Low-Intensity Pulsed Ultrasound Effect on MIO-M1 Cell Viability: Setup Validation and Standing Waves Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Experimental Setup for LIPUS Treatments
2.3. Biological Assays for Cell Viability
2.4. Determination of Ultrasound Transmission
2.5. Models Equations and Conditions
3. Results
3.1. LIPUS Effect on MIO-M1 Cell Viability
3.2. Analysis of the Delivered Acoustic Field
3.3. Heat Generation in the Culture Dish
4. Discussion
4.1. Cell Viability after LIPUS with Different Setups
4.2. Effect of Increasing LIPUS Intensity and Exposure Time
4.3. Cell Viability 24 h and 48 h after LIPUS
4.4. Models and Measurements for Setup Validation
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, M.; Liu, B.; Liu, G.; Wang, P.; Yang, M.; Li, Y.; Zhou, J. Low intensity-pulsed ultrasound induced apoptosis of human hepatocellular carcinoma cells in vitro. Ultrasonics 2016, 64, 43–53. [Google Scholar] [CrossRef]
- Su, Z.; Xu, T.; Wang, Y.; Guo, X.; Tu, J.; Zhang, D.; Kong, X.; Sheng, Y.; Sun, W. Low-intensity pulsed ultrasound promotes apoptosis and inhibits angiogenesis via p38 signaling-mediated endoplasmic reticulum stress in human endothelial cells. Mol. Med. Rep. 2019, 19, 4645–4654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, K.; Kim, J.; Seonwoo, H.; Park, S.H.; Choung, P.H.; Chung, J.H. In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.-Y.Y.; Lu, W.-W.W.; Lin, W.-T.T.; Chang, C.-W.W.; Huang, S.-L.L. Enhancement of Neurotrophic Factors in Astrocyte for Neuroprotective Effects in Brain Disorders Using Low-intensity Pulsed Ultrasound Stimulation. Brain Stimul. 2015, 8, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Sawai, Y.; Murata, H.; Koto, K.; Matsui, T.; Horie, N.; Ashihara, E.; Maekawa, T.; Fushiki, S.; Kubo, T. Effects of low-intensity pulsed ultrasound on osteosarcoma and cancer cells. Oncol. Rep. 2012, 28, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.K.; Loh, J.Z.; Yang, T.H.; Huang, K.T.; Wu, C.T.; Guan, S.S.; Liu, S.H.; Hung, K.Y. Prevention of acute kidney injury by low intensity pulsed ultrasound via anti-inflammation and anti-apoptosis. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Atherton, P.; Lausecker, F.; Harrison, A.; Ballestrem, C. Low-intensity pulsed ultrasound promotes cell motility through vinculin-controlled Rac1 GTPase activity. J. Cell Sci. 2017, 130, 2277–2291. [Google Scholar] [CrossRef] [Green Version]
- Feril, L.B.; Kondo, T.; Cui, Z.G.; Tabuchi, Y.; Zhao, Q.L.; Ando, H.; Misaki, T.; Yoshikawa, H.; Umemura, S.I. Apoptosis induced by the sonomechanical effects of low intensity pulsed ultrasound in a human leukemia cell line. Cancer Lett. 2005, 221, 145–152. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Chen, L.; Yang, X.; Zhong, H.; Qi, X.; Bi, Y.; Xu, K. Low frequency and intensity ultrasound induces apoptosis of brain glioma in rats mediated by caspase-3, Bcl-2, and survivin. Brain Res. 2012, 1473, 25–34. [Google Scholar] [CrossRef]
- Yang, C.; Xuehui, J.; Kang, D.; Qiliang, C. Effects of low-intensity ultrasound on cell proliferation and reproductivity. Trans. Tianjin Univ. 2016, 22, 125–131. [Google Scholar] [CrossRef]
- Hill, G.E.; Fenwick, S.; Matthews, B.J.; Chivers, R.A.; Southgate, J. The effect of low-intensity pulsed ultrasound on repair of epithelial cell monolayers in vitro. Ultrasound Med. Biol. 2005, 31, 1701–1706. [Google Scholar] [CrossRef] [PubMed]
- Hensel, K.; Mienkina, M.P.; Schmitz, G. Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments. Ultrasound Med. Biol. 2011, 37, 2105–2115. [Google Scholar] [CrossRef] [PubMed]
- Feril, L.B.; Kondo, T.; Takaya, K.; Riesz, P. Enhanced ultrasound-induced apoptosis and cell lysis by a hypotonic medium. Int. J. Radiat. Biol. 2004, 80, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Feng, Y.; Hu, H.; Shi, A.; Zhang, L.; Wan, M. Low-Intensity Pulsed Ultrasound Enhances Nerve Growth Factor-Induced Neurite Outgrowth through Mechanotransduction-Mediated ERK1/2–CREB–Trx-1 Signaling. Ultrasound Med. Biol. 2016, 42, 2914–2925. [Google Scholar] [CrossRef]
- Hu, Y.; Zhong, W.; Wan, J.M.F.; Yu, A.C.H. Ultrasound can Modulate Neuronal Development: Impact on Neurite Growth and Cell Body Morphology. Ultrasound Med. Biol. 2013, 39, 915–925. [Google Scholar] [CrossRef]
- Liu, S.H.; Lai, Y.L.; Chen, B.L.; Yang, F.Y. Ultrasound Enhances the Expression of Brain-Derived Neurotrophic Factor in Astrocyte Through Activation of TrkB-Akt and Calcium-CaMK Signaling Pathways. Cereb. Cortex 2017, 27, 3152–3160. [Google Scholar] [CrossRef] [Green Version]
- Carina, V.; Costa, V.; Pagani, S.; De Luca, A.; Raimondi, L.; Bellavia, D.; Setti, S.; Fini, M.; Giavaresi, G. Inhibitory effects of low intensity pulsed ultrasound on osteoclastogenesis induced in vitro by breast cancer cells. J. Exp. Clin. Cancer Res. 2018, 37, 1–11. [Google Scholar] [CrossRef]
- Toyama, Y.; Sasaki, K.I.; Tachibana, K.; Ueno, T.; Kajimoto, H.; Yokoyama, S.; Ohtsuka, M.; Koiwaya, H.; Nakayoshi, T.; Mitsutake, Y.; et al. Ultrasound stimulation restores impaired neovascularization-related capacities of human circulating angiogenic cells. Cardiovasc. Res. 2012, 95, 448–459. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, Q.; Ren, C.; Wu, X.; Zhang, Y.; Bai, X.; Lin, Y.; Li, M.; Fu, J.; Kopylov, P.; et al. Low-Intensity Pulsed Ultrasound Prevents the Oxidative Stress Induced Endothelial-Mesenchymal Transition in Human Aortic Endothelial Cells. Cell. Physiol. Biochem. 2018, 45, 1350–1365. [Google Scholar] [CrossRef]
- Buldakov, M.A.; Hassan, M.A.; Zhao, Q.L.; Feril, L.B.; Kudo, N.; Kondo, T.; Litvyakov, N.V.; Bolshakov, M.A.; Rostov, V.V.; Cherdyntseva, N.V.; et al. Influence of changing pulse repetition frequency on chemical and biological effects induced by low-intensity ultrasound in vitro. Ultrason. Sonochem. 2009, 16, 392–397. [Google Scholar] [CrossRef]
- Gutierrez, M.I.; Calas, H.; Ramos, A.; Vera, A.; Leija, L. Acoustic Field Modeling for Physiotherapy Ultrasound Applicators by Using Approximated Functions of Measured Non-Uniform Radiation Distributions. Ultrasonics 2012, 52, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.I.; Lopez-Haro, S.A.; Vera, A.; Leija, L. Experimental Verification of Modeled Thermal Distribution Produced by a Piston Source in Physiotherapy Ultrasound. BioMed Res. Int. 2016, 2016, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adjadj, L.P.; Storti, G.; Morbidelli, M. Ultrasound Attenuation in Polystyrene Latexes. Langmuir 2003, 19. [Google Scholar] [CrossRef]
- Dinçer, I.; Zamfirescu, C.; Dinçer, I.; Zamfirescu, C. Drying Phenomena: Theory and Applications; Wiley: Hoboken, NJ, USA, 2016; ISBN 9781119975861. [Google Scholar]
- Cafe, R. Speed of Sound in Various Materials. Available online: http://www.rfcafe.com/references/general/velocity-sound-media.htm (accessed on 1 October 2020).
- Lubbers, J.; Graaff, R. A simple and accurate formula for the sound velocity in water. Ultrasound Med. Biol. 1998, 24, 1065–1068. [Google Scholar] [CrossRef]
- Kouloulias, K.; Sergis, A.; Hardalupas, Y.; Barrett, T.R. Measurement of flow velocity during turbulent natural convection in nanofluids. Fusion Eng. Des. 2017, 123, 72–76. [Google Scholar] [CrossRef]
- He, P. Determination of ultrasonic parameters based on attenuation and dispersion measurements. Ultrason. Imaging 1998, 20, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, M.I.; Penilla, E.H.; Leija, L.; Vera, A.; Garay, J.E.; Aguilar, G. Novel Cranial Implants of Yttria-Stabilized Zirconia as Acoustic Windows for Ultrasonic Brain Therapy. Adv. Healthc. Mater. 2017, 6, 1700214. [Google Scholar] [CrossRef]
- Lee, I.C.; Lo, T.L.; Young, T.H.; Li, Y.C.; Chen, N.G.; Chen, C.H.; Chang, Y.C. Differentiation of Neural Stem/Progenitor Cells Using Low-Intensity Ultrasound. Ultrasound Med. Biol. 2014, 40, 2195–2206. [Google Scholar] [CrossRef]
- Zeqiri, B.; Bickley, C.J. A new anechoic material for medical ultrasonic applications. Ultrasound Med. Biol. 2000, 26, 481–485. [Google Scholar] [CrossRef]
- Goot-Heah, K.; Shobri, N.R.B.M.; Khoruddin, N.A.B.; Suhaimi, S.N.B.; Yusof, Y.P.B.M.; Hock, T.T. A review on di methyl thiazoldiphenyl-tetrazoliumbromide (MTT) assay in cell viability. Res. J. Appl. Sci. 2017, 12, 372–378. [Google Scholar]
- Wang, P.; Henning, S.M.; Heber, D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS ONE 2010, 5, e10202. [Google Scholar] [CrossRef] [PubMed]
- Krasovitski, B.; Frenkel, V.; Shoham, S.; Kimmel, E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. USA 2011, 108, 3258–3263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, M.I. FolderOpenData; FigShare; Version 1. 2020. Available online: https://figshare.com/articles/dataset/dx_doi_org_10_6084_m9_figshare_6025748/6025748 (accessed on 28 December 2020).
Material | Acoustic Attenuation [Np m−1] | Speed of Sound [m s−1] | Heat Capacity [J kg−1 K−1] | Thermal Conductivity [W m−1 K−1)] | Density [kg m−3] |
---|---|---|---|---|---|
Water | 0.23 | 1523 | 4183 | 0.610 | 993 |
DMEM | 0.23 | 1543 | 4183 | 0.610 | 998 |
Polystyrene | 4.03 | 2350 | 1195 | 0.115 | 1053 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poblete-Naredo, I.; Gutierrez, M.I.; Mendoza-Sánchez, D.E.; Ortega, A.; Albores, A.; Gutiérrez-Martínez, J.; Leija, L.; Vera, A. Low-Intensity Pulsed Ultrasound Effect on MIO-M1 Cell Viability: Setup Validation and Standing Waves Analysis. Appl. Sci. 2021, 11, 271. https://doi.org/10.3390/app11010271
Poblete-Naredo I, Gutierrez MI, Mendoza-Sánchez DE, Ortega A, Albores A, Gutiérrez-Martínez J, Leija L, Vera A. Low-Intensity Pulsed Ultrasound Effect on MIO-M1 Cell Viability: Setup Validation and Standing Waves Analysis. Applied Sciences. 2021; 11(1):271. https://doi.org/10.3390/app11010271
Chicago/Turabian StylePoblete-Naredo, Irais, Mario Ibrahin Gutierrez, Diana Estela Mendoza-Sánchez, Arturo Ortega, Arnulfo Albores, Josefina Gutiérrez-Martínez, Lorenzo Leija, and Arturo Vera. 2021. "Low-Intensity Pulsed Ultrasound Effect on MIO-M1 Cell Viability: Setup Validation and Standing Waves Analysis" Applied Sciences 11, no. 1: 271. https://doi.org/10.3390/app11010271
APA StylePoblete-Naredo, I., Gutierrez, M. I., Mendoza-Sánchez, D. E., Ortega, A., Albores, A., Gutiérrez-Martínez, J., Leija, L., & Vera, A. (2021). Low-Intensity Pulsed Ultrasound Effect on MIO-M1 Cell Viability: Setup Validation and Standing Waves Analysis. Applied Sciences, 11(1), 271. https://doi.org/10.3390/app11010271