Hatfaludi, C.-A.; Tache, I.-A.; Ciușdel, C.F.; Puiu, A.; Stoian, D.; Itu, L.M.; Calmac, L.; Popa-Fotea, N.-M.; Bataila, V.; Scafa-Udriste, A.
Towards a Deep-Learning Approach for Prediction of Fractional Flow Reserve from Optical Coherence Tomography. Appl. Sci. 2022, 12, 6964.
https://doi.org/10.3390/app12146964
AMA Style
Hatfaludi C-A, Tache I-A, Ciușdel CF, Puiu A, Stoian D, Itu LM, Calmac L, Popa-Fotea N-M, Bataila V, Scafa-Udriste A.
Towards a Deep-Learning Approach for Prediction of Fractional Flow Reserve from Optical Coherence Tomography. Applied Sciences. 2022; 12(14):6964.
https://doi.org/10.3390/app12146964
Chicago/Turabian Style
Hatfaludi, Cosmin-Andrei, Irina-Andra Tache, Costin Florian Ciușdel, Andrei Puiu, Diana Stoian, Lucian Mihai Itu, Lucian Calmac, Nicoleta-Monica Popa-Fotea, Vlad Bataila, and Alexandru Scafa-Udriste.
2022. "Towards a Deep-Learning Approach for Prediction of Fractional Flow Reserve from Optical Coherence Tomography" Applied Sciences 12, no. 14: 6964.
https://doi.org/10.3390/app12146964
APA Style
Hatfaludi, C. -A., Tache, I. -A., Ciușdel, C. F., Puiu, A., Stoian, D., Itu, L. M., Calmac, L., Popa-Fotea, N. -M., Bataila, V., & Scafa-Udriste, A.
(2022). Towards a Deep-Learning Approach for Prediction of Fractional Flow Reserve from Optical Coherence Tomography. Applied Sciences, 12(14), 6964.
https://doi.org/10.3390/app12146964