Multi-Scale Factor Image Super-Resolution Algorithm with Information Distillation Network
Abstract
:1. Introduction
- We propose the multi-scale factor image super-resolution network (IDMF-SR) based on information distillation for significantly reducing the number of parameters. Our IDMF-SR is an end-to-end network model, which can utilize hierarchical features more than previous CNN-based methods and balance performance against applicability;
- We put forward a new information distillation network to gradually extract and cascade features. IDN divides the feature map extracted from each layer into two parts. One of the parts flows into the next convolutional layer, and the retrained part is cascaded in the end;
- We propose a contrast-aware channel attention mechanism (CCAM) in the information distillation network. The traditional channel attention mechanism obtains the importance of the channel through the squeeze-and-excitation module, which is conducive to improving the PSNR value. Our CCAM can further enhance image details, such as edges, textures, and structures;
- IDMF-SR is inspired by meta-learning, and the network achieves image magnification by predicting filter weights by scale factors. Only training one network model can realize the image magnification at any multiple, which is conducive to application in the real scene.
2. Materials and Methods
2.1. Network Structure
2.2. Information Distillation Module
2.3. Multi-Factor Upsampling Module
- (1)
- Position projection
- (2)
- Feature mapping
2.4. Datasets and Evaluation Metrics
2.5. Implementation Details
3. Results
3.1. Comparison of Objective Evaluation Indicators
3.2. Comparison of Subjective Visual Effects
3.3. Comparison of Model Parameters
4. Discussion
Ablation Studies of IDM and CCAM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morin, R.; Basarab, A.; Kouamé, D. Alternating direction method of multipliers framework for super-resolution in ultrasound imaging. In Proceedings of the 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, 2–5 May 2012; pp. 1595–1598. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 20–30 June 2016; pp. 1637–1645. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2790–2798. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X.; Xu, C. MemNet: A Persistent Memory Network for Image Restoration. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; Volume 43, pp. 2480–2495. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), Honolulu, HI, USA, 22–25 July 2017; pp. 1132–1140. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; Volume 43, pp. 2480–2495. [Google Scholar]
- Chen, J.; Huang, D.; Zhu, X.; Chen, F. Gradient-Guided and Multi-Scale Feature Network for Image Super-Resolution. Appl. Sci. 2022, 12, 62935. [Google Scholar] [CrossRef]
- Qin, J.; Liu, F.; Liu, K.; Jeon, G.; Yang, X. Lightweight hierarchical residual feature fusion network for single-image super-resolution. Neurocomputing 2022, 478, 104–123. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Hoi, S.C. Deep Learning for Image Super-resolution: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3365–3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Jun, D.; Kim, B.G.; Lee, H.; Rhee, E. Single Image Super-Resolution Method Using CNN-Based Lightweight Neural Networks. Appl. Sci. 2021, 11, 31092. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 391–407. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5835–5843. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2599–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 1328–1344. [Google Scholar]
- Tian, C.; Zhuge, R.; Wu, Z.; Xu, Y.; Zuo, W.; Chen, C.; Lin, C.W. Lightweight Image Super-Resolution with Enhanced CNN. Neurocomputing 2020, 205, 106235. [Google Scholar] [CrossRef]
- Hu, X.; Mu, H.; Zhang, X.; Wang, Z.; Tan, T.; Sun, J. Meta-SR: A Magnification-Arbitrary Network for Super-Resolution. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1575–1584. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the British Machine Vision Conference (BMVC), Surrey, UK, 3–7 September 2012. [Google Scholar]
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse representations. In Proceedings of the International Conference on Curves and Surfaces (ICCS), Avignon, France, 24–30 June 2010; pp. 711–730. [Google Scholar]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the International Conference on Computer Vision (ICCV), Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423. [Google Scholar]
- Matsui, Y.; Ito, K.; Aramaki, Y.; Fujimoto, A.; Ogawa, T.; Yamasaki, T.; Aizawa, K. Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 2017, 76, 21811–21838. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Shin, M.; Kim, D.; Park, S.; Kang, Y.; Kim, J.; Lee, H.; Yun, W.J.; Choi, J.; Park, S.; et al. Performance Comparison of SRCNN, VDSR, and SRDenseNet Deep Learning Models in Embedded Autonomous Driving Platforms. In Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju Island, Korea, 13–16 January 2021; pp. 56–58. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Layer | Number of Input_Channel | Kernel_Size | Stride | Number of Output_Channel |
---|---|---|---|---|
C_1 | 64 | 3 | 1 | 64 |
C_2 | 48 | 3 | 1 | 64 |
C_3 | 48 | 3 | 1 | 64 |
C_4 | 48 | 3 | 1 | 16 |
Method | ×1.1 | ×1.2 | ×1.3 | ×1.4 | ×1.5 | ×1.6 | ×1.7 | ×1.8 | ×1.9 |
---|---|---|---|---|---|---|---|---|---|
PSNR | PSNR | PSNR | PSNR | PSNR | PSNR | PSNR | PSNR | PSNR | |
Bicubic | 36.56 | 35.01 | 33.84 | 32.93 | 32.14 | 31.49 | 30.90 | 30.38 | 29.97 |
SRCNN [3,4] | 38.01 | 37.21 | 35.87 | 34.40 | 33.28 | 32.30 | 31.94 | 31.85 | 31.04 |
VDSR [5] | 39.67 | 38.16 | 36.43 | 35.18 | 34.39 | 33.12 | 32.50 | 32.36 | 31.58 |
Lap-SRN [16,17] | 40.35 | 39.12 | 37.85 | 35.99 | 34.97 | 34.01 | 33.82 | 32.97 | 31.95 |
Meta-SR [21] | 42.82 | 40.40 | 38.28 | 36.95 | 35.86 | 34.90 | 34.13 | 33.45 | 32.86 |
RCAN [19] | 42.83 | 40.39 | 38.30 | 36.97 | 35.86 | 34.91 | 34.14 | 33.46 | 32.89 |
LESRCNN [20] | 42.91 | 40.35 | 38.29 | 36.93 | 35.85 | 34.88 | 34.10 | 33.45 | 32.88 |
IDMF-SR | 42.83 | 40.40 | 38.29 | 36.95 | 35.87 | 34.92 | 34.14 | 33.46 | 32.88 |
Method | Scale | Set5 | Set14 | B100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
Bicubic | ×2 | 33.66 | 0.930 | 30.23 | 0.879 | 29.55 | 0.826 | 26.75 | 0.826 | 30.73 | 0.931 |
SRCNN [3,4] | 36.50 | 0.954 | 32.42 | 0.910 | 31.36 | 0.863 | 29.34 | 0.893 | 35.60 | 0.957 | |
VDSR [5] | 37.54 | 0.956 | 33.03 | 0.912 | 31.53 | 0.895 | 30.48 | 0.917 | 37.06 | 0.968 | |
Lap-SRN [16,17] | 37.52 | 0.959 | 33.08 | 0.913 | 31.90 | 0.897 | 30.41 | 0.919 | 37.22 | 0.969 | |
Meta-SR [21] | 37.10 | 0.957 | 34.18 | 0.911 | 31.88 | 0.910 | 30.52 | 0.932 | 37.35 | 0.985 | |
RCAN [19] | 38.34 | 0.967 | 34.37 | 0.927 | 32.53 | 0.934 | 33.02 | 0.939 | 39.24 | 0.977 | |
LESRCNN [20] | 37.65 | 0.9586 | 33.32 | 0.915 | 31.95 | 0.896 | 31.45 | 0.921 | 38.73 | 0.984 | |
IDMF-SR | 38.20 | 0.967 | 34.38 | 0.930 | 32.57 | 0.938 | 32.96 | 0.920 | 40.15 | 0.980 | |
Bicubic | ×4 | 28.30 | 0.810 | 25.98 | 0.639 | 25.79 | 0.668 | 23.04 | 0.658 | 24.86 | 0.787 |
SRCNN [3,4] | 30.12 | 0.862 | 26.89 | 0.745 | 26.87 | 0.710 | 24.48 | 0.722 | 27.54 | 0.856 | |
VDSR [5] | 31.34 | 0.866 | 27.68 | 0.752 | 27.25 | 0.723 | 25.16 | 0.754 | 28.82 | 0.889 | |
Lap-SRN [16,17] | 31.45 | 0.885 | 28.17 | 0.769 | 27.32 | 0.736 | 25.21 | 0.756 | 29.17 | 0.890 | |
Meta-SR [21] | 31.85 | 0.906 | 28.32 | 0.778 | 27.52 | 0.790 | 25.82 | 0.760 | 29.89 | 0.917 | |
RCAN [19] | 32.62 | 0.912 | 28.89 | 0.790 | 27.99 | 0.751 | 26.88 | 0.812 | 30.97 | 0.921 | |
LESRCNN [20] | 31.88 | 0.890 | 28.44 | 0.778 | 27.45 | 0.731 | 25.77 | 0.773 | 30.99 | 0.919 | |
IDMF-SR | 32.62 | 0.910 | 28.90 | 0.792 | 27.99 | 0.790 | 27.10 | 0.818 | 30.98 | 0.921 | |
Bicubic | ×8 | 24.40 | 0.656 | 23.06 | 0.567 | 23.67 | 0.545 | 20.74 | 0.516 | 21.48 | 0.650 |
SRCNN [3,4] | 25.24 | 0.691 | 23.74 | 0.593 | 24.23 | 0.566 | 21.29 | 0.548 | 22.45 | 0.695 | |
VDSR [5] | 25.59 | 0.710 | 24.02 | 0.603 | 24.50 | 0.583 | 21.52 | 0.573 | 23.17 | 0.732 | |
Lap-SRN [16,17] | 25.92 | 0.728 | 24.28 | 0.614 | 24.54 | 0.590 | 21.67 | 0.582 | 23.40 | 0.759 | |
Meta-SR [21] | 26.91 | 0.750 | 24.32 | 0.663 | 24.65 | 0.682 | 22.04 | 0.680 | 24.10 | 0.810 | |
RCAN [19] | 38.34 | 0.795 | 25.43 | 0.668 | 25.16 | 0.614 | 23.50 | 0.653 | 25.47 | 0.826 | |
LESRCNN [20] | 38.30 | 0.783 | 25.47 | 0.665 | 25.10 | 0.677 | 23.48 | 0.680 | 25.38 | 0.827 | |
IDMF-SR | 38.35 | 0.796 | 25.50 | 0.669 | 25.10 | 0.674 | 23.51 | 0.682 | 25.49 | 0.827 |
Different Combination of IDM and CCAM | ||||
---|---|---|---|---|
IDM | 🗴 | 🗴 | ✓ | ✓ |
CCAM | 🗴 | ✓ | 🗴 | ✓ |
PSNR on Set5 (×4) | 32.48 | 32.56 | 32.60 | 32.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Chen, S.; Liao, Z.; Zhou, N. Multi-Scale Factor Image Super-Resolution Algorithm with Information Distillation Network. Appl. Sci. 2022, 12, 4131. https://doi.org/10.3390/app12094131
Cheng Y, Chen S, Liao Z, Zhou N. Multi-Scale Factor Image Super-Resolution Algorithm with Information Distillation Network. Applied Sciences. 2022; 12(9):4131. https://doi.org/10.3390/app12094131
Chicago/Turabian StyleCheng, Yu, Shuai Chen, Zeyu Liao, and Niujun Zhou. 2022. "Multi-Scale Factor Image Super-Resolution Algorithm with Information Distillation Network" Applied Sciences 12, no. 9: 4131. https://doi.org/10.3390/app12094131
APA StyleCheng, Y., Chen, S., Liao, Z., & Zhou, N. (2022). Multi-Scale Factor Image Super-Resolution Algorithm with Information Distillation Network. Applied Sciences, 12(9), 4131. https://doi.org/10.3390/app12094131