Holistic Approach for Artificial Intelligence Implementation in Pharmaceutical Products Lifecycle: A Meta-Analysis
Abstract
:1. Introduction
2. AI in Pharmaceutical Product Studies
2.1. Research and Development
2.2. Pre-Clinical Studies
2.3. Clinical Studies
2.4. Market Authorization
2.5. Manufacturing
2.6. Availability and Logistics
2.7. Medical Use
2.8. Pharmacovigilance
3. Methods and Materials
3.1. Search Methods for Identifying Studies
3.2. Eligibility Criteria for Considering Studies for This Review
3.3. Study Selection
3.4. Data Collection
4. Results
4.1. Search Results
4.2. AI Systems
5. Discussion
5.1. Subgroup Analyses for Artificial Intelligence Implementation
5.2. Natural Language Analysis Subgroup
5.3. Submission Reports Generation Implementation Subgroup
5.4. Target Identification Implementation Subgroup
5.5. Novel Molecules Implementation Subgroup
5.6. Drug Repositioning and Repurposing
5.7. Generation of Synthetic Biology Implementation Subgroup
5.8. Clinical Trials
5.9. Image Classification Subgroup
5.10. Personalized Therapy and Drug Dispense Control
5.11. Logistics and Contracts
5.12. Epidemiology Implementation Subgroup
5.13. Computational Drug Discovery
- -
- Initial generation of molecules with the desired structural properties using conventional labeled interaction data similar to classical drug design;
- -
- Identification and clustering of different types of created molecules, which have identified properties, are generated using calculations with a coefficient of randomization to increase the diversity. This work is done by generative models;
- -
- Construction of vectors of features for molecules, generated by calculations, and their transfer to the interaction prediction model as input data;
- -
- Computer modeling and obtaining output parameters for each molecule generated by calculations, which allows us to estimate the probability and efficiency of interaction with the target;
- -
- The problem is solved iteratively until the search for an extremum—the maximum estimate of the probability.
5.14. Principal Results and Comparison with Prior Work
5.15. The Potential Future Works in the Research Area
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AE | Adverse Event |
AI | Artificial Intelligence |
BERT | Bidirectional Encoder Representations from Transformers) |
CM | Continuous Manufacturing |
CNN | Convolutional Neural Network |
DNN | Deep Neural Network |
eCRF | electronic Case Report Form |
EHR | Electronic Health Records |
FNN | Feed-forward Neural Network |
GPT | Generative Pre-trained Transformer |
LSTM | Long Short-Term Memory |
MLP | Multilayer Perceptron |
NB | Naive Bayes |
NER | Named Entity Recognition |
NLP | Natural Language Processing |
PCA | Principal Component Analysis |
POS | Part-of-Speech |
QbD | Quality-by-Design |
RF | Random Forest |
RL | Reinforcement Learning |
RNN | Recurrent Neural Network |
RWD | Real World Data |
RWE | Real World Evidence |
SMILES | Simplified Molecular Input Line-Entry System |
SVM | Support Vector Machine |
References
- Wong, C.H.; Siah, K.W.; Lo, A.W. Estimation of clinical trial success rates and related parameters. Biostatistics 2019, 20, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.D.; Tarricone, R.; Vella, V. The role of product life cycle in medical technology innovation. J. Med. Mark. Device Diagn. Pharm. Mark. 2013, 13, 37–43. [Google Scholar] [CrossRef]
- Réda, C.; Kaufmann, E.; Delahaye-Duriez, A. Machine learning applications in drug development. Comput. Struct. Biotechnol. J. 2019, 18, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing Drug Discovery via Artificial Intelligence. Trends Pharmacol. Sci. 2019, 40, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; He, H.; Luo, H.; Zhang, T.; Jiang, J. Artificial intelligence and big data facilitated targeted drug discovery. Stroke Vasc. Neurol. 2019, 4, 206–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohr, H. Drug discovery and molecular modeling using artificial intelligence. Artif. Intell. Healthc. 2020, 61–83. [Google Scholar] [CrossRef]
- Bali, J.; Garg, R.; Bali, R. Artificial intelligence (AI) in healthcare and biomedical research: Why a strong computational/AI bioethics framework is required? Indian J. Ophthalmol. 2019, 67, 3–6. [Google Scholar] [CrossRef]
- Tang, T.; Zawaski, J.A.; Francis, K.N.; Qutub, A.A.; Gaber, M.W. Image-based Classification of Tumor Type and Growth Rate using Machine Learning: A preclinical study. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sherman, R.E.; Anderson, S.A.; Dal Pan, G.J.; Gray, G.W.; Gross, T.; Hunter, N.L.; LaVange, L.; Marinac-Dabic, D.; Marks, P.W.; Robb, M.A.; et al. Real-World Evidence—What Is It and What Can It Tell Us? N. Engl. J. Med. 2016, 375, 2293–2297. [Google Scholar] [CrossRef] [Green Version]
- Harrer, S.; Shah, P.; Antony, B.; Hu, J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol. Sci. 2019, 40, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Liu, X.; Hogan, W.; Shenkman, E.; Bian, J. Applications of artificial intelligence in drug development using real-world data. Drug Discov. Today 2020, 26, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Crown, W.H. Real-World Evidence, Causal Inference, and Machine Learning. Value Health 2019, 22, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Medicines Agency. HMA-EMA Joint Big Data Taskforce Phase II Report: “Evolving Data-Driven Regulation” 1. Available online: https://www.ema.europa.eu/en/documents/other/hma-ema-joint-big-data-taskforce-phase-ii-report-evolving-data-driven-regulation_en.pdf (accessed on 1 August 2022).
- Rivera, S.C.; Liu, X.; Chan, A.-W.; Denniston, A.K.; Calvert, M.J.; Darzi, A.; Holmes, C.; Yau, C.; Moher, D.; Ashrafian, H.; et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. Nat. Med. 2020, 26, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Rivera, S.C.; Moher, D.; Calvert, M.J.; Denniston, A.K.; Chan, A.-W.; Darzi, A.; Holmes, C.; Yau, C.; Ashrafian, H.; et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension. Nat. Med. 2020, 26, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- Simões, M.F.; Silva, G.; Pinto, A.C.; Fonseca, M.; Silva, N.E.; Pinto, R.M.; Simões, S. Artificial neural networks applied to quality-by-design: From formulation development to clinical outcome. Eur. J. Pharm. Biopharm. 2020, 152, 282–295. [Google Scholar] [CrossRef]
- Gams, M.; Horvat, M.; Ožek, M.; Luštrek, M.; Gradišek, A. Integrating Artificial and Human Intelligence into Tablet Production Process. AAPS PharmSciTech 2014, 15, 1447–1453. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.-W.; Li, L.; Li, D.; Liu, J.; Li, X.; Li, W.; Xu, X.; Zhang, M.J.; Chandler, L.A.; Lin, H.; et al. The First Approved Gene Therapy Product for Cancer Ad-p53(Gendicine): 12 Years in the Clinic. Hum. Gene Ther. 2018, 29, 160–179. [Google Scholar] [CrossRef] [Green Version]
- Obermeyer, Z.; Emanuel, J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef] [Green Version]
- Arsalan, T.; Koshechkin, K.; Lebedev, G. Scientific Approaches to the Digitalization of Drugs Assortment Monitoring Using Artificial Neural Networks. Smart Innov. Syst. Technol. 2020, 391–401. [Google Scholar] [CrossRef]
- Report|Drug Shortages: Root Causes and Potential Solutions|FDA [Electronic Resource]. Available online: https://www.fda.gov/drugs/drug-shortages/report-drug-shortages-root-causes-and-potential-solutions (accessed on 1 August 2022).
- Schork, N.J. Artificial Intelligence and Personalized Medicine. In Precision Medicine in Cancer Therapy; Springer: Cham, Switerlands, 2019; Volume 178, pp. 265–283. [Google Scholar] [CrossRef]
- Lebedev, G.; Fartushnyi, E.; Fartushnyi, I.; Shaderkin, I.; Klimenko, H.; Kozhin, P.; Koshechkin, K.; Ryabkov, I.; Tarasov, V.; Morozov, E.; et al. Technology of Supporting Medical Decision-Making Using Evidence-Based Medicine and Artificial Intelligence. Procedia Comput. Sci. 2020, 176, 1703–1712. [Google Scholar] [CrossRef]
- Ferrari, D.; Milic, J.; Tonelli, R.; Ghinelli, F.; Meschiari, M.; Volpi, S.; Matteo, F.; Giacomo, F.; Vittorio, I.; Dina, Y.; et al. Machine learning in predicting respiratory failure in patients with COVID-19 pneumonia—Challenges, strengths, and opportunities in a global health emergency. PLoS ONE 2020, 15, e0239172. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Han, D.; Kim, J.-H.; Kim, D.; Ha, B.; Seog, W.; Lee, Y.-K.; Lim, D.; Hong, S.O.; Park, M.-J.; et al. An Easy-to-Use Machine Learning Model to Predict the Prognosis of Patients with COVID-19: Retrospective Cohort Study. J. Med. Internet Res. 2020, 22, e24225. [Google Scholar] [CrossRef] [PubMed]
- Basile, A.O.; Yahi, A.; Tatonetti, N.P. Artificial Intelligence for Drug Toxicity and Safety. Trends Pharmacol. Sci. 2019, 40, 624–635. [Google Scholar] [CrossRef]
- Schmider, J.; Kumar, K.; Laforest, C.; Swankoski, B.; Naim, K.; Caubel, P.M. Innovation in Pharmacovigilance: Use of Artificial Intelligence in Adverse Event Case Processing. Clin. Pharmacol. Ther. 2018, 105, 954–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mockute, R.; Desai, S.; Perera, S.; Assuncao, B.; Danysz, K.; Tetarenko, N.; Gaddam, D.; Abatemarco, D.; Widdowson, M.; Beauchamp, S.; et al. Artificial Intelligence within Pharmacovigilance: A Means to Identify Cognitive Services and the Framework for Their Validation. Pharm. Med. 2019, 33, 109–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [Green Version]
- Sievert, C.; Shirley, K. LDAvis: A Method for Visualizing and Interpreting Topics; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014; pp. 63–70. [Google Scholar] [CrossRef]
- Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data. Mol. Pharm. 2016, 13, 2524–2530. [Google Scholar] [CrossRef] [Green Version]
- Vyasa Analytics Introduces Synapse, A Novel “Smart Table” Software Application Powered by Deep Learning AI Technologies. Available online: https://www.prweb.com/releases/vyasa_analytics_introduces_synapse_a_novel_smart_table_software_application_powered_by_deep_learning_ai_technologies/prweb16677978.htm (accessed on 1 August 2022).
- AI-Powered Healthcare. Available online: https://xbird.io/ (accessed on 1 August 2022).
- Xconomy: Gene Network Sciences Using Supercomputing to Match Patients with a Drug That Works—Page 2 of 2. Available online: https://xconomy.com/boston/2010/04/27/gene-network-sciences-using-supercomputing-to-match-patients-with-a-drug-that-works/2/ (accessed on 1 August 2022).
- Using AI to Accelerate Drug Discovery. Available online: https://www.nature.com/articles/d42473-020-00354-y (accessed on 1 August 2022).
- Standigm and SK Chemicals Repurpose FDA-approved Drug into Rheumatoid Arthritis Candidate and Apply for Patent through Their Open Innovation Partnership, Business Wire. Available online: https://www.businesswire.com/news/home/20210107005121/en/Standigm-and-SK-Chemicals-Repurpose-FDA-approved-Drug-into-Rheumatoid-Arthritis-Candidate-and-Apply-for-Patent-through-their-Open-Innovation-Partnership (accessed on 1 August 2022).
- Unlearn—Home. Available online: https://www.unlearn.ai (accessed on 1 August 2022).
- Deep Lens BioPharma and CROs. Available online: https://www.deeplens.ai/deep-lens-healthcare-biopharma-cro (accessed on 1 August 2022).
- Feinberg, N.; Sur, D.; Wu, Z.; Husic, B.E.; Mai, H.; Li, Y.; Saisai, S.; Jianyi, Y.; Bharath, R.; Pande, V.S. PotentialNet for molecular property prediction. ACS Cent. Sci. 2018, 4, 1520–1530. [Google Scholar] [CrossRef]
- Product Pipeline: BioXcel Therapeutics, Inc. (BTAI). Available online: https://www.bioxceltherapeutics.com/our-pipeline/ (accessed on 1 August 2022).
- InterVenn Biosciences|Clinical Glycoproteomics + Artificial Intelligence. Available online: https://intervenn.com (accessed on 1 August 2022).
- Transforming Patient Safety—Medaware. Available online: https://www.medaware.com (accessed on 1 August 2022).
- Grønning, N. Data Management in a Regulatory Context. Front. Med. 2017, 4, 114. [Google Scholar] [CrossRef] [Green Version]
- Turn Patient Insights into Actionirody. Available online: https://irody.com (accessed on 1 August 2022).
- Savana—Transform the Free Text of Your Clinical Records into Big Data. Available online: https://www.savanamed.com (accessed on 1 August 2022).
- LabGenius. Available online: https://labgeni.us (accessed on 1 August 2022).
- InsightRX—Precision Dosing Done Right. Available online: https://www.insight-rx.com (accessed on 1 August 2022).
- Novartis CEO Who Wanted to Bring Tech into Pharma Now Explains Why It’s So Hard. Available online: https://www.forbes.com/sites/davidshaywitz/2019/01/16/novartis-ceo-who-wanted-to-bring-tech-into-pharma-now-explains-why-its-so-hard/ (accessed on 1 August 2022).
- Drug Discovery with an AI-Augmented Platform—Cyclica. Available online: https://www.cyclicarx.com (accessed on 1 August 2022).
- Artificial Intelligence Startup Healx Gets $10 Million to Find Cures for Rare Diseases—Healthcare Weekly. Available online: https://healthcareweekly.com/healx-artificial-intelligence-pharma (accessed on 1 August 2022).
- IBM Watson Health|AI Healthcare Solutions|IBM. Available online: https://www.ibm.com/watson-health (accessed on 1 August 2022).
- Carvalho, J.P.; Curto, S. Fuzzy Preprocessing of Medical Text Annotations of Intensive Care Units Patients. Available online: https://www.inesc-id.pt/publications/10251/pdf (accessed on 1 August 2022).
- LingPipe Home. Available online: http://www.alias-i.com/lingpipe/ (accessed on 1 August 2022).
- The Stanford Natural Language Processing Group. Available online: https://nlp.stanford.edu/software/lex-parser.shtml (accessed on 1 August 2022).
- Meng, H.; Luk, P.-C.; Xu, K.; Weng, F. GLR parsing with multiple grammars for natural language queries. ACM Trans. Asian Lang. Inf. Process. 2002, 1, 123–144. [Google Scholar] [CrossRef]
- De Marneffe, M.-C.; Maccartney, B.; Manning, C.D. Generating Typed Dependency Parses from Phrase Structure Parses. 2006. Proc. of LREC. 6. Available online: https://www.researchgate.net/publication/200044364_Generating_Typed_Dependency_Parses_from_Phrase_Structure_Parses (accessed on 1 August 2022).
- Zhang, X.; Lecun, Y. Text Understanding from Scratch. 2016. Available online: https://arxiv.org/abs/1502.01710 (accessed on 1 August 2022).
- Wang, P.; Qian, Y.; Soong, F.K.; He, L.; Zhao, H. Part-of-Speech Tagging with Bidirectional Long Short-Term Memory Recurrent Neural Network. 2015. Available online: https://arxiv.org/abs/1510.06168 (accessed on 1 August 2022).
- He, J.; Nguyen, D.Q.; Akhondi, S.A.; Druckenbrodt, C.; Thorne, C.; Hoessel, R.; Afzal, Z.; Zhai, Z.; Fang, B.; Yoshikawa, H.; et al. ChEMU 2020: Natural Language Processing Methods Are Effective for Information Extraction from Chemical Patents. Front. Res. Metrics Anal. 2021, 6, 654438. [Google Scholar] [CrossRef] [PubMed]
- Bouhedjar, K.; Boukelia, A.; Nacereddine, A.K.; Boucheham, A.; Belaidi, A.; Djerourou, A. A natural language processing approach based on embedding deep learning from heterogeneous compounds for quantitative structure–activity relationship modeling. Chem. Biol. Drug Des. 2020, 96, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, S.D. Natural Language Generation, Paraphrasing and Summarization of User Reviews with Recurrent Neural Networks. Available online: http://www.dialog-21.ru/digests/dialog2015/materials/pdf/TarasovDS2.pdf (accessed on 1 August 2022).
- Google AI Blog: Open Sourcing BERT: State-of-the-Art Pre-training for Natural Language Processing. Available online: https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html (accessed on 1 August 2022).
- Better Language Models and Their Implications. Available online: https://openai.com/blog/better-language-models/ (accessed on 1 August 2022).
- Nambiar, A.; Heflin, M.; Liu, S.; Maslov, S.; Hopkins, M.; Ritz, A. Transforming the Language of Life: Transformer Neural Networks for Protein Prediction Tasks. In Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2020, New York, NY, USA, 21–24 September 2020; Volume 5, pp. 1–8. [Google Scholar] [CrossRef]
- bioRxiv Preprints Can Now be Submitted Directly to Leading Research Journals. Available online: https://phys.org/news/2016-01-biorxiv-preprints-submitted-journals.html (accessed on 1 August 2022).
- Danger, R.; Segura-Bedmar, I.; Martínez, P.; Rosso, P. A comparison of machine learning techniques for detection of drug target articles. J. Biomed. Inform. 2010, 43, 902–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohr, A.; Memarzadeh, K. The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare; Academic Press: Cambridge, MA, USA, 2020; pp. 25–60. [Google Scholar] [CrossRef]
- Piroozmand, F.; Mohammadipanah, F.; Sajedi, H. Spectrum of deep learning algorithms in drug discovery. Chem. Biol. Drug Des. 2020, 96, 886–901. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [Google Scholar] [CrossRef]
- Levin, J.M.; Oprea, T.I.; Davidovich, S.; Clozel, T.; Overington, J.P.; Vanhaelen, Q.; Cantor, C.R.; Bischof, E.; Zhavoronkov, A. Artificial intelligence, drug repurposing and peer review. Nat. Biotechnol. 2020, 38, 1127–1131. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health 2020, 2, e667–e676. [Google Scholar] [CrossRef]
- AI Driven Repositioning and Repurposing Summit 2021. Available online: https://pharmaphorum.com/events/ai-driven-repositioning-and-repurposing-summit-2021/ (accessed on 1 August 2022).
- Mohanty, S.; Rashid, M.H.A.; Mridul, M.; Mohanty, C.; Swayamsiddha, S. Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1027–1031. [Google Scholar] [CrossRef]
- Deep Learning Takes on synthetic Biology. Available online: https://wyss.harvard.edu/news/deep-learning-takes-on-synthetic-biology/ (accessed on 1 August 2022).
- Radivojević, T.; Costello, Z.; Workman, K.; Martin, H.G. A machine learning Automated Recommendation Tool for synthetic biology. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Shah, P.; Kendall, F.; Khozin, S.; Goosen, R.; Hu, J.; Laramie, J.; Ringel, M.; Schork, N. Artificial intelligence and machine learning in clinical development: A translational perspective. npj Digit. Med. 2019, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Overview|The Conference Forum. Available online: https://theconferenceforum.org/conferences/webinar-open-ai-gpt3/overview/ (accessed on 1 August 2022).
- State-Of-The-Art Image Classification Algorithm: FixEfficientNet-L2|by Hucker Marius|Towards Data Science. Available online: https://towardsdatascience.com/state-of-the-art-image-classification-algorithm-fixefficientnet-l2-98b93deeb04c (accessed on 1 August 2022).
- Cellular Image Classification for Drug Discovery|by Huseyn Gasimov|Intelec AI|Medium. Available online: https://medium.com/intelec-ai/cellular-image-classification-for-drug-discovery-4ef55741151c (accessed on 1 August 2022).
- Lebedev, G.; Fartushniy, E.; Shaderkin, I.; Klimenko, H.; Kozhin, P.; Koshechkin, K.; Ryabkov, I.; Tarasov, V.; Morozov, E.; Fomina, I.; et al. Creation of a Medical Decision Support System Using Evidence-Based Medicine. Int. Conf. Intell. Decis. Technol. 2020, 413–427. [Google Scholar] [CrossRef]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020, 2020, baaa010. [Google Scholar] [CrossRef] [PubMed]
- Artificial Intelligence to Eradicate Prescription Errors. Available online: https://www.whatnextglobal.com/post/artificial-intelligence-to-eradicate-prescription-errors (accessed on 1 August 2022).
- Harika Anupama, A.G.; Srilekha, G.; Uma Priya, G. Review on Artificial Intelligence (AI) in Drug Dispensing and Drug Ac-countability. Available online: https://globalresearchonline.net/journalcontents/v61-2/07.pdf (accessed on 1 August 2022).
- Real-World Applications of Artificial Intelligence to Improve Medication Management Across the Care Continuum—Electronic Health Reporter. Available online: https://electronichealthreporter.com/real-world-applications-of-artificial-intelligence-to-improve-medication-management-across-the-care-continuum/ (accessed on 1 August 2022).
- Artificial Intelligence and the Opioid Epidemic—Applications for Relapse Treatment, Abuse Prevention, and More|Emerj. Available online: https://emerj.com/ai-sector-overviews/artificial-intelligence-opioid-epidemic/ (accessed on 1 August 2022).
- Malaria Outbreak Prediction Model Using Machine Learning. Available online: https://pdf4pro.com/amp/view/malaria-outbreak-prediction-model-using-machine-learning-474cb5.html (accessed on 1 August 2022).
- Sessa, M.; Khan, A.R.; Liang, D.; Andersen, M.; Kulahci, M. Artificial Intelligence in Pharmacoepidemiology: A Systematic Review. Part 1—Overview of Knowledge Discovery Techniques in Artificial Intelligence. Front. Pharmacol. 2020, 11, 1028. [Google Scholar] [CrossRef] [PubMed]
- Baskin, I.; Winkler, D.; Tetko, I.V. A renaissance of neural networks in drug discovery. Expert Opin. Drug Discov. 2016, 11, 785–795. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koshechkin, K.A.; Lebedev, G.S.; Fartushnyi, E.N.; Orlov, Y.L. Holistic Approach for Artificial Intelligence Implementation in Pharmaceutical Products Lifecycle: A Meta-Analysis. Appl. Sci. 2022, 12, 8373. https://doi.org/10.3390/app12168373
Koshechkin KA, Lebedev GS, Fartushnyi EN, Orlov YL. Holistic Approach for Artificial Intelligence Implementation in Pharmaceutical Products Lifecycle: A Meta-Analysis. Applied Sciences. 2022; 12(16):8373. https://doi.org/10.3390/app12168373
Chicago/Turabian StyleKoshechkin, Konstantin A., Georgiy S. Lebedev, Eduard N. Fartushnyi, and Yuriy L. Orlov. 2022. "Holistic Approach for Artificial Intelligence Implementation in Pharmaceutical Products Lifecycle: A Meta-Analysis" Applied Sciences 12, no. 16: 8373. https://doi.org/10.3390/app12168373
APA StyleKoshechkin, K. A., Lebedev, G. S., Fartushnyi, E. N., & Orlov, Y. L. (2022). Holistic Approach for Artificial Intelligence Implementation in Pharmaceutical Products Lifecycle: A Meta-Analysis. Applied Sciences, 12(16), 8373. https://doi.org/10.3390/app12168373