Variable Chromosome Genetic Algorithm for Structure Learning in Neural Networks to Imitate Human Brain
Abstract
:Featured Application
Abstract
1. Introduction
2. Methodology
2.1. Structure Learning Based on Variable Chromosome Genetic Algorithm
2.2. Chromosome Type of Artificial Neural Network
2.3. Application of Genetic Operation
3. Case Study: XOR Problem
3.1. Initialization
3.2. Simulation Result
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, T.; Geng, G.H. Image Retrieval Method for Deep Neural Network. Int. J. Signal Process. Image Process. Pattern Recognit. 2016, 9, 33–42. [Google Scholar]
- Das, B.; Roy, S.; Rai, R.; Saha, S. Studies on Effect of Cutting Parameters on Surface Roughness of Al-Cu-TiC MMCs: An Artificial Neural Network Approach. Procedia Comput. Sci. 2015, 45, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.; Park, K.; Park, M. Effects of Vehicular Communication on Risk Assessment in Automated Driving Vehicles. Appl. Sci. 2018, 8, 2632. [Google Scholar] [CrossRef]
- Survey of Neural Networks in Autonomous Driving. Available online: https://www.researchgate.net/publication/324476862_Survey_of_neural_networks_in_autonomous_driving (accessed on 20 July 2019).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inform. Process Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Lawrence, S.; Giles, C.; Tsoi, A.C.; Back, A. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Netw. 1997, 8, 98–113. [Google Scholar] [CrossRef] [PubMed]
- Mikolov, T.; Karafiát, M.; Burget, L.; Černockỳ, J.; Khudanpur, S. Recurrent Neural Network Based Language Model. In Proceedings of the Eleventh Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, 26 September 2010. [Google Scholar]
- Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.; Navruzyan, A.; Duffy, N. Evolving Deep Neural Networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing; Elsevier: Amsterdam, The Netherlands, 2019; pp. 293–312. [Google Scholar]
- Hamanaka, M.; Goto, M.; Asoh, H.; Otsu, N. A Learning-Based Jam Session System that Imitates a Player’s Personality Model. In Proceedings of the International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003; pp. 51–58. [Google Scholar]
- Anderson, M. Using AI to Make Better AI. Available online: https://spectrum.ieee.org/tech-talk/computing/networks/using-ai-to-make-better-ai (accessed on 12 April 2019).
- Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1–21. [Google Scholar]
- Poza, M.; Yurramendi, Y.; Murga, R.; Kuijpers, C.; Larrañaga, P. Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 912–926. [Google Scholar]
- Kwok, T.Y.; Yeung, D.Y. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Trans. Neural Netw. 1997, 8, 630–645. [Google Scholar] [CrossRef] [PubMed]
- Yao, X. Evolving artificial neural networks. Proc. IEEE 1999, 87, 1423–1447. [Google Scholar] [Green Version]
- Stanley, K.O.; Miikkulainen, R. Evolving Neural Networks through Augmenting Topologies. Evol. Comput. 2002, 10, 99–127. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Chen, Y.P. An evolutionary constructive and pruning algorithm for artificial neural networks and its prediction applications. Neurocomputing 2012, 86, 140–149. [Google Scholar] [CrossRef]
- Miller, G.F.; Todd, P.M.; Hegde, S.U. Designing Neural Networks using Genetic Algorithms. Proc. ICGA 1989, 89, 379–384. [Google Scholar]
- Kandasamy, K.; Neiswanger, W.; Schneider, J.; Poczos, B.; Xing, E.P. Neural architecture search with bayesian optimisation and optimal transport. Proc. Adv. Neural Inf. Process. Syst. 2018, 31, 2016–2025. [Google Scholar]
- Kwok, T.Y.; Yeung, D.Y. Constructive feedforward neural networks for regression problems: A survey. HKUST-CS95 1995, 43, 1–29. [Google Scholar]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef] [Green Version]
- Park, K.M.; Shin, S.H.; Chi, S.D. The Genetic Algorithm using Variable Chromosome with Chromosome Attachment for decision making model. J. Korea Soc. Simul. 2017, 26, 1–9. [Google Scholar]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Mutations Involve Changes in the Base Sequence of DNA. In Biochemistry, 5th ed.; W. H. Freeman and Company: Bethesda MD, USA, 2002. [Google Scholar]
- Rieder, C.L. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 1990, 110, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Shonn, M.A. Requirement of the Spindle Checkpoint for Proper Chromosome Segregation in Budding Yeast Meiosis. Science 2000, 289, 300–303. [Google Scholar] [CrossRef] [PubMed]
- Minsky, M.L.; Papert, S.A.; Perceptrons, F. Mass, rev. ed.; The MIT Press: Cambridge, MA, USA, 1969. [Google Scholar]
Method | Average of Generation Finding Solution | Average Number of Hidden Nodes | Average Number of Disabled Connections | Evolution Directed to Decreasing |
---|---|---|---|---|
NEAT | 32 | 2.35 | 7.48 | impossible |
using variable chromosome genetic algorithm (VCGA) | about 40 | 2 | 0 | possible |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.-m.; Shin, D.; Chi, S.-d. Variable Chromosome Genetic Algorithm for Structure Learning in Neural Networks to Imitate Human Brain. Appl. Sci. 2019, 9, 3176. https://doi.org/10.3390/app9153176
Park K-m, Shin D, Chi S-d. Variable Chromosome Genetic Algorithm for Structure Learning in Neural Networks to Imitate Human Brain. Applied Sciences. 2019; 9(15):3176. https://doi.org/10.3390/app9153176
Chicago/Turabian StylePark, Kang-moon, Donghoon Shin, and Sung-do Chi. 2019. "Variable Chromosome Genetic Algorithm for Structure Learning in Neural Networks to Imitate Human Brain" Applied Sciences 9, no. 15: 3176. https://doi.org/10.3390/app9153176
APA StylePark, K. -m., Shin, D., & Chi, S. -d. (2019). Variable Chromosome Genetic Algorithm for Structure Learning in Neural Networks to Imitate Human Brain. Applied Sciences, 9(15), 3176. https://doi.org/10.3390/app9153176