Adaptive Kriging-Based Heat Production Performance Optimization for a Two-Horizontal-Well Geothermal System
Abstract
:1. Introduction
2. Method
2.1. Heat Production Performance Optimization Problem Formulation
2.2. Adaptive Kriging-Based Heat Production Performance Optimization
2.3. Numerical Simulation for a Two-Horizontal-Well Geothermal System
2.3.1. Numerical Model Description
2.3.2. Governing Equations
2.3.3. Boundary and Hypotheses
2.3.4. Parameters Selection
2.3.5. Domain Discretization
2.4. PLCB-Based Sequential Sampling Methods
3. Results and Discussion
3.1. Model Verification
3.2. Simulation Running
3.3. Comparison with Kriging-Based Optimization
3.4. Survey of Different Infill Strategies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, P.; Guan, P.; Zheng, J.; Dou, B.; Tian, H.; Duan, X.; Liu, H. Field Test and Numerical Simulation on Heat Transfer Performance of Coaxial Borehole Heat Exchanger. Energies 2020, 13, 5471. [Google Scholar] [CrossRef]
- Goričanec, D.; Ivanovski, I.; Krope, J.; Urbancl, D. The Exploitation of Low-Temperature Hot Water Boiler Sources with High-Temperature Heat Pump Integration. Energies 2020, 13, 6311. [Google Scholar] [CrossRef]
- Zheng, J.; Li, P.; Dou, B.; Fan, T.; Tian, H.; Lai, X. Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect. Energy 2022, 255, 124496. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, H.; Dou, B.; Zheng, J.; Chen, J.; Zhu, Z.; Liu, H. Macroscopic and microscopic experimental research on granite properties after high-temperature and water-cooling cycles. Geothermics 2021, 93, 102079. [Google Scholar] [CrossRef]
- Caf, A.; Urbancl, D.; Trop, P.; Goricanec, D. Exploitation of low-temperature energy sources from cogeneration gas engines. Energy 2016, 108, 86–92. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, T.; Dou, B.; Cui, G.; Tian, H. A Thermal-Hydraulic-Mechanical Coupling Simulation of Fluid Flow and Heat Transfer Specifically in Crossed-Rough Fractures in a Geothermal Reservoir. J. Energy Eng. 2022, 148, 04022032. [Google Scholar] [CrossRef]
- Aliyu, M.D.; Chen, H.-P. Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling. Renew. Energy 2017, 112, 151–165. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, G.; Jia, X.; Li, S.; Zhang, S.; Hu, D.; Hu, S.; Wang, Y. Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau. Renew. Energy 2019, 132, 959–978. [Google Scholar] [CrossRef]
- Wang, G.; Song, X.; Shi, Y.; Yang, R.; Yulong, F.; Zheng, R.; Li, J. Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system. Renew. Energy 2021, 163, 974–986. [Google Scholar] [CrossRef]
- Wang, G.; Song, X.; Shi, Y.; Zheng, R.; Li, J.; Li, Z. Production performance of a novel open loop geothermal system in a horizontal well. Energy Convers. Manag. 2020, 206, 112478. [Google Scholar] [CrossRef]
- Zheng, J.; Shao, X.; Gao, L.; Jiang, P.; Li, Z. A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction. J. Eng. Des. 2013, 24, 604–622. [Google Scholar] [CrossRef]
- Schnoerr, D.; Sanguinetti, G.; Grima, R. Approximation and inference methods for stochastic biochemical kinetics—A tutorial review. J. Phys. A Math. Theor. 2017, 50, 093001. [Google Scholar] [CrossRef]
- Shuai, W.; Li, E.; Wang, H.; Li, Y. Space mapping-assisted optimization of a thin-walled honeycomb structure for battery packaging. Struct. Multidiscip. Optim. 2020, 62, 937–955. [Google Scholar] [CrossRef]
- Blatman, G.; Sudret, B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2010, 95, 1216–1229. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Z.; Gao, L.; Jiang, G. A parameterized lower confidence bounding scheme for adaptive metamodel-based design optimization. Eng. Comput. 2016, 33, 2165–2184. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, C.; Li, Z.; Jiang, G.; Zhao, H. Adaptive metamodel-based analytical target cascading for natural gas hydrates coring tool design optimization. Eng. Optim. 2021, 54, 1089–1109. [Google Scholar] [CrossRef]
- Hu, W.; Yao, L.G.; Hua, Z.Z. Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. J. Am. Acad. Dermatol. 2008, 197, 77–88. [Google Scholar] [CrossRef]
- Serani, A.; Pellegrini, R.; Wackers, J.; Jeanson, C.-E.; Queutey, P.; Visonneau, M.; Diez, M. Adaptive multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels. Int. J. Comput. Fluid Dyn. 2019, 33, 237–255. [Google Scholar] [CrossRef]
- Li, M.; Gou, Y.; Hou, Z.; Were, P. Investigation of a new HDR system with horizontal wells and multiple fractures using the coupled wellbore–reservoir simulator TOUGH2MP-WELL/EOS3. Environ. Earth Sci. 2015, 73, 6047–6058. [Google Scholar] [CrossRef]
- Yu, P.; Dempsey, D.; Archer, R. A three-dimensional coupled thermo-hydro-mechanical numerical model with partially bridging multi-stage contact fractures in horizontal-well enhanced geothermal system. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 2021, 143, 104787. [Google Scholar] [CrossRef]
- Gong, F.; Guo, T.; Sun, W.; Li, Z.; Yang, B.; Chen, Y.; Qu, Z. Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells. Renew. Energy 2020, 151, 1339–1351. [Google Scholar] [CrossRef]
- Jiang, F.; Luo, L.; Chen, J. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems. Int. Commun. Heat Mass Transf. 2013, 41, 57–62. [Google Scholar] [CrossRef]
- Rybdylova, O.; Al Qubeissi, M.; Braun, M.; Crua, C.; Manin, J.; Pickett, L.M.; De Sercey, G.; Sazhina, E.M.; Sazhin, S.S.; Heikal, M. A model for droplet heating and its implementation into ANSYS Fluent. Int. Commun. Heat Mass Transf. 2016, 76, 265–270. [Google Scholar] [CrossRef]
- Shaik, A.R.; Rahman, S.S.; Tran, N.H.; Tran, T. Numerical simulation of Fluid-Rock coupling heat transfer in naturally fractured geothermal system. Appl. Therm. Eng. 2011, 31, 1600–1606. [Google Scholar] [CrossRef]
- Xia, Y.; Plummer, M.; Mattson, E.; Podgorney, R.; Ghassemi, A. Design, modeling, and evaluation of a doublet heat extraction model in enhanced geothermal systems. Renew. Energy 2017, 105, 232–247. [Google Scholar] [CrossRef]
- Waples, D.W.; Tirsgaard, H. Changes in matrix thermal conductivity of clays and claystones as a function of compaction. Pet. Geosci. 2002, 8, 365–370. [Google Scholar] [CrossRef]
- Zhang, J.; Standifird, W.B.; Roegiers, J.-C.; Zhang, Y. Stress-Dependent Fluid Flow and Permeability in Fractured Media: From Lab Experiments to Engineering Applications. Rock Mech. Rock Eng. 2007, 40, 3–21. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Huang, Y.; Zhang, Y.; Hu, Z. Experimental study on flow and heat transfer characteristics of water flowing through a rock fracture induced by hydraulic fracturing for an enhanced geothermal system. Appl. Therm. Eng. 2019, 154, 433–441. [Google Scholar] [CrossRef]
- Zeng, Y.-C.; Su, Z.; Wu, N.-Y. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field. Energy 2013, 56, 92–107. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Yu, Z.; Hu, Z.; Ma, Y.; Yang, Y. Experimental and numerical studies on hydraulic fracturing characteristics with different injection flow rates in granite geothermal reservoir. Energy Sci. Eng. 2020, 9, 142–168. [Google Scholar] [CrossRef]
- Huang, W.; Chen, J.; Cen, J.; Cao, W.; Li, Z.; Li, F.; Jiang, F. Heat extraction from hot dry rock by super-long gravity heat pipe: Effect of key parameters. Energy 2022, 248. [Google Scholar] [CrossRef]
- Cheng, A.H.; Ghassemi, A.; Detournay, E. Integral equation solution of heat extraction from a fracture in hot dry rock. Int. J. Numer. Anal. Methods Géoméch. 2001, 25, 1327–1338. [Google Scholar] [CrossRef]
- Zeng, Y.-C.; Wu, N.-Y.; Su, Z.; Wang, X.-X.; Hu, J. Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field. Energy 2013, 63, 268–282. [Google Scholar] [CrossRef]
- Kleijnen, J.P.C.; van Beers, W.; van Nieuwenhuyse, I. Expected improvement in efficient global optimization through bootstrapped kriging. J. Glob. Optim. 2011, 54, 59–73. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, C.; Gao, L. Multi-objective cellular particle swarm optimization for wellbore trajectory design. Appl. Soft Comput. 2019, 77, 106–117. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Z.; Dou, B.; Lu, C. Multi-objective cellular particle swarm optimization and RBF for drilling parameters optimization. Math. Biosci. Eng. 2019, 16, 1258–1279. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Rock thermal conductivity | 2.5 W/(m·K) |
Rock specific heat | 1000 J/(kg·K) |
Rock density | 2650 kg/m3 |
Fracture permeability | 1.9 × 10−7 m2 |
Fracture height | 400 m |
Fracture length | 400 m |
Fracture aperture | 0.002 m |
Asperity height | 0.0005 m |
Injection temperature | 333.15 K |
Sample Size vs. Diff. Criteria | 30 | 40 | 50 |
---|---|---|---|
RRMSE | 0.2175 | 0.1169 | 0.0682 |
RMAE | 0.8012 | 0.4652 | 0.2013 |
RAAE | 0.1435 | 0.0398 | 0.0732 |
Sample Size | Diff. Error Criteria | Kriging in KBO | Kriging in PLCB-AKO |
---|---|---|---|
50 | RRMSE | 0.0682 | - |
RMAE | 0.2013 | - | |
RAAE | 0.0398 | - | |
29(20+9) | RRMSE | - | 0.0298 |
RMAE | - | 0.1632 | |
RAAE | - | 0.0354 |
EI-AKO | WEI-AKO | PLCB-1-AKO | PLCB-2-AKO | PLCB-3-AKO | PLCB-4-AKO | |
---|---|---|---|---|---|---|
Mean | 0.6296 | 0.6399 | 0.4975 | 0.6144 | 0.6037 | 0.5852 |
Variance | 0.0366 | 0.0359 | 0.0238 | 0.0326 | 0.0339 | 0.0304 |
Different Approaches | Rank | p-Value |
---|---|---|
EI-AKO | 23.08 | 0.00053 |
WEI-AKO | 21.92 | |
PLCB-1-AKO | 10.38 | |
PLCB-2-AKO | 19.13 | |
PLCB-3-AKO | 18.98 | |
PLCB-4-AKO | 17.5 |
PLCB-1-AKO v.s. | R+ | R− | p-Value |
---|---|---|---|
EI-AKO | 387 | 78 | 2.76 × 10−5 |
WEI-AKO | 453.5 | 11.5 | 5.44 × 10−6 |
PLCB-2-AKO | 424.5 | 40.5 | 7.53 × 10−6 |
PLCB-3-AKO | 452.5 | 12.5 | 5.99 × 10−6 |
PLCB-4-AKO | 428 | 37 | 5.75 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Sun, W.; Zheng, J.; Dou, B. Adaptive Kriging-Based Heat Production Performance Optimization for a Two-Horizontal-Well Geothermal System. Appl. Sci. 2024, 14, 6415. https://doi.org/10.3390/app14156415
Liu H, Sun W, Zheng J, Dou B. Adaptive Kriging-Based Heat Production Performance Optimization for a Two-Horizontal-Well Geothermal System. Applied Sciences. 2024; 14(15):6415. https://doi.org/10.3390/app14156415
Chicago/Turabian StyleLiu, Haisheng, Wan Sun, Jun Zheng, and Bin Dou. 2024. "Adaptive Kriging-Based Heat Production Performance Optimization for a Two-Horizontal-Well Geothermal System" Applied Sciences 14, no. 15: 6415. https://doi.org/10.3390/app14156415
APA StyleLiu, H., Sun, W., Zheng, J., & Dou, B. (2024). Adaptive Kriging-Based Heat Production Performance Optimization for a Two-Horizontal-Well Geothermal System. Applied Sciences, 14(15), 6415. https://doi.org/10.3390/app14156415