Effect Of Rapeseed Oil and Mineral Additive in Pig Diet on Physicochemical and Sensory Parameters of Cured Ham
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feeding Experiment
2.2. Cured Ham Production
2.3. Cured Ham Quality Analysis
2.3.1. Weight Losses and Yield of the Production Process
2.3.2. Instrumental Color Measurement
2.3.3. Instrumental Texture Analyses–Shear Force
2.3.4. Sensory Evaluation
2.3.5. Fatty Acids Analyses
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giovannucci, E. A framework to understand diet, physical activity, body weight, and cancer risk. Cancer Causes Control 2018, 29, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mielczarek, A.; Osek, M.; Olkowski, B.; Klocek, B.; Lipnicka, A. The comparison of fattening results, slaughter value and meat quality of pig crossbreeds pulawska x polish large white and polish landrace x polish large white. Acta Sci. Pol. Zootech. 2012, 11, 31–40. [Google Scholar]
- Rosenvold, K.; Andersen, H.J. Factors of significance for pork quality. A review. Meat Sci. 2003, 64, 219–237. [Google Scholar] [CrossRef]
- Andersen, H.J.; Oksbjerg, N.; Young, J.F.; Therkildsen, M. Feeding and meat quality-a future approach. Meat Sci. 2005, 70, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Calvo, L.; Segura, J.; Toldrá, F.; Flores, M.; Rodríguez, A.I.; López-Bote, C.J.; Rey, A.I. Meat quality, free fatty acid concentration, and oxidative stability of pork from animals fed diets containing different sources of selenium. Food Sci. Technol. Int. 2017, 23, 716–728. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Li, T.S.; Kim, I.H. Effects of protected omega-3 fatty acid derived from linseed oil and vitamin E on growth performance, apparent digestibility, blood characteristics and meat quality of finishing pigs. Anim. Prod. Sci. 2017, 57, 1085–1090. [Google Scholar] [CrossRef]
- Pennington, J.A.T. Food composition databases for bioactive components. J. Food Comp. Anal. 2002, 15, 419–434. [Google Scholar] [CrossRef]
- Apple, J.K. Nutritional Effects on Pork Quality in Swine Production. Pork Information Gateway. 2015. Available online: https://porkgateway.org/resource/nutritional-effects-on-pork-quality-in-swine-production-2/ (accessed on 18 August 2020).
- Jasińska, K.; Kurek, M.A. The effect of oil plants supplementation in pig diet on quality and nutritive value of pork meat. Anim. Sci. Pap. Rep. 2017, 35, 137–146. [Google Scholar]
- Nuernberg, K.; Fischer, K.; Nuernberg, G.; Kuechenmeister, U.; Klosowska, D.; Eliminowska-Wenda, G.; Fiedler, I.; Ender, K. Effect of dietary olive and linseed oil lipid composition, meat quality, sensory characteristics and muscle structure in pigs. Meat Sci. 2005, 70, 63–74. [Google Scholar] [CrossRef]
- Realini, C.E.; Duran-Montgé, P.; Lizardo, R.G.; Gispert, M.; Oliver, M.A.; Estevegarcia, E. Effect of source of dietary on pig performance, carcass characteristics and carcass fat content, distribution and fatty acid composition. Meat Sci. 2010, 85, 606–612. [Google Scholar] [CrossRef]
- Ranucci, D.; Beghelli, D.; Trabalza-Marinucci, T.; Branciari, R.; Forte, C.; Olivieri, O.; Badillo Pazmay, G.V.; Cavallucci, C.; Acuti, G. Dietary effects of a mix derived from oregano (Origanum vulgare L.) essential oil and sweet chestnut (Castanea sativa Mill.) wood extract on pig performance, oxidative status and pork quality traits. Meat Sci. 2015, 100, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2003, 66, 21–32. [Google Scholar] [CrossRef]
- Corino, C.; Magni, S.; Pagliarini, E.; Rossi, R.; Pastorelli, G.; Chiesa, L.M. Effects of dietary fats on meat quality and sensory characteristics of heavy pig lions. Meat Sci. 2002, 60, 1–8. [Google Scholar] [CrossRef]
- Haak, L.; Raes, K.; Smet, K.; Claeys, E.; Paelinck, H.; De Smet, S. Effect of dietary antioxidant and fatty acid supply on the oxidative stability of fresh and cooked meat. Meat Sci. 2006, 74, 476–486. [Google Scholar] [CrossRef]
- Estevez, M. Oxidative damage to poultry: From farm to fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [CrossRef]
- Siger, A.; Gawrysiak-Witulska, M.; Bartkowiak-Broda, I. Antioxidant (tocopherol and canolol) content in rapeseed oil obtained from roasted yellow-seeded Brassica napus. J. Am. Oil Chem. Soc. 2017, 94, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Szydłowska-Czerniak, A.; Rabiej, D. Octyl sinapate as a new antioxidant to improve oxidative stability and antioxidant activity of rapeseed oil during accelerated storage. Eur. Food Res. Technol. 2018, 244, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.M.S.; Schuhmacher, A.; Gropp, J.M. Humic acid substances in animal agriculture. PJN 2005, 4, 126–134. [Google Scholar]
- Grzelak, A.; Bubel, F.; Tronina, P.; Tronina, S. Method of Manufacturing of Humic-Herbal-Mineral Preparations. Patent No. PL215300-B1, 25 September 2008. [Google Scholar]
- Humokarbowit Description. Available online: http://www.tronina.pl/oferta/humokarbowit/ (accessed on 16 September 2020).
- Salejda, A.M.; Krasnowska, G. Effect of dietary rapeseed oil and humus-containing mineral preparation on cholesterol and cholesterol oxidation products content in pork. Eur. Food Res. Technol. 2016, 242, 1441–1446. [Google Scholar] [CrossRef] [Green Version]
- PN-ISO 4121:1998 Sensory Analysis-Methodology-Evaluation of Food Products by Method Using Scales; Polish Committee for Standardization: Warszawa, Poland, 1998.
- Lewless, H.T.; Hildegarde, H. Sensory Evaluation of Food. Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- PN-EN ISO 5509:2001 Animal and Vegetable Fats and Oils-Preparation of Methyl Esters of Fatty Acids; Polish National Standard Based on ISO 5509:2000; Polish Committee for Standardization: Warszawa, Poland, 2001.
- Stelmasiak, A.; Wyrwisz, J.; Wierzbicka, A. Pig diet with bioactive compounds influences quality of meat and smoked ham. S. Afr. J. Anim. Sci. 2018, 48, 1032–1041. [Google Scholar] [CrossRef]
- Huff-Lonergan, E. Chemistry and biochemistry of meat. In Handbook of Meat Processing; Toldra, F., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 5–25. [Google Scholar]
- Chiavaro, E.; Rinaldi, M.; Vittadini, E.; Barbanti, D. Cooking of pork Longissimus dorsi at different temperature and relative humidity values: Effects on selected physico-chemical properties. J. Food Eng. 2009, 93, 158–165. [Google Scholar] [CrossRef]
- Hayes, J.E.; Stepanyan, V.; Allen, P.; O’Grady, M.N.; Kerry, J.P. Evaluation of the effects of selected plant-derived nutraceuticals on the quality and shelf-life stability of raw and cooked pork sausages. LWT Food Sci. Technol. 2011, 44, 164–172. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Yatoo, M.I.; Bhatt, P.; Khurana, S.K.; et al. Omega-3 and omega-6 fatty acids in poultry nutrition: Effect on production performance and health. Animals 2019, 9, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leikus, R.; Juskiene, V.; Juska, R.; Juodka, R.; Stankeviciene, D.; Nainiene, R.; Siukscius, A. Effect of linseed oil sediment in the diet of pigs on the growth performance and fatty acid profile of meat. R. Bras. Zootec. 2018, 47, e20170104. [Google Scholar] [CrossRef] [Green Version]
- Sobol, M.; Raj, S.; Skiba, G. Effect of fat content in primal cuts of pigs fed diet enriched in n-3 polyunsaturated fatty acids on health-promoting properties of pork. J. Anim. Feed Sci. 2016, 25, 20–28. [Google Scholar] [CrossRef]
- Schiavone, A.; Marzoni, M.; Castillo, A.; Nery, J.; Romboli, I. Dietary lipid sources and vitamin E affect fatty acid composition or lipid stability of breast meat from Muscovy duck. Can. J. Anim. Sci. 2010, 90, 371–378. [Google Scholar] [CrossRef]
- Kishawy, A.T.; Amer, S.A.; Abd El-Hack, M.E.; Saadeldin, I.M.; Swelum, A.A. The impact of dietary linseed oil and pomegranate peel extract on broiler growth, carcass traits, serum lipid profile, and meat fatty acid, phenol, and flavonoid contents. Asian Australas. J. Anim. Sci. 2019, 32, 1161–1171. [Google Scholar] [CrossRef]
- Zykova, M.V.; Schepetkin, I.A.; Belousov, M.V.; Krivoshchekov, S.V.; Logvinova, L.A.; Bratishko, K.A.; Yusubov, M.S.; Romanenko, S.V.; Quinn, M.T. Physicochemical characterization and antioxidant activity of humic acids isolated from peat of various origins. Molecules 2018, 23, 753. [Google Scholar] [CrossRef] [Green Version]
35–50 kg Body Weight | 50–110 kg Body Weight | |
---|---|---|
Energy (kcal) | 3128 | 3105 |
Crude protein (%) | 15.9 | 15.0 |
Crude fiber (%) | 5.0 | 5.0 |
Total phosphorus (%) | 0.63 | 0.63 |
Dicalcium phosphate (%) | 0.75 | 0.72 |
Lysine (%) | 0.93 | 0.78 |
Met +Cys (%) | 0.67 | 0.68 |
Threonine (%) | 0.59 | 0.56 |
Tryptophan (%) | 0.19 | 0.18 |
Vitamin A (UI) | 8000 | 5000 |
Vitamin D3 (UI) | 1390 | 870 |
Vitamin E (UI) | 91 | 60 |
Parameter | Feeding Groups | |||
---|---|---|---|---|
ND | SD | |||
Crude protein (%), n = 60 | 22.6 a | 22.1 a | X | |
0.91 | 0.99 | sd | ||
Crude fat (%), n = 60 | 2.67 a | 3.25 b | X | |
0.12 | 0.16 | sd | ||
Water (%), n = 60 | 73.5 a | 73.9 a | X | |
0.70 | 0.62 | sd | ||
pH value, n = 40 | 5.51 a | 5.57 a | X | |
0.12 | 0.11 | sd | ||
Drip loss (%), n = 30 | 3.53 a | 3.56 a | X | |
0.68 | 0.73 | sd | ||
Color, n = 100 | L | 44.3 a | 43.9 a | X |
1.58 | 2.17 | sd | ||
a | 10.3 a | 11.04 a | X | |
1.61 | 1.79 | sd | ||
b | −1.56 a | −1.25 a | X | |
1.10 | 1.92 | sd |
Characteristics | Feeding Groups | |||
---|---|---|---|---|
ND | SD | |||
Weight losses (%), n = 12 | 10.1 a | 10.1 a | X | |
0.85 | 0.8 | sd | ||
Production yield (%), n = 12 | 95.8 a | 95.7 a | X | |
0.85 | 0.8 | sd | ||
Shear force (N), n = 96 | 29.5 a | 27.3 a | X | |
1.67 | 1.66 | sd | ||
Color parameters n = 60 | L | 70.8 a | 68.8 b | X |
2.03 | 1.81 | sd | ||
a | 10.5 a | 11.2 b | X | |
1.15 | 0.93 | sd | ||
b | 3.92 b | 3.25 a | X | |
0.53 | 0.58 | sd |
Fatty Acid Groups (%) | Feeding Groups | ||
---|---|---|---|
ND | SD | ||
Saturated | X | 37.7 b | 35.3 a |
sd | 0.36 | 0.7 | |
Monoenoic fatty acids | X | 46.7 a | 48.2 b |
sd | 0.6 | 0.6 | |
Polyenoic fatty acids | X | 15.6 a | 16.4 b |
sd | 0.4 | 0.1 | |
N-3 polyenoic fatty acids | X | 0.65 a | 1.71 b |
sd | 0.06 | 0.1 | |
N-6 polyenoic fatty acids | X | 14.9 b | 14.7 a |
sd | 0.65 | 0.6 | |
Ratio n-6/n-3 | X | 23.0/1 b | 8.6/1 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salejda, A.M.; Krasnowska, G.; Korzeniowska, M.; Mazur, M.; Zwyrzykowska-Wodzińska, A. Effect Of Rapeseed Oil and Mineral Additive in Pig Diet on Physicochemical and Sensory Parameters of Cured Ham. Appl. Sci. 2020, 10, 6796. https://doi.org/10.3390/app10196796
Salejda AM, Krasnowska G, Korzeniowska M, Mazur M, Zwyrzykowska-Wodzińska A. Effect Of Rapeseed Oil and Mineral Additive in Pig Diet on Physicochemical and Sensory Parameters of Cured Ham. Applied Sciences. 2020; 10(19):6796. https://doi.org/10.3390/app10196796
Chicago/Turabian StyleSalejda, Anna Marietta, Grażyna Krasnowska, Małgorzata Korzeniowska, Monika Mazur, and Anna Zwyrzykowska-Wodzińska. 2020. "Effect Of Rapeseed Oil and Mineral Additive in Pig Diet on Physicochemical and Sensory Parameters of Cured Ham" Applied Sciences 10, no. 19: 6796. https://doi.org/10.3390/app10196796
APA StyleSalejda, A. M., Krasnowska, G., Korzeniowska, M., Mazur, M., & Zwyrzykowska-Wodzińska, A. (2020). Effect Of Rapeseed Oil and Mineral Additive in Pig Diet on Physicochemical and Sensory Parameters of Cured Ham. Applied Sciences, 10(19), 6796. https://doi.org/10.3390/app10196796