Multigap Resistive Plate Chambers for Time of Flight Applications
Abstract
:1. Introduction
2. Description of MRPC Detector
3. Applications in Large Experiments
3.1. STAR Experiment in RHIC
3.1.1. The STAR MRPC
3.1.2. The STAR-ToF System
3.1.3. The PID Performance
3.2. CBM Experiment in GSI
3.2.1. The CBM-ToF System
3.2.2. High-Rate MRPC
3.2.3. Aging Test of a High-Rate MRPC
3.2.4. FAIR Phase 0 Programs
3.3. Developments for Future ToF Systems
3.3.1. High Rate and Ultrahigh Time Resolution MRPC
3.3.2. The New Time Reconstruction Algorithm
3.3.3. Gas Related Studies
3.4. A Brief Summary
4. Conclusions and Outlook
- At present, unfriendly gases with high GWP are used. A big research effort must be continually put into studying the eco gas mixtures for MRPC to work stably in different conditions;
- High rate and high space–time resolution MRPCs with integration and reliability would have considerable potential for development and future applications.
Author Contributions
Funding
Conflicts of Interest
References
- Lippmann, C. Particle identification. Nucl. Instrum. Methods A 2012, 666, 148–172. [Google Scholar] [CrossRef] [Green Version]
- Akimov, V.A.; Akindinov, V.A.; Boyarinov, S.V.; Voloshin, K.G.; Vorobyev, L.S.; Grishuk, Y.G.; Zagreev, B.V.; Kats, M.M.; Kiselev, S.M.; Martemiyanov, A.N.; et al. A parallel-plate chamber as a detector for time-of-flight measurements. Instrum. Exp. Tech. 2002, 45, 493–500. [Google Scholar] [CrossRef]
- Akimov, V.A.; Akindinov, V.A.; Boyarinov, S.V.; Voloshin, K.G.; Vorobyev, L.S.; Grishuk, Y.G.; Zagreev, B.V.; Kats, M.M.; Kiselev, S.M.; Martemiyanov, A.N.; et al. Studying the characteristics and optimizing the parameters of a parallel-plate chamber used as a detector for time-of-flight measurements. Instrum. Exp. Tech. 2004, 47, 589–597. [Google Scholar] [CrossRef]
- Rizzo, A.; Narici, L.; Messi, R.; Cipollone, P.; De Donato, C.; Di Fino, L.; Iannlli, M.; La Tessa, C.; Manea, C.; Masciantoni, G. A compact time-of-flight detector for space applications: The LIDAL system. Nucl. Instrum. Methods A 2018, 898, 98–104. [Google Scholar] [CrossRef]
- Zhao, J.W.; Sun, B.H.; Tanihata, I.; Terashima, S.; Zhu, L.H.; Enomoto, A.; Nagae, D.; Nishimura, T.; Omika, S.; Ozawa, A. Reaching time resolution of less than 10 ps with plastic scintillation detectors. Nucl. Instrum. Methods A 2016, 823, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Cumalat, J.P.; Cheung, H.W.K.; Hassed, J.; Smith, B.D. Effects of magnetic fields on the light yield of scintillators. Nucl. Instrum. Methods A 1990, 293, 606–614. [Google Scholar] [CrossRef]
- Buzhan, P.; Dolgoshein, B.; Filatov, L.; Ilyin, A.; Kantzerov, V.; Kaplin, V.; Karakash, A.; Kayumov, F.; Klemin, S.; Popova, E.; et al. Silicon photomultiplier and its possible applications. Nucl. Instrum. Methods A 2003, 504, 48–52. [Google Scholar] [CrossRef]
- Herbert, D.J.; Saveliev, V.; Blecari, N.; D’Ascenzo, A.; Golovin, A. First results of scintillator readout with silicon photomultiplier. IEEE Trans. Nucl. Sci. 2006, 53, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Carnesecchi, F.; Agrawal, N.; Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Cavazza, D.; Cifarelli, L.; Cindolo, F. Experimental study of the time resolution of SiPM coupled to scintillator. Nucl. Instrum. Methods A 2020, 982, 164484. [Google Scholar] [CrossRef]
- Alicia, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Belline, F.; Carnessechi, F.; Cavaza, D.; Cifarelli, L.; Cindolo, F.; Colacci, M. Time resolution measurements with SiPMs coupled to a scintillator. J. Instrum. 2018, 14, P09012. [Google Scholar] [CrossRef] [Green Version]
- Apollinari, G.; Alonso, B.; Bruning, O.; Lamont, M.; Rossi, L. High-luminosity large hadron collider (HL-LHC): Preliminary design report. Tech. Rep. 2015. [Google Scholar] [CrossRef]
- Vinke, R.; Löhner, H.; Schaart, D.R.; van Dam, H.T.; Seifert, S.; Beekman, F.J.; Dendooven, P. Optimizing the timing resolution of SiPM sensors for use in TOF-PET detectors. Nucl. Instrum. Methods A 2009, 610, 188–191. [Google Scholar] [CrossRef]
- Powolny, F.; Auffray, E.; Brunner, S.E.; Goettlich, M.; Hillemans, H.; Jarron, P.; Lecoq, P.; Meyer, T.; Shultz, H.C. Time-based readout of a silicon photomultiplier (SiPM) for time of flight positron emission tomography (TOF-PET). IEEE Trans. Nuc. Sci. 2011, 58, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, G.; Fernández-Martínez, P.; Baselga, M.; Fleta, C.; Flores, D.; Greco, V.; Hidalgo, S.; Mandic, I.; Krambergs, G.; Quiron, D. Technology developments and first measurements of low gain avalanche detectors (LGAD) for high energy physics applications. Nucl. Instrum. Methods A 2014, 765, 12–16. [Google Scholar] [CrossRef]
- Yang, X.; Alderweireldt, S.; Atanov, N.; Ayoub, M.K.; da Costa, J.; García, L.C.; Chen, H.; Christie, S.; Cindro, V.; Cui, H.; et al. Layout and performance of HPK prototype LGAD sensors for the high-granularity timing detector. Nucl. Instrum. Methods A 2020, 980, 164379. [Google Scholar] [CrossRef]
- Cartigliaa, N.; Staiano, A.; Vola, S.; Arcidiacono, R.; Cirio, R.; Cenna, F.; Ferreo, M.; Monaco, V.; Mulargia, R.; Obertino, M. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors. Nucl. Instrum. Methods A 2017, 850, 83–88. [Google Scholar] [CrossRef]
- Breton, D.; Delagnes, E.; Maalami, J.; Nishimura, K.; Ruckman, L.L.; Varner, G.; Vavra, J. High resolution photon timing with MCP-PMTs: A comparison of a commercial constant fraction discriminator (CFD) with the ASIC-based waveform digitizers TARGET and WaveCatcher. Nucl. Instrum. Methods A 2011, 629, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Barnyakov, A.Y.; Barnyakov, M.Y.; Blinov, M.E.; Bobrovnikov, V.S.; Bykov, A.V.; Ivanov, V.Y.; Katchin, A.A.; Mamoshina, E.V.; Ovtin, I.V.; Petrukhin, K.G. Development of a picosecond MCP based particle detector. Nucl. Instrum. Methods A 2020, 952, 161831. [Google Scholar] [CrossRef]
- Va’vra, J. PID techniques: Alternatives to RICH methods. Nucl. Instrum. Methods A 2017, 876, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Sykora, T. ATLAS Collaboration. ATLAS Forward Proton Time-of-Flight Detector: LHC Run2 performance and experiences. J. Instrum. 2020, 15, C10004. [Google Scholar] [CrossRef]
- Wang, X.Z.; Sun, Y.J.; Li, C.; Heng, Y.K.; Wu, Z.; Cao, P.; Dai, H.L.; Ji, X.L.; Gong, W.X.; Liu, Z. The upgrade system of BESIII ETOF with MRPC technology. J. Instrum. 2016, 11, C08009. [Google Scholar] [CrossRef] [Green Version]
- Akindinov, A.; Alici, A.; Antonioli, P.; Arcelli, S.; Baek, Y.W.; Basile, M.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; De Caro, A.; et al. Final test of the MRPC production for the ALICE TOF detector. Nucl. Instrum. Methods A 2009, 602, 709–712. [Google Scholar] [CrossRef]
- Akindinov, A.; Alici, A.; Antonioli, P.; Arcelli, S.; Basille, M.; Bellini, F.; Caffari, D.; Cara Romeo, G.; Ciffarlli, L.; Cindolo, F.; et al. The MRPC-based ALICE time-of-flight detector: Commissioning and first performance. Nucl. Instrum. Methods A 2012, 661, S98–S101. [Google Scholar] [CrossRef]
- Carnesecchi, F. Performance of the ALICE time-of-flight detector at the LHC. J. Instrum. 2019, 14, C06023. [Google Scholar] [CrossRef] [Green Version]
- Deppner, I.; Herrmann, N.; Akindinov, A.; Bartos, D.; Balaceanu, A.; Belugorov, S.; Cao, P. The CBM Time-of-Flight wall—A conceptual design. J. Instrum. 2014, 9, C10014. [Google Scholar] [CrossRef]
- Wang, Y.; Lyu, P.; Huang, X.; Han, D.; Xie, B.; Li, Y.; Herrmann, N.; Deppner, I.; Simon, C.; Loizeau, P.A. Development and test o f a real-size MRPC for CBM-TOF. J. Instrum. 2016, 11, C08007. [Google Scholar] [CrossRef] [Green Version]
- Bonner, B.; Eppley, G.; Lamas-Valverde, J.; Llope, W.J.; Nussbaum, T.; Platner, E.; Roberts, J.; Cerron, E. A multigap resistive plate chamber prototype for time-of-flight for the STAR experiment at RHIC. Nucl. Instrum. Methods A 2002, 478, 176–179. [Google Scholar] [CrossRef]
- Bonner, B.; Chen, H.; Geurts, F.; Lamas-Valverde, J.; Li, C.; Llope, W.J.; Nussmaum, T.; Platner, E.; Roberts, J. A single time-of-flight tray based on multigap resistive plate chambers for the STAR experiment at RHIC. Nucl. Instrum. Methods A 2003, 508, 181–184. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.B.; Cheng, J.; Li, Y.; Chen, H.; Li, J. Production and quality control of star-tof MRPC. Nucl. Instrum. Methods A 2010, 613, 200–206. [Google Scholar] [CrossRef]
- Park, S. Production of RPC gaps for the PHENIX upgrade. Nucl. Instrum. Methods A 2012, 661, S82–S85. [Google Scholar] [CrossRef]
- Santonico, R.; Cardarelli, R. Development of resistive plate counters. Nucl. Instrum. Methods A 1981, 187, 377–380. [Google Scholar] [CrossRef]
- Riegler, W.; Lippmann, C.; Veenhof, R. Detector physics and simulation of resistive plate chambers. Nucl. Instrum. Methods A 2003, 500, 144–162. [Google Scholar] [CrossRef] [Green Version]
- Cerron Zeballos, E.; Crotty, I.; Hatzifotidau, D.; Lamas Valverde, J.; Neupane, S.; Williams, M.C.S.; Zichichi, A. A new type of resistive plate chamber: The multigap RPC. Nucl. Instrum. Methods A 1996, 374, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Townsend, J.S. The conductivity produced in gases by the motion of negatively-charged ions. Nature 1900, 62, 340–341. [Google Scholar] [CrossRef] [Green Version]
- Lippmann, C.; Riegler, W. Space charge effects in resistive plate chambers. Nucl. Instrum. Methods A 2004, 517, 54–76. [Google Scholar] [CrossRef] [Green Version]
- Fonte, P. Survey of physical modelling in resistive plate chambers. J. Instrum. 2013, 8, P08007. [Google Scholar] [CrossRef] [Green Version]
- Lippmann, C.; Riegler, W. Detailed RPC avalanche simulations. Nucl. Instrum. Methods A 2004, 533, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Abbrescia, M.; Colaleo, A. Progresses in the simulation of resistive plate chambers in avalanche mode. Nucl. Phys. B Proc. Suppl. 1999, 78, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Riegler, W. Induced signals in resistive plate chambers. Nucl. Instrum. Methods A 2002, 491, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Ramo, S. Currents induced by electron motion. Proc. IRE 1939, 27, 584–585. [Google Scholar] [CrossRef]
- Riegler, W. Extended theorems for signal induction in particle detectors VCI 2004. Nucl. Instrum. Methods A 2004, 535, 287–293. [Google Scholar] [CrossRef]
- Riegler, W.; Burgarth, D. Signal propagation, termination, crosstalk and losses in resistive plate chambers. Nucl. Instrum. Methods A 2002, 481, 130–143. [Google Scholar] [CrossRef] [Green Version]
- Fonte, P. Frequency-domain formulation of signal propagation in multistrip resistive plate chambers and its low-loss, weak-coupling analytical approximation. J. Instrum. 2019, 14, C09020. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Diaz, D.; Chen, H.; Wang, Y. Signal coupling and signal integrity in multi-strip resistive plate chambers used for timing applications. Nucl. Instrum. Methods A 2011, 648, 52–72. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wang, Y.; Han, D.; Chen, X.; Lyu, P.; Wang, F.; Li, Y. Simulation and measurement of the impedance of transmission lines in MRPC detector. J. Instrum. 2019, 14, T11006. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Y.; Han, D.; Chen, X.; Lyu, P.; Wang, F. Study of transmission-line impedance of strip lines in an MRPC detector. Nucl. Instrum. Methods A 2020, 953, 163152. [Google Scholar] [CrossRef]
- Harrison, M.; Ludlam, T.; Ozaki, S. RHIC project overview. Nucl. Instrum. Methods A 2003, 499, 235–244. [Google Scholar] [CrossRef] [Green Version]
- STAR Collaboration. The STAR experiment at the relativistic heavy ion collider. Nuc. Phys. A 1994, 566, 277c–286c. [Google Scholar] [CrossRef] [Green Version]
- The STAR TOF Collaboration. Proposal for a Large Area Time of Flight System for STAR. Available online: https://www.star.bnl.gov/public/tof/publications/TOF_20040524.pdf (accessed on 1 July 2020).
- Anghinolfi, F.; Jarron, P.; Krummenacher, F.; Usenko, E.; Williams, M.S.C. NINO: An ultrafast low-power front-end amplifier discriminator for the time-of-flight detector in the ALICE experiment. IEEE Trans. Nucl. Sci. 2005, 51, 1974–1978. [Google Scholar] [CrossRef] [Green Version]
- Anghinolfi, F.; Jarron, P.; Martemiyanov, A.N.; Usenko, E.; Wenniger, H.; Williams, M.C.S.; Zichichi, A. NINO: An ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the multigap resistive plate chamber. Nucl. Instrum. Methods A 2004, 533, 183–187. [Google Scholar] [CrossRef]
- Christiansen, J. High Performance Time to Digital Converter Manual. Available online: https://tdc.web.cern.ch/TDC/hptdc/docs/hptdc_manual_ver2.2.pdf (accessed on 1 July 2020).
- Mota, M.; Christiansen, J.; Debieux, S.; Ryjov, V.; Moreira, P.; Marchioro, A. A flexible multichannel high-resolution time-to-digital converter ASIC. In Proceedings of the 2000 IEEE Nuclear Science Symposium Conference Record, Lyon, France, 15–20 October 2000; Volume 2, pp. 9/155–9/159. [Google Scholar] [CrossRef]
- Schambach, J.; Hoffmann, G.; Eppley, G.; Hoffmann, J.; Kajimato, K.; Liu, J.; Llope, W.J.; Mesa, C.; Nussbaum, T. Star time of flight readout electronics, daq, and cosmic ray test stand. Int. J. Modern Phys. E 2007, 16, 2496–2502. [Google Scholar] [CrossRef]
- Llope, W.J.; STAR Collaboration. Multigap RPCs in the STAR experiment at RHIC. Nucl. Instrum. Methods A 2012, 661, S110–S113. [Google Scholar] [CrossRef]
- Llope, W.J.; Geurts, F.; Mitchell, J.W.; Liu, Z.; Adams, N.; Eppley, G.; Keane, D.; Li, J.; Liu, F.; Liu, L.; et al. The TOFp/pVPD time-of-flight system for STAR. Nucl. Instrum. Methods A 2004, 522, 252–273. [Google Scholar] [CrossRef] [Green Version]
- STAR Collaboration. Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at s = 200 GeV. Phys. Lett. B 2005, 616, 8–16. [Google Scholar] [CrossRef]
- Shao, M.; Barannikova, O.; Dong, X.; Fisyak, Y.; Ruan, L.; Sorensen, P.; Xu, Z. Extensive particle identification with TPC and TOF at the STAR experiment. Nucl. Instrum. Methods A 2006, 558, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.; Aggarwal, M.M. Open charm Yields in d+Au Collisions at √(sNN) = 200 GeV. Phys. Rev. Lett. 2005, 94, 062301. [Google Scholar] [CrossRef] [Green Version]
- Star Collaboration; Agakishiev, H.; Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Alekseev, I.; Alford, J.; Anderson, B.D.; Anson, C.D.; Arkhipkin, D.; et al. Observation of the antimatter helium-4 nucleus. Nature 2011, 473, 353–356. [Google Scholar]
- Friese, V. The CBM experiment at GSI/FAIR. Nucl. Phys. A 2006, 774, 377–386. [Google Scholar] [CrossRef]
- Herrmann, N. Technical Design Report for the CBM Time-of-Flight System (TOF). Available online: http://repository.gsi.de/record/109024 (accessed on 6 July 2020).
- Deppner, I.; Herrmann, N. The CBM time-of-flight system. J. Instrum. 2019, 14, C09020. [Google Scholar] [CrossRef] [Green Version]
- Santonico, R. Development of a new generation of Resistive Plate Chambers for high radiation environment. In Proceedings of the ECFA High Luminosity LHC Experiments Workshop, Aix-les-Bains, France, 21–23 October 2014. [Google Scholar]
- Carboni, G.; Collazuol, G.; De Capua, S.; Domenici, D.; Ganis, G.; Messi, R.; Pesseleva, G.; Santovetti, E.; Veltri, M. A model for RPC detectors operated at high rate. Nucl. Instrum. Methods A 2003, 498, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, Y.; Gonzales-Dias, D.; Chen, H.; Fan, X.; Li, Y.; Cheng, J.; Kaspar, M.; Kotte, R.; Lasp Garica, A.; et al. Development of high-rate MRPCs for high resolution time-of-flight systems. Nucl. Instrum. Methods A 2013, 713, 40–51. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Lyu, P.; Han, D.; Guo, B.; Li, Y. Development and production of high rate MRPC for CBM TOF. JPS Conf. Proc. 2019, 26, 024006. [Google Scholar]
- Yu, Y.; Han, D.; Wang, Y.; Guo, B.; Lyu, P.; Chen, X.; Wang, F.; Li, Y.; Cimmino, A. R&D of a real-size Mosaic MRPC within the framework of the CMS muon upgrade. J. Instrum. 2019, 14, C10042. [Google Scholar]
- Ciobanu, M.; Herrmann, N.; Hildenbrand, K.D.; Kis, M.; Schuttaf, A.; Flemming, H.; Deppe, H.; Lochner, S.; Fruhauf, J.; Deppner, I.; et al. PADI, an ultrafast preamplifier—discriminator ASIC for time-of-flight measurements. IEEE Trans. Nucl. Sci. 2014, 61, 1015–1023. [Google Scholar] [CrossRef]
- Deppe, H.; Flemming, H. The GSI event-driven TDC with 4 channels GET4. In Proceedings of the IEEE Nuclear Science Symposim Conference Record, Orlando, FL, USA, 24 October–1 November 2009; pp. 295–298. [Google Scholar]
- Lyu, P.; Han, D.; Wang, Y.; Zhang, Q.; Guo, B.; Wang, F.; Yu, Y.; Chen, X.; Li, Y.; Hermann, N. Study on cosmic test and QC method of high-rate MRPC for CBM-TOF. J. Instrum. 2019, 14, C09032. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Feng, S.Q.; Xie, B.; Lv, P.; Wang, F.; Guo, B.; Han, D.; Li, Y. Online aging study of a high rate MRPC. Chin. Phys. C 2016, 40, 056002. [Google Scholar] [CrossRef] [Green Version]
- Deppner, I.; Herrmann, N. The FAIR Phase 0 program of the CBM TOF. J. Instrum. 2020, 15, C10030. [Google Scholar] [CrossRef]
- Zhang, Q.; Deppner, I.; Hermann, N.; Wang, Y. mTOF performance during mCBM beam time at GSI. arXiv 2006, arXiv:2006.00388. [Google Scholar]
- The STAR Collaboration and the CBM Collaboration eTOF Group. Physics program for the STAR/CBM eTOF upgrade. arXiv 2016, arXiv:1609.05102v1. [Google Scholar]
- Dudek, J.; Ent, R.; Essig, R.; Kumar, K.S.; Meyer, C.; McKeown, R.D.; Meziani, Z.E.; Miller, G.A.; Pennigton, M.; Richards, D.; et al. Physics opportunities with the 12 gev upgrade at jefferson lab. Euro. Phys. J. A 2012, 48, 187. [Google Scholar] [CrossRef]
- Cardman, L.S.; JLab 12 GeV Project Team. The JLAB 12 GEV energy upgrade of CEBAF for QCD and hadronic physics. In Proceedings of the IEEE Particle Accelerator Conference (PAC), Albuquerque, NM, USA, 25–29 June 2007; pp. 58–62. [Google Scholar]
- Accardi, A.; Albacete, J.L.; Anselmino, M.; Armesto, N.; Aschenauer, E.C.; Bacchetta, A.; Boer, D.; Brooks, W.K.; Burton, T.; Chang, N.B.; et al. Electron-Ion Collider: The next QCD frontier. Eur. Phys. J. A 2016, 52, 268. [Google Scholar] [CrossRef] [Green Version]
- The SoLID Collaboration. SoLID (Solenoidal Large Intensity Device) Updated Preliminary Conceptual Design Report. Available online: https://hallaweb.jlab.org/12GeV/SoLID/download/doc/solid_precdr_2017.pdf (accessed on 6 July 2020).
- The SOLID Collaboration; Chen, J.P. A white paper on SoLID (Solenoidal Large Intensity Device). arXiv 2014, arXiv:1409.7741. [Google Scholar]
- Electron-Ion Collider Detector Requirements and R&D Handbook, February 2020. Available online: http://eicug.org/web/sites/default/files/EIC_HANDBOOK_v1.1.pdf (accessed on 16 June 2020).
- An, S.; Jo, Y.K.; Kim, J.S.; Kim, M.M.; Hatzifotidau, D.; Williams, M.C.S.; Zichichi, A.; Zuyeski, R. 20 ps timing device—A multigap resistive plate chamber with 24 gas gaps. Nucl. Instrum. Methods A 2008, 594, 39–43. [Google Scholar] [CrossRef]
- Liu, Z.; Carnesecchi, F.; Rodriguez, O.M.; Zichichi, A.; Zuyeski, R. 20 gas gaps multigap resistive plate chamber: Improved rate capability with excellent time resolution. Nucl. Instrum. Methods A 2018, 908, 383–387. [Google Scholar] [CrossRef]
- Liu, Z.; Carnesecchi, F.; Williams, M.C.S.; Zichichi, A.; Zuyeski, R. Timing performance study of multigap resistive plate chamber with different gap size. Nucl. Instrum. Methods A 2019, 927, 396–400. [Google Scholar] [CrossRef]
- Liu, Z.; Beyer, R.; Dreyer, J.; Fan, X.; Greifenhagen, R.; Kim, D.W.; Kotte, R.; Laso Garcia, A.; Naumann, L.; Romer, K.; et al. Novel low resistivity glass: MRPC detectors for ultra high rate applications. Nucl. Instrum. Methods A 2020, 959, 163483. [Google Scholar] [CrossRef]
- Wang, F.; Han, D.; Wang, Y.; Zhag, Q.; Guo, B.; Li, Y. A standalone simulation framework of the MRPC detector read out in waveforms. J. Instrum. 2018, 13, P09007. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Han, D.; Wang, F.; Wang, X.; Chen, P.; Lyu, B.; Guo, C.; Shen, C.; Zhang, Q.; Li, Y. The simulation and application of three-dimensional electrostatic weighting field in MRPC detector. J. Instrum. 2019, 14, P07020. [Google Scholar] [CrossRef]
- Apostolakis, J.; Giani, S.; Urban, L.; Maire, M.; Bagulya, A.V.; Grichine, V.M. An implementation of ionisation energy loss in very thin absorbers for the GEANT4 simulation package. Nucl. Instrum. Methods A 2000, 453, 597–605. [Google Scholar] [CrossRef]
- Wang, F.; Han, D.; Wang, Y.; Lyu, P.; Li, Y. A detail study on the intrinsic time resolution of the future MRPC detector. Nucl. Instrum. Methods A 2020, 950, 162932. [Google Scholar] [CrossRef]
- Yu, Y.; Han, D.; Wang, B.; Guo, F.; Wang, X.; Chen, P.; Lyu, C.; Shen, Q.; Zhang, L.; Yi, L. Study of high time resolution MRPC with the waveform digitizer system. J. Instrum. 2020, 15, C01049. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, L.; Yan, L.; Li, Z.; Liu, S.; An, Q. Design of a prototype readout electronics with a few picosecond time resolution for MRPC detectors. Nucl. Instrum. Methods A 2019, 925, 53–59. [Google Scholar] [CrossRef]
- Baldi, P.; Sadowski, P.; Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 2014, 5, 4308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, L.; Kagan, M.; Mackey, L. Jet-images—Deep learning edition. J. High Energy Phys. 2016, 69. [Google Scholar] [CrossRef] [Green Version]
- Dan, G.; Kyle, C.; Daniel, W. Deep Learning and Its Application to LHC Physics. Annu. Rev. Nuclear Part. Sci. 2018, 68, 161–181. [Google Scholar]
- Amrouche, S.; Braun, N.; Calafiura, P.; Farrell, S.; Gemmler, J.; Germain, C.; Gligorov, V.V.; Golling, T.; Gray, H.; Guyon, I. Track reconstruction at LHC as a collaborative data challenge use case with RAMP. Eur. Phys. J. Web Conf. 2017, 150, 00015. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Han, D.; Wang, Y.; Yu, Y.; Guo, B.; Li, Y. A neural network based algorithm for MRPC time reconstruction. J. Instrum. 2019, 14, C07006. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Han, D.; Wang, Y. Improving the time resolution of the MRPC detector using deep-learning algorithms. J. Instrum. 2020, 15, C09033. [Google Scholar] [CrossRef]
- Abbrescia, M.; Benussi, L.; Piccolo, D.; Bianco, S.; Ferrini, M.; Muhammad, S.; Passamonti, L.; Pierluigi, D.; Piccolo, D.; Primavera, F. Eco-friendly gas mixtures for resistive plate chambers based on tetrafluoropropene and helium. J. Instrum. 2016, 11, P08019. [Google Scholar] [CrossRef] [Green Version]
- Benussi, L.; Bianco, S.; Ferrini, M.; Passamonti, L.; Pierluigi, D.; Piccolo, D.; Russo, A.; Saviano, G. A study of HFO-1234ze (1,3,3,3-Tetrafluoropropene) as an eco-friendly replacement in RPC detectors. arXiv 2015, arXiv:1505.01648. [Google Scholar]
- Wang, B.; Han, D.; Wang, Y.; Chen, L.; Li, Y. The CEE-eTOF wall constructed with new sealed MRPC. J. Instrum. 2020, 15, C08022. [Google Scholar] [CrossRef]
- Akindinov, A.V.; Alici, A.; Anselmo, F.; Antonioli, P.; Basile, M.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Cosenza, F.; D’Antone, I.; et al. Study of gas mixtures and ageing of the multigap resistive plate chamber used for the Alice TOF. Nucl. Instrum. Methods A 2004, 533, 93–97. [Google Scholar] [CrossRef]
- Liu, Z.; Williams, M.C.S.; Zichichi, A.; ZyueskI, R. A multigap resistive plate chamber built with thin low-resistive glass: High rate capability with excellent time resolution. Nucl. Instrum. Methods A 2019, 928, 7–12. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, D.; Lyu, P.; Yu, Y.; Guo, X.; Wang, Y.; Li, Y. Performance of high rate MRPC with different gas mixtures. J. Instrum. 2019, 14, P01003. [Google Scholar] [CrossRef]
- Baek, Y.W.; Kim, D.W.; Park, W.S.; Williams, M.C.S.; Zuyeuski, R. MRPC with eco-friendly gas. J. Instrum. 2019, 14, C11022. [Google Scholar] [CrossRef] [Green Version]
- Baek, Y.W.; Kim, D.W.; Williams, M.C.S. Study of the ecological gas for MRPCs. Nucl. Instrum. Methods A 2019, 927, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Abbrescia, M.; Cardarelli, R.; Iaselli, G.; Natali, S.; Nuzzo, S.; Ranieri, A.; Romano, F.; Santonico, R. Resistive plate chambers performances at cosmic ray fluxes. Nucl. Instrum. Methods A 1995, 359, 603–609. [Google Scholar] [CrossRef]
- Arnaldi, R.; Baldit, A.; Barret, V.; Bastid, N.; Blanchard, G.; Chiavassa, E.; Cortese, P.; Crochet, P.; Dellacasa, G.; De Marco, N.; et al. Influence of temperature and humidity on Bakelite resistivity. Nucl. Instrum. Methods A 2000, 456, 140–142. [Google Scholar] [CrossRef] [Green Version]
- Gustavino, C.; Candela, A.; De Deo, M.; D’Inececco, M.; Redaelli, N.; Tonazzo, A.; Trinchero, G.C. Performance of glass RPC operated in avalanche mode. Nucl. Instrum. Methods A 2004, 527, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Han, D.; Gouzevith, M.; Chen, G.; Wang, Y.; Guo, B.; Zhang, Q.; Yu, Y.; Wang, F.; Lyu, P. Study of MRPC performance at different temperatures. J. Instrum. 2018, 13, P12005. [Google Scholar] [CrossRef]
Operation Condition | Time Resolution (ps) | ||||
---|---|---|---|---|---|
Start Time | Overall | Stop Time | |||
Run 3 | 200 GeV d + Au | ~85 | ~120 | ~85 | |
200 GeV p + p | ~140 | ~160 | ~80 | ||
Run 4 | 62 GeV Au + Au | ~55 | ~105 | ~89 | |
200 GeV Au + Au | FF/RFF | ~27 | ~74 | ~70 | |
HF | ~20 | ~74 | ~71 | ||
Run 5 | 200 GeV Cu + Cu (ToT) | ~50 | ~92 | ~75 | |
64 GeV Cu + Cu (ToT) | ~82 | ~125 | ~94 | ||
Run 8 5 trays | 200 GeV p + p (ToT) | ~83 | ~112 | ~75 | |
Run 9 86 trays | 500 GeV p + p (ToT) | ~85 | ~117 | ~78 |
Parameters | Values |
---|---|
Bulk resistivity | cm |
Available thickness | 0.7 mm, 1.1 mm |
Thickness uniformity | 20 μm |
Surface roughness | <10 nm |
Maximal dimension | 32 cm × 30 cm |
Dielectric constant | 7.5~9.5 |
DC measurement | >1 C/cm2 |
ALICE | STAR | HADES | CBM | Future (SoLID/EIC) | |
---|---|---|---|---|---|
Gap Thickness (mm) | 0.25 | 0.22 | 0.3 | 0.25 | 0.1–0.16 |
Gas Gaps | 2 × 5 | 1 × 6 | 1 × 4 | 2 × 4 | 4 × 8 |
Working Gas (C2H2F4/C4H10/SF6) | 93/0/7 | 95/5/0 | 98.5/1/0.5 | 90/5/5 | 90/5/5 |
Working Field (kV/cm) | 96 | 107 | 107 | 110 | ~150 |
Glass Type | Float | Float | Float | Low res. | Low res. |
Detection Efficiency | 99.9% | 95% | 95% | 95% | 95% |
Time Resolution (ps) | 60 | 60 | 70 | 60 | 10–20 |
Counting Rate (Hz/cm2) | 50 | 10 | 700 | 30 k | ~10 k |
Electronics | Time Jitter (ps) | Time Reconstruction Algorithm | |
---|---|---|---|
ALICE/STAR | NINO amplifier | ~20 | Time over threshold (ToT) |
HPTDC | ~25 | ||
CBM | PADI | ~10 | Time over threshold (ToT) |
GET4 | ~25 | ||
Future (SoLID) | Fast AFE | <5 | Neural networks |
waveform digitizer (SCA) | <5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yu, Y. Multigap Resistive Plate Chambers for Time of Flight Applications. Appl. Sci. 2021, 11, 111. https://doi.org/10.3390/app11010111
Wang Y, Yu Y. Multigap Resistive Plate Chambers for Time of Flight Applications. Applied Sciences. 2021; 11(1):111. https://doi.org/10.3390/app11010111
Chicago/Turabian StyleWang, Yi, and Yancheng Yu. 2021. "Multigap Resistive Plate Chambers for Time of Flight Applications" Applied Sciences 11, no. 1: 111. https://doi.org/10.3390/app11010111
APA StyleWang, Y., & Yu, Y. (2021). Multigap Resistive Plate Chambers for Time of Flight Applications. Applied Sciences, 11(1), 111. https://doi.org/10.3390/app11010111