicity of nano-ZnO and nano-TiO2: From single-to multinanomaterial systems. Environ. Sci. Technol. 2015, 49, 8113–8123. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Baun, A. The nano cocktail: Ecotoxicological effects of engineered nanoparticles in chemical mixtures. Integr. Environ. Assess. Manag. 2010, 6, 311. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, W.; Gao, H.; Li, Y.; Tong, X.; Li, K.; Zhu, X.; Wang, Y.; Chen, Y. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials 2017, 7. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, K.; Yang, K.; Lin, D. Heteroagglomeration of oxide nanoparticles with algal cells: Effects of particle type, ionic strength and pH. Environ. Sci. Technol. 2014, 49, 932–939. [Google Scholar] [CrossRef]
- Nur, Y.; Lead, J.; Baalousha, M. Evaluation of charge and agglomeration behavior of TiO2 nanoparticles in ecotoxicological media. Sci. Total Environ. 2015, 535, 45–53. [Google Scholar] [CrossRef]
- Raza, G.; Amjad, M.; Kaur, I.; Wen, D. Stability and aggregation kinetics of Titania nanomaterials under environmentally realistic conditions. Environ. Sci. Technol. 2016, 50, 8462–8472. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, N.I.B.; Skjolding, L.M.; Hansen, S.F.; Baun, A.; Kjølholt, J.; Gottschalk, F. Environmental Fate and Behaviour of Nanomaterials: New Knowledge on Important Transfomation Processes; Environmental Project; Miljøministeriet: Copenhagen, Denmark, 2014. [Google Scholar]
- Lin, D.; Story, S.D.; Walker, S.L.; Huang, Q.; Cai, P. Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles. Water Res. 2016, 104, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wu, J.; Liu, M.; Chen, L.; Zhu, G.; Lu, H. Physiological and transcriptional responses of Nitrosomonas europaea to TiO2 and ZnO nanoparticles and their mixtures. Environ. Sci. Pollut. Res. 2016, 23, 13023–13034. [Google Scholar] [CrossRef] [PubMed]
- Huynh, K.A.; McCaffery, J.M.; Chen, K.L. Heteroaggregation reduces antimicrobial activity of silver nanoparticles: Evidence for nanoparticle–cell proximity effects. Environ. Sci. Technol. Lett. 2014, 1, 361–366. [Google Scholar] [CrossRef]
- Yu, R.; Wu, J.; Liu, M.; Zhu, G.; Chen, L.; Chang, Y.; Lu, H. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea. Chemosphere 2016, 153, 187–197. [Google Scholar] [CrossRef]
- Singh, S.; Barick, K.C.; Bahadur, D. Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. J. Hazard Mater. 2011, 192, 1539–1547. [Google Scholar] [CrossRef]
- Ge, F.; Li, M.-M.; Ye, H.; Zhao, B.-X. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater. 2012, 211, 366–372. [Google Scholar] [CrossRef]
- Verma, A.; Uzun, O.; Hu, Y.; Hu, Y.; Han, H.-S.; Watson, N.; Chen, S.; Irvine, D.J.; Stellacci, F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 2008, 7, 588. [Google Scholar] [CrossRef]
- Liu, W.; Worms, I.A.; Slaveykova, V.I. Interactions of metal-containing nanomaterials with microorganisms. In Interfaces Between Nanomaterials and Microbes; Khare, S.K., Gupta, M.N., Sinha, R., Eds.; SCIENCE PUBLISHERS (An Imprint of CRC Press/Taylor & Francis Group): London, UK, 2020. [Google Scholar]
- Rodea-Palomares, I.; Boltes, K.; Fernandez-Pinas, F.; Leganes, F.; Garcia-Calvo, E.; Santiago, J.; Rosal, R. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol. Sci. 2011, 119, 135–145. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Lao, Y.; Lv, X.; Tao, Y.; Huang, B.; Wang, J.; Zhou, J.; Cai, Z. TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Sci. Total Environ. 2016, 565, 818–826. [Google Scholar] [CrossRef]
- Cheloni, G.; Marti, E.; Slaveykova, V.I. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquat. Toxicol. 2016, 170, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Li, X.M.; Sigg, L.; Suter, M.J.F.; Pillai, S.; Behra, R.; Schirmer, K. Interaction of silver nanoparticles with algae and fish cells: A side by side comparison. J. Nanobiotechnology 2017, 15, s12951–s13017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botha, T.L.; Boodhia, K.; Wepener, V. Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure. Aquat. Toxicol. 2016, 170, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Wang, P.; Wang, C.; Hu, B.; Wang, X. Lead accumulation (adsorption and absorption) by the freshwater bivalve Corbicula fluminea in sediments contaminated by TiO2 nanoparticles. Environ. Pollut. 2017, 231, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-W.; Miao, A.-J.; Yang, L.-Y. Cd2 + toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS ONE 2012, 7, e32300. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, N.B.; Legros, S.; von der Kammer, F.; Hofmann, T.; Baun, A. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquat. Toxicol. 2012, 118, 1–8. [Google Scholar] [CrossRef]
- Conner, S.D.; Schmid, S.L. Regulated portals of entry into the cell. Nature 2003, 422, 37. [Google Scholar] [CrossRef]
- Miao, A.-J.; Luo, Z.; Chen, C.-S.; Chin, W.-C.; Santschi, P.H.; Quigg, A. Intracellular uptake: A possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS ONE 2010, 5, e15196. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Miao, A.J.; Luo, J.; Wei, Z.B.; Zhu, J.J.; Yang, L.Y. Bioaccumulation of Cd te quantum dots in a freshwater alga Ochromonas danica: A kinetics study. Environ. Sci. Technol. 2013, 47, 10601–10610. [Google Scholar] [CrossRef]
- Cherchi, C.; Chernenko, T.; Diem, M.; Gu, A.Z. Impact of nano titanium dioxide exposure on cellular structure of anabaena variabilis and evidence of internalization. Environ. Toxicol Chem. 2011, 30, 861–869. [Google Scholar] [CrossRef]
- Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644–10654. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, M.; Kahru, A.; Slaveykova, V.I. Uptake, localization and clearance of quantum dots in ciliated protozoa Tetrahymena thermophila. Environ. Pollut. 2014, 190, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, M.; Gogos, A.; Bartolomé, N.; Kahru, A.; Bucheli, T.D.; Slaveykova, V.I. Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by Protozoa. Environ. Sci. Technol. 2014, 48, 8760–8767. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Woodhall, J.; Ma, G.; Veinot, J.G.; Boxall, A.B. Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates? Environ. Toxicol. Chem. 2015, 34, 850–859. [Google Scholar] [CrossRef]
- Tan, L.-Y.; Huang, B.; Xu, S.; Wei, Z.-B.; Yang, L.-Y.; Miao, A.-J. Aggregation reverses the carrier effects of TiO2 nanoparticles on cadmium accumulation in the waterflea Daphnia magna. Environ. Sci. Technol. 2017, 51, 932–939. [Google Scholar] [CrossRef]
- Dalai, S.; Pakrashi, S.; Bhuvaneshwari, M.; Iswarya, V.; Chandrasekaran, N.; Mukherjee, A. Toxic effect of Cr (VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae. Aquat. Toxicol. 2014, 146, 28–37. [Google Scholar] [CrossRef]
- Worms, I.; Simon, D.F.; Hassler, C.S.; Wilkinson, K.J. Bioavailability of trace metals to aquatic microorganisms: Importance of chemical, biological and physical processes on biouptake. Biochimie 2006, 88, 1721–1731. [Google Scholar] [CrossRef]
- Tercier Waeber, M.-L.; Stoll, S.; Slaveykova, V.I. Trace metal behavior in surface waters: Emphasis on dynamic speciation, sorption processes and bioavailability. Arch. Des. Sci. 2012, 65, 119–142. [Google Scholar]
- Domozych, D. Algal Cell Walls; Wiley Online Library: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Kuhn, A.E. Bacterial Cell Walls and Membranes; Springer Nature: London, UK, 2019. [Google Scholar]
- Campbell, P.G.C. Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In Metal Speciation and Bioavailability in Aquatic Systems; Tessier, A., Turner, D., Eds.; John Wiley & Son: Chichester, UK, 1995. [Google Scholar]
- Blaby-Haas, C.E.; Merchant, S.S. The ins and outs of algal metal transport. Biochim. Biophys. Acta BBA Mol. Cell Res. 2012, 1823, 1531–1552. [Google Scholar] [CrossRef] [Green Version]
- Voica, D.M.; Bartha, L.; Banciu, H.L.; Oren, A. Heavy metal resistance in Halophilic bacteria and Archaea. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, A.C.; Arguello, J.M. Toward a molecular understanding of metal transport by P-1B-type ATPases. In Metal Transporters; Lutsenko, S., Arguello, J.M., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 69, pp. 113–136. [Google Scholar]
- Nelson, N. Metal ion transporters and homeostasis. EMBO J. 1999, 18, 4361–4371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Ma, Q.; Liu, T.; Dong, Z.; Fan, W. Effect of TiO2-nanoparticles on copper toxicity to bacteria: Role of bacterial surface. RSC Adv. 2020, 10, 5058–5065. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Chi, T.; Liu, B.; Liu, C.; Feng, G.; Dai, X.; Zhang, K.; Zhou, H. Effect of nano zinc oxide on the acute and reproductive toxicity of cadmium and lead to the marine copepod Tigriopus japonicus. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 222, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Liang, D.; Wang, X.; Ren, J.; Xiao, S.; Zhou, T. Two-generational effects and recovery of arsenic and arsenate on Daphnia magna in the presence of nano-TiO2. Ecotoxicol. Environ. Saf. 2019, 172, 136–143. [Google Scholar] [CrossRef]
- Vale, G.; Franco, C.; Diniz, M.S.; Santos, M.M.C.D.; Domingos, R.F. Bioavailability of cadmium and biochemical responses on the freshwater bivalve Corbicula fluminea—The role of TiO2 nanoparticles. Ecotoxicol. Environ. Saf. 2014, 109, 161–168. [Google Scholar] [CrossRef]
- Balbi, T.; Smerilli, A.; Fabbri, R.; Ciacci, C.; Montagna, M.; Grasselli, E.; Brunelli, A.; Pojana, G.; Marcomini, A.; Gallo, G. Co-exposure to n-TiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M. galloprovincialis. Sci. Total Environ. 2014, 493, 355–364. [Google Scholar] [CrossRef]
- Yu, Z.; Hao, R.; Zhang, L.; Zhu, Y. Effects of TiO2, SiO2, Ag and CdTe/CdS quantum dots nanoparticles on toxicity of cadmium towards Chlamydomonas reinhardtii. Ecotoxicol. Environ. Saf. 2018, 156, 75–86. [Google Scholar] [CrossRef]
- Brunelli, A.; Pojana, G.; Callegaro, S.; Marcomini, A. Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters. J. Nanoparticle Res. 2013, 15, 1684. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Z.; Zhang, C.; Liu, S.; Zhang, H.; Li, D.; Zhao, J.; Han, Z.; Liu, X.; Pan, J. Al2O3 nanoparticle impact on the toxic effect of Pb on the marine microalga Isochrysis galbana. Ecotoxicol. Environ. Saf. 2018, 161, 92–98. [Google Scholar] [CrossRef]
- Li, M.; Pei, J.; Tang, X.; Guo, X. Effects of surfactants on the combined toxicity of TiO2 nanoparticles and cadmium to Escherichia coli. J. Environ. Sci. 2018, 74, 126–133. [Google Scholar] [CrossRef]
- Hu, S.; Han, J.; Yang, L.; Li, S.; Guo, Y.; Zhou, B.; Wu, H. Bioconcentration, depuration and toxicity of Pb in the presence of titanium dioxide nanoparticles in zebrafish larvae. Aquat. Toxicol. 2019, 214, 105257. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dai, H.; Nie, Y.; Wang, M.; Yang, Z.; Cheng, L.; Liu, Y.; Chen, S.; Zhao, G.; Wu, L. TiO2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process. Ecotoxicol. Environ. Saf. 2018, 162, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cui, M.; Li, X.; Thuyet, D.Q.; Fan, W. Effects of hydrophobicity of titanium dioxide nanoparticles and exposure scenarios on copper uptake and toxicity in Daphnia magna. Water Res. 2019, 154, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, C.; Costa, G.; Nande, M.; Martín, C.; Martín, M.; Sánchez-Fortún, S. Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): Soil and freshwater bioassays to assess ecotoxicological impact. Sci. Total Environ. 2019, 656, 421–432. [Google Scholar] [CrossRef]
- Canesi, L.; Fabbri, R.; Gallo, G.; Vallotto, D.; Marcomini, A.; Pojana, G. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat. Toxicol. 2010, 100, 168–177. [Google Scholar] [CrossRef]
- Kim, I.; Lee, B.-T.; Kim, H.-A.; Kim, K.-W.; Kim, S.D.; Hwang, Y.-S. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere 2016, 143, 99–105. [Google Scholar] [CrossRef]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef]
- Miao, W.; Zhu, B.; Xiao, X.; Li, Y.; Dirbaba, N.B.; Zhou, B.; Wu, H. Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquat. Toxicol. 2015, 161, 117–126. [Google Scholar] [CrossRef]
- Tan, C.; Wang, W.-X. Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Environ. Pollut. 2014, 186, 36–42. [Google Scholar] [CrossRef]
- Fan, W.; Peng, R.; Li, X.; Ren, J.; Liu, T.; Wang, X. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: Role of organic matter. Water Res. 2016, 105, 129–137. [Google Scholar] [CrossRef]
- Yang, W.-W.; Wang, Y.; Huang, B.; Wang, N.-X.; Wei, Z.-B.; Luo, J.; Miao, A.-J.; Yang, L.-Y. TiO2 nanoparticles act as a carrier of Cd bioaccumulation in the ciliate Tetrahymena thermophila. Environ. Sci. Technol. 2014, 48, 7568–7575. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, N.B.; von der Kammer, F.; Hofmann, T.; Baalousha, M.; Ottofuelling, S.; Baun, A. Algal testing of titanium dioxide nanoparticles—Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 2010, 269, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.-J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Powell, B.A.; Mortimer, M.; Ke, P.C. Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environ. Sci. Technol. 2012, 46, 12178–12185. [Google Scholar] [CrossRef] [PubMed]
- Vinopal, S.; Ruml, T.; Kotrba, P. Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int. Biodeterior. Biodegrad. 2007, 60, 96–102. [Google Scholar] [CrossRef]
- Aruoja, V.; Dubourguier, H.-C.; Kasemets, K.; Kahru, A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 2009, 407, 1461–1468. [Google Scholar] [CrossRef]
- Kalman, J.; Paul, K.B.; Khan, F.R.; Stone, V.; Fernandes, T.F. Characterisation of bioaccumulation dynamics of three differently coated silver nanoparticles and aqueous silver in a simple freshwater food chain. Environ. Chem. 2015, 12, 662–672. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Li, S.; Qiao, J.; Wang, H.; Li, L. Synergistic effects of nano-sized titanium dioxide and zinc on the photosynthetic capacity and survival of Anabaena sp. Int. J. Mol. Sci. 2013, 14, 14395–14407. [Google Scholar] [CrossRef]
- Von Moos, N.; Maillard, L.; Slaveykova, V.I. Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure. Aquat. Toxicol. 2015, 161, 267–275. [Google Scholar] [CrossRef]
- Regier, N.; Cosio, C.; von Moos, N.; Slaveykova, V.I. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 2015, 128, 56–61. [Google Scholar] [CrossRef]
- Leroueil, P.R.; Hong, S.; Mecke, A.; Baker, J.R., Jr.; Orr, B.G.; Banaszak Holl, M.M. Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face? Acc. Chem. Res. 2007, 40, 335–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Hu, X.; Yin, D.; Wang, R. Effect of subcellular distribution on nC60 uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna. Ecotoxicol. Environ. Saf. 2016, 128, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Zouzelka, R.; Cihakova, P.; Ambrozova, J.R.; Rathousky, J. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.). Environ. Sci. Pollut. Res. 2016, 23, 8317–8326. [Google Scholar] [CrossRef]
- England, C.G.; Gobin, A.M.; Frieboes, H.B. Evaluation of uptake and distribution of gold nanoparticles in solid tumors. Eur. Phys. J. Plus 2015, 130, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nambara, K.; Niikura, K.; Mitomo, H.; Ninomiya, T.; Takeuchi, C.; Wei, J.; Matsuo, Y.; Ijiro, K. Reverse size dependences of the cellular uptake of triangular and spherical gold nanoparticles. Langmuir 2016, 32, 12559–12567. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Chen, B.; Sun, X.; Qu, K.; Ma, F.; Du, M. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Sci. Total Environ. 2015, 508, 525–533. [Google Scholar] [CrossRef]
- Simon-Deckers, A.; Loo, S.; Mayne-L’hermite, M.; Herlin-Boime, N.; Menguy, N.; Reynaud, C.; Gouget, B.; Carriere, M. Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ. Sci. Technol. 2009, 43, 8423–8429. [Google Scholar] [CrossRef]
- Abdolahpur Monikh, F.; Arenas-Lago, D.; Porcal, P.; Grillo, R.; Zhang, P.; Guo, Z.; Vijver, M.G.; JGM Peijnenburg, W. Do the joint effects of size, shape and ecocorona influence the attachment and physical eco (cyto) toxicity of nanoparticles to algae? Nanotoxicology 2019, 14, 1–16. [Google Scholar] [CrossRef]
- Bahador, E.; Einali, A.; Azizian-Shermeh, O.; Sangtarash, M.H. Metabolic responses of the green microalga Dunaliella salina to silver nanoparticles-induced oxidative stress in the presence of salicylic acid treatment. Aquat. Toxicol. 2019, 217, 105356. [Google Scholar] [CrossRef]
- Fazelian, N.; Movafeghi, A.; Yousefzadi, M.; Rahimzadeh, M. Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environ. Sci. Pollut. Res. 2019, 26, 17499–17511. [Google Scholar] [CrossRef]
- Yang, W.-W.; Li, Y.; Miao, A.-J.; Yang, L.-Y. Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart. Ecotoxicol. Environ. Saf. 2012, 85, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, S.; Fan, W. Effect of nano-Al2O3 on the toxicity and oxidative stress of copper towards Scenedesmus obliquus. Int. J. Environ. Res. Public Health 2016, 13, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, S.M.; Josende, M.E.; Ruas, C.P.; Gelesky, M.A.; da Silva Júnior, F.M.R.; Fattorini, D.; Regoli, F.; Monserrat, J.M.; Ventura-Lima, J. Biochemical responses induced by co-exposition to arsenic and titanium dioxide nanoparticles in the estuarine polychaete Laeonereis acuta. Toxicology 2017, 376, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Luo, Z.; Yan, Y.; Wang, Z.; Chi, Q.; Yan, C.; Xing, B. Arsenate accumulation, distribution, and toxicity associated with titanium dioxide nanoparticles in Daphnia magna. Environ. Sci. Technol. 2016, 50, 9636–9643. [Google Scholar] [CrossRef]
- Ma, H.; Lenz, K.A.; Gao, X.; Li, S.; Wallis, L.K. Comparative toxicity of a food additive TiO2, a bulk TiO2, and a nano-sized P25 to a model organism the nematode C. elegans. Environ. Sci. Pollut. Res. 2019, 26, 3556–3568. [Google Scholar] [CrossRef]
- He, E.; Qiu, H.; Huang, X.; Van Gestel, C.A.; Qiu, R. Different dynamic accumulation and toxicity of ZnO nanoparticles and ionic Zn in the soil sentinel organism Enchytraeus crypticus. Environ. Pollut. 2019, 245, 510–518. [Google Scholar] [CrossRef]
- Shang, Y.; Lan, Y.; Liu, Z.; Kong, H.; Huang, X.; Wu, F.; Liu, L.; Hu, M.; Huang, W.; Wang, Y. Synergistic effects of nano-ZnO and low pH of sea water on the physiological energetics of the thick shell mussel Mytilus coruscus. Front. Physiol. 2018, 9, 757. [Google Scholar] [CrossRef]
- Zhao, C.-M.; Wang, W.-X. Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ. Sci. Technol. 2010, 44, 7699–7704. [Google Scholar] [CrossRef]
- Feswick, A.; Griffitt, R.J.; Siebein, K.; Barber, D. Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization. Aquat. Toxicol. 2013, 130, 210–218. [Google Scholar] [CrossRef]
- Gu, H.; Chen, X.; Chen, F.; Zhou, X.; Parsaee, Z. Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: Characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason. Sonochemistry 2018, 41, 109–119. [Google Scholar] [CrossRef]
- Dahoumane, S.A.; Mechouet, M.; Wijesekera, K.; Filipe, C.D.; Sicard, C.; Bazylinski, D.A.; Jeffryes, C. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology—A review. Green Chem. 2017, 19, 552–587. [Google Scholar] [CrossRef]
- Rahman, A.; Kumar, S.; Nawaz, T. Biosynthesis of nanomaterials using algae. In Microalgae Cultivation for Biofuels Production; Elsevier: Amsterdam, The Netherlands, 2020; pp. 265–279. [Google Scholar]
- Mortimer, M.; Kasemets, K.; Kahru, A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 2010, 269, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.S.; Leu, H.J. A Fe3O4-based chemical sensor for cathodic determination of hydrogen peroxide. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2005, 17, 2068–2073. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H. Review on: Titanium dioxide applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of titanium dioxide nanoparticles exposure on human health—A review. Biol. Trace Elem. Res. 2020, 193, 118–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Reynolds, M. Cadmium exposure in living organisms: A short review. Sci. Total Environ. 2019, 678, 761–767. [Google Scholar] [CrossRef]
- Vijver, M.G.; Zhai, Y.J.; Wang, Z.; Peijnenburg, W. Emerging investigator series: The dynamics of particle size distributions need to be accounted for in bioavailability modelling of nanoparticles. Environ. Sci. Nano 2018, 5, 2473–2481. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Gold, A.J.; Bernal, S.; Johnson, T.A.N.; Addy, K.; Burgin, A.; Burns, D.A.; Coble, A.A.; Hood, E.; Lu, Y.H.; et al. Watershed “chemical cocktails”: Forming novel elemental combinations in Anthropocene fresh waters. Biogeochemistry 2018, 141, 281–305. [Google Scholar] [CrossRef]
ENPs | Metal | Organisms | Test Conditions | End Point/ Mixture Effect | Ref. |
---|---|---|---|---|---|
Al2O3 | Pb(II) | Marine alga Isochrysis galbana | 10–20 nm Al2O3NPs, modified Guillard f2 medium, Exposure time 72 h | Growth inhibition, chlorophyll fluorescence/Synergistic effect in the presence of 10mg L−1 Al2O3NPs | [110] |
TiO2 | Cu(II) | Bacterium Bacillus thuringiensis | P25, Physiological saline buffer, Exposure time 24 h | Viability, ROS a generation, enzymatic activity, Cu uptake/Increase | [103] |
TiO2 | Cu(II) | Bacterium Bacillus megaterium | P25, Physiological saline buffer, Exp. time 24 h | Viability, ROS generation, enzymatic activity, Cu uptake/No effect | [103] |
TiO2 | Cd(II) | Bacterium Escherichia coli | Anatase 5–10 nm, Exposure time 3 h | Growth reduction, Antagonistic interaction | [111] |
TiO2 | Pb(II) | Zebrafish larvae | 5 nm TiO2NPs, Exposure time 48 h | Mortality, malformation rate, No effect; Locomotion/Decrease; Biouptake and depuration/Increase | [112] |
TiO2 | Cd(II), As(III), Ni(II) | Nematode Caenorhabditis elegans | Two sizes: 5 and 15 nm; strong aggregation Exposure time 12 h | Cd uptake/Decrease Reproduction and development toxicity/Increase | [113] |
TiO2 | As(Ⅲ), As(Ⅴ) | Water flea Daphnia magna | 21 nm TiO2, Acute immobilization test, Exposure time 48 h | Immobilization/Decrease | [105] |
TiO2 | As(Ⅲ), As(Ⅴ) | Water flea Daphnia magna | 21 nm TiO2, Chronic test, Exposure time 21 d | Body length and reproduction/Decrease | [105] |
TiO2 * | Cu(II) | Water flea Daphnia magna | 29.5 nm TiO2 with surface modified by Al(OH)3, Exposure time 48 h | Bioaccumulation and oxidative stress/Increased | [114] |
TiO2 * | Cu(II) | Water flea Daphnia magna | 36.7 nm TiO2 with surface modified by Al(OH)3 + stearic acid, 48 h | High intestinal damage | [114] |
ZnO | Cd(II), Pb(II) | Marine copepod Tigriopus japonicus | 22 nm ZnONPs, artificial seawater Exposure time 96 h | Acute test, mortality/Increase | [104] |
ZnO | Cd(II), Pb(II) | Marine copepod Tigriopus japonicus | 22 nm ZnONPs, artificial seawater Exposure time 96 h 20 °C, 21 days | Chronic test, Reproduction (spawning rate, time to hatch, Nb of nauplii)/Decrease | [104] |
ZVI ** | Pb(II), Cd(II), Zn(II) | Bacterium Vibrio fischeri | ZVI 67 nm, Microtox® Test, Exposure time 5 min | Toxicity impact index / Increase (Pb(II)); antagonistic interaction Decrease (Cd(II), Zn(II)) Synergistic interaction | [115] |
ZVI | Pb(II), Cd(II), Zn(II) | Nematode Caenorhabditis elegans | ZVI 67 nm, Exposure time 96 h | Growth, reproduction, survival Improvement (Cd(II), Zn(II)) No effect (Pb(II)) | [115] |
ZVI | Pb(II), Cd(II), Zn(II) | Green alga Scenedesmus intermedius | ZVI 67 nm, Exposure time 72h | Growth rate inhibition NOEC b, IC50 c/Increase | [115] |
ZVI | Pb(II), Cd(II), Zn(II) | Cyanobacterium Microcystis aeruginosa | ZVI 67 nm, Exposure time 72h | Growth rate inhibition NOEC, IC50/Increase | [115] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Liu, W.; Slaveykova, V.I. Effects of Mixtures of Engineered Nanoparticles and Metallic Pollutants on Aquatic Organisms. Environments 2020, 7, 27. https://doi.org/10.3390/environments7040027
Li M, Liu W, Slaveykova VI. Effects of Mixtures of Engineered Nanoparticles and Metallic Pollutants on Aquatic Organisms. Environments. 2020; 7(4):27. https://doi.org/10.3390/environments7040027
Chicago/Turabian StyleLi, Mengting, Wei Liu, and Vera I. Slaveykova. 2020. "Effects of Mixtures of Engineered Nanoparticles and Metallic Pollutants on Aquatic Organisms" Environments 7, no. 4: 27. https://doi.org/10.3390/environments7040027
APA StyleLi, M., Liu, W., & Slaveykova, V. I. (2020). Effects of Mixtures of Engineered Nanoparticles and Metallic Pollutants on Aquatic Organisms. Environments, 7(4), 27. https://doi.org/10.3390/environments7040027