Different Language Modalities Yet Similar Cognitive Processes in Arithmetic Fact Retrieval
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Electroencephalography Data Acquisition and Preprocessing
2.4. ERP Components and Analyses
3. Results
3.1. Behavioral Results
3.2. ERP Problem-Locked Components Results
3.2.1. Centro-Posterior Negativity between 70 ms and 110 ms
3.2.2. Fronto-Central Negativity between 110 ms and 140 ms
3.2.3. Fronto-Central Positivity between 180 ms and 210 ms
3.2.4. Bilateral Parieto-Occipital Negativity between 180 ms and 220 ms
3.2.5. Second Parieto-Occipital Negativity between 240 and 300 ms
3.2.6. P300 Centro-Posterior Positivity between 310–350 ms
3.2.7. LPC Late Centro-Posterior Positivity between 400 ms and 800 ms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Operation | Size | 1st Operand (x) | 2nd Operand (y) | Correct Solution (z) | Incorrect Smaller | Incorrect Larger |
---|---|---|---|---|---|---|
Subtraction | Small | 5 | 3 | 2 | 1 (z − 1) | 3 (z + 1) |
Subtraction | Small | 6 | 4 | 2 | 1 (z − 1) | 3 (z + 1) |
Subtraction | Small | 7 | 5 | 2 | 1 (z − 1) | 3 (z + 1) |
Subtraction | Small | 7 | 4 | 3 | 2 (z − 1) | 4 (z + 1) |
Subtraction | Small | 8 | 5 | 3 | 2 (z − 1) | 4 (z + 1) |
Subtraction | Small | 9 | 5 | 4 | 3 (z − 1) | 5 (z + 1) |
Subtraction | Small | 5 | 2 | 3 | 1 (z − 2) | 5 (z + 2) |
Subtraction | Small | 6 | 2 | 4 | 2 (z − 2) | 6 (z + 2) |
Subtraction | Small | 7 | 2 | 5 | 3 (z − 2) | 7 (z + 2) |
Subtraction | Small | 7 | 3 | 4 | 2 (z − 2) | 6 (z + 2) |
Subtraction | Small | 8 | 3 | 5 | 3 (z − 2) | 7 (z + 2) |
Subtraction | Small | 9 | 4 | 5 | 3 (z − 2) | 7 (z + 2) |
Subtraction | Large | 13 | 7 | 6 | 5 (z − 1) | 7 (z + 1) |
Subtraction | Large | 14 | 8 | 6 | 5 (z − 1) | 7 (z + 1) |
Subtraction | Large | 15 | 9 | 6 | 5 (z − 1) | 7 (z + 1) |
Subtraction | Large | 15 | 8 | 7 | 6 (z − 1) | 8 (z + 1) |
Subtraction | Large | 16 | 9 | 7 | 6 (z − 1) | 8 (z + 1) |
Subtraction | Large | 17 | 9 | 8 | 7 (z − 1) | 9 (z + 1) |
Subtraction | Large | 13 | 6 | 7 | 5 (z − 2) | 9 (z + 2) |
Subtraction | Large | 14 | 6 | 8 | 6 (z − 2) | 10 (z + 2) |
Subtraction | Large | 15 | 6 | 9 | 7 (z − 2) | 11 (z + 2) |
Subtraction | Large | 15 | 7 | 8 | 6 (z − 2) | 10 (z + 2) |
Subtraction | Large | 16 | 7 | 9 | 7 (z − 2) | 11 (z + 2) |
Subtraction | Large | 17 | 8 | 9 | 7 (z − 2) | 11 (z + 2) |
Subtraction | Extra-Large | 42 | 6 | 36 | 34 (z − 2) | 38 (z + 2) |
Subtraction | Extra-Large | 48 | 6 | 42 | 40 (z − 2) | 44 (z + 2) |
Subtraction | Extra-Large | 54 | 6 | 48 | 46 (z − 2) | 50 (z + 2) |
Subtraction | Extra-Large | 56 | 7 | 49 | 47 (z − 2) | 51 (z + 2) |
Subtraction | Extra-Large | 63 | 7 | 56 | 54 (z − 2) | 58 (z + 2) |
Subtraction | Extra-Large | 72 | 8 | 64 | 62 (z − 2) | 66 (z + 2) |
Subtraction | Extra-Large | 42 | 7 | 35 | 33 (z − 2) | 37 (z + 2) |
Subtraction | Extra-Large | 48 | 8 | 40 | 38 (z − 2) | 42 (z + 2) |
Subtraction | Extra-Large | 54 | 9 | 45 | 43 (z − 2) | 47 (z + 2) |
Subtraction | Extra-Large | 56 | 8 | 48 | 46 (z − 2) | 50 (z + 2) |
Subtraction | Extra-Large | 63 | 9 | 54 | 52 (z − 2) | 56 (z + 2) |
Subtraction | Extra-Large | 72 | 9 | 63 | 61 (z − 2) | 65 (z + 2) |
Multiplication | Small | 2 | 3 | 6 | 3 (x − 1) | 9 (x + 1) |
Multiplication | Small | 2 | 4 | 8 | 4 (x − 1) | 12 (x + 1) |
Multiplication | Small | 2 | 5 | 10 | 5 (x − 1) | 15 (x + 1) |
Multiplication | Small | 3 | 4 | 12 | 8 (x − 1) | 16 (x + 1) |
Multiplication | Small | 3 | 5 | 15 | 10 (x − 1) | 20 (x + 1) |
Multiplication | Small | 4 | 5 | 2 | 15 (x − 1) | 25 (x + 1) |
Multiplication | Small | 3 | 2 | 6 | 4 (x − 1) | 8 (x + 1) |
Multiplication | Small | 4 | 2 | 8 | 6 (x − 1) | 10 (x + 1) |
Multiplication | Small | 5 | 2 | 10 | 8 (x − 1) | 12 (x + 1) |
Multiplication | Small | 4 | 3 | 12 | 9 (x − 1) | 15 (x + 1) |
Multiplication | Small | 5 | 3 | 15 | 12 (x − 1) | 18 (x + 1) |
Multiplication | Small | 5 | 4 | 20 | 16 (x − 1) | 24 (x + 1) |
Multiplication | Large | 6 | 7 | 42 | 35 (x − 1) | 49 (x + 1) |
Multiplication | Large | 6 | 8 | 48 | 40 (x − 1) | 56 (x + 1) |
Multiplication | Large | 6 | 9 | 54 | 45 (x − 1) | 63 (x + 1) |
Multiplication | Large | 7 | 8 | 56 | 48 (x − 1) | 64 (x + 1) |
Multiplication | Large | 7 | 9 | 63 | 54 (x − 1) | 72 (x + 1) |
Multiplication | Large | 8 | 9 | 72 | 63 (x − 1) | 81 (x + 1) |
Multiplication | Large | 7 | 6 | 42 | 36 (x − 1) | 48 (x + 1) |
Multiplication | Large | 8 | 6 | 48 | 42 (x − 1) | 54 (x + 1) |
Multiplication | Large | 9 | 6 | 54 | 48 (x − 1) | 60 (x + 1) |
Multiplication | Large | 8 | 7 | 56 | 49 (x − 1) | 63 (x + 1) |
Multiplication | Large | 9 | 7 | 63 | 56 (x − 1) | 70 (x + 1) |
Multiplication | Large | 9 | 8 | 72 | 64 (x − 1) | 80 (x + 1) |
References
- De Smedt, B.; Grabner, R.H. Application of Neuroscience to Mathematics Educatioin. In The Oxford Handbook of Numerical Cognition; Cohen Kadosh, R., Dowker, A., Eds.; Oxford University Press: Oxford, UK, 2015; pp. 613–634. [Google Scholar]
- Ischebeck, A.; Zamarian, L.; Siedentopf, C.; Koppelstätter, F.; Benke, T.; Felber, S.; Delazer, M. How specifically do we learn? Imaging the learning of multiplication and subtraction. NeuroImage 2006, 30, 1365–1375. [Google Scholar] [CrossRef]
- Zamarian, L.; Ischebeck, A.; Delazer, M. Neuroscience of learning arithmetic—Evidence from brain imaging studies. Neurosci. Biobehav. Rev. 2009, 33, 909–925. [Google Scholar] [CrossRef] [PubMed]
- Ischebeck, A.; Zamarian, L.; Egger, K.; Schocke, M.; Delazer, M. Imaging early practice effects in arithmetic. NeuroImage 2007, 36, 993–1003. [Google Scholar] [CrossRef]
- Delazer, M.; Ischebeck, A.; Domahs, F.; Zamarian, L.; Koppelstaetter, F.; Siedentopf, C.; Kaufmann, L.; Benke, T.; Felber, S. Learning by strategies and learning by drill—Evidence from an fMRI study. NeuroImage 2005, 25, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, W.; Chen, K.; Feng, S.; Ji, Y.; Shen, J.; Reiman, E.M.; Liu, Y. Arithmetic processing in the brain shaped by cultures. Proc. Natl. Acad. Sci. USA 2006, 103, 10775–10780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petitto, L.-A. Are signed languages ‘real’ languages? Signpost Int. Q. Sign Linguist. Assoc. 1994, 7, 1–10. [Google Scholar]
- Kolb, B.; Harker, A.; Gibb, R. Principles of plasticity in the developing brain. Dev. Med. Child Neurol. 2017, 59, 1218–1223. [Google Scholar] [CrossRef] [Green Version]
- Emmorey, K. Mental rotation within linguistic and non-linguistic domains in users of American sign language. Cognition 1998, 68, 221–246. [Google Scholar] [CrossRef]
- Emmorey, K.; Kosslyn, S.M.; Bellugi, U. Visual imagery and visual-spatial language: Enhanced imagery abilities in deaf and hearing ASL signers. Cognition 1993, 46, 139–181. [Google Scholar] [CrossRef]
- Talbot, K.F.; Haude, R.H. The Relation between Sign Language Skill and Spatial Visualization Ability: Mental Rotation of Three-Dimensional Objects. Percept. Mot. Ski. 1993, 77, 1387–1391. [Google Scholar] [CrossRef]
- Wilson, M.; Emmorey, K. A visuospatial “phonological loop” in working memory: Evidence from American Sign Language. Mem. Cogn. 1997, 25, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Corina, D.P.; Knapp, H. Sign Language Processing and the Mirror Neuron System. Cortex 2006, 42, 529–539. [Google Scholar] [CrossRef]
- Neville, H.J.; Bavelier, D.; Corina, D.; Rauschecker, J.P.; Karni, A.; Lalwani, A.; Braun, A.; Clark, V.; Jezzard, P.; Turner, R. Cerebral organization for language in deaf and hearing subjects: Biological constraints and effects of experience. Proc. Natl. Acad. Sci. USA 1998, 95, 922–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corina, D.P. Studies of neural processing in deaf signers: Toward a neurocognitive model of language processing in the deaf. J. Deaf. Stud. Deaf. Educ. 1998, 3, 35–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petitto, L.A.; Zatorre, R.J.; Gauna, K.; Nikelski, E.J.; Dostie, D.; Evans, A.C. Speech-like cerebral activity in profoundly deaf people processing signed languages: Implications for the neural basis of human language. Proc. Natl. Acad. Sci. USA 2000, 97, 13961–13966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petitto, L.A.; Langdon, C.; Stone, A.; Andriola, D.; Kartheiser, G.; Cochran, C. Visual sign phonology: Insights into human reading and language from a natural soundless phonology. Wiley Interdiscip. Rev. Cogn. Sci. 2016, 7, 366–381. [Google Scholar] [CrossRef]
- Emmorey, K. The Neurobiology of Sign Language. In Brain Mapping: An Encyclopedic Reference; Toga, A.W., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 3, pp. 475–479. [Google Scholar]
- Fehr, T.; Code, C.; Herrmann, M. Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI–BOLD activation. Brain Res. 2007, 1172, 93–102. [Google Scholar] [CrossRef]
- Rosenberg-Lee, M.; Lovett, M.C.; Anderson, J.R. Neural correlates of arithmetic calculation strategies. Cogn. Affect. Behav. Neurosci. 2009, 9, 270–285. [Google Scholar] [CrossRef] [Green Version]
- Arsalidou, M.; Taylor, M.J. Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage 2011, 54, 2382–2393. [Google Scholar] [CrossRef]
- Yu, X.; Chen, C.; Pu, S.; Wu, C.; Li, Y.; Jiang, T.; Zhou, X. Dissociation of subtraction and multiplication in the right parietal cortex: Evidence from intraoperative cortical electrostimulation. Neuropsychologia 2011, 49, 2889–2895. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Chen, C.; Dong, Q.; Zhang, H.; Zhou, R.; Zhao, H.; Chen, C.; Qiao, S.; Jiang, T.; Guo, Y. Event-related potentials of single-digit addition, subtraction, and multiplication. Neuropsychologia 2006, 44, 2500–2507. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Chen, C.; Zang, Y.; Dong, Q.; Chen, C.; Qiao, S.; Gong, Q. Dissociated brain organization for single-digit addition and multiplication. NeuroImage 2006, 35, 871–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasinski, E.C.; Coch, D. ERPs across arithmetic operations in a delayed answer verification task. Psychophysiology 2012, 49, 943–958. [Google Scholar] [CrossRef] [PubMed]
- Prado, J.; Mutreja, R.; Zhang, H.; Mehta, R.; Desroches, A.S.; Minas, J.E.; Booth, J.R. Distinct representations of subtraction and multiplication in the neural systems for numerosity and language. Hum. Brain Mapp. 2011, 32, 1932–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seitz, K.; Schumann-Hengsteler, R. Mental multiplication and working memory. Eur. J. Cogn. Psychol. 2000, 12, 552–570. [Google Scholar] [CrossRef]
- Prado, J.; Mutreja, R.; Booth, J.R. Developmental dissociation in the neural responses to simple multiplication and subtraction problems. Dev. Sci. 2014, 17, 537–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, S.; Reiss, A.; Eckert, M.; Menon, V. Developmental Changes in Mental Arithmetic: Evidence for Increased Functional Specialization in the Left Inferior Parietal Cortex. Cereb. Cortex 2005, 15, 1779–1790. [Google Scholar] [CrossRef]
- Núñez-Peña, M.I.; Gracia-Bafalluy, M.; Tubau, E. Individual differences in arithmetic skill reflected in event-related brain potentials. Int. J. Psychophysiol. 2011, 80, 143–149. [Google Scholar] [CrossRef]
- Rosenberg-Lee, M.; Barth, M.; Menon, V. What difference does a year of schooling make? Maturation of brain response and connectivity between 2nd and 3rd grades during arithmetic problem solving. Neuroimage 2011, 57, 796–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez-Peña, M.I.; Cortiñas, M.; Escera, C. Problem size effect and processing strategies in mental arithmetic. NeuroReport 2006, 17, 357–360. [Google Scholar] [CrossRef]
- Ku, Y.; Hong, B.; Gao, X.; Gao, S. Spectra-temporal patterns underlying mental addition: An ERP and ERD/ERS study. Neurosci. Lett. 2010, 472, 5–10. [Google Scholar] [CrossRef]
- Dehaene, S. The Organization of Brain Activations in Number Comparison: Event-Related Potentials and the Additive-Factors Method. J. Cogn. Neurosci. 1996, 8, 47–68. [Google Scholar] [CrossRef]
- Hinault, T.; Lemaire, P. What does EEG tell us about arithmetic strategies? A review. Int. J. Psychophysiol. 2016, 106, 115–126. [Google Scholar] [CrossRef]
- Muluh, E.; Vaughan, C.; John, L. High resolution event-related potentials analysis of the arithmetic-operation effect in mental arithmetic. Clin. Neurophysiol. 2011, 122, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, M.; Dehaene, S. The Time Course of Parietal Activation in Single-digit Multiplication: Evidence from Event-related Potentials. Math. Cogn. 1997, 3, 1–30. [Google Scholar] [CrossRef]
- Campbell, J.I.D.; Oliphant, M. Representation and retrieval of arithmetic facts: A network-interference modeland simulation. In The Nature and Origins of Mathematical Cognition; Campbell, J.I.D., Ed.; Elsevier Science Publisher B.V.: Amsterdam, The Netherlands, 1992; pp. 331–364. [Google Scholar] [CrossRef]
- Taillan, J.; Ardiale, E.; Lemaire, P. Relationships Between Strategy Switching and Strategy Switch Costs in Young and Older Adults: A Study in Arithmetic Problem Solving. Exp. Aging Res. 2015, 41, 136–156. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Fayol, M.; Thevenot, C. The use of procedural knowledge in simple addition and subtraction problems. Cognition 2012, 123, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Andin, J.; Elwér, A.; Mäki-Torkko, E. Arithmetic in the adult deaf signing brain. J. Neurosci. Res. 2019, 98, 643–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amano, K.; Goda, N.; Nishida, S.; Ejima, Y.; Takeda, T.; Ohtani, Y. Estimation of the Timing of Human Visual Perception from Magnetoencephalography. J. Neurosci. 2006, 26, 3981–3991. [Google Scholar] [CrossRef] [Green Version]
- Taillan, J.; Dufau, S.; Lemaire, P. How Do We Choose Among Strategies to Accomplish Cognitive Tasks? Evidence From Behavioral and Event-Related Potential Data in Arithmetic Problem Solving. Mind Brain Educ. 2015, 9, 222–231. [Google Scholar] [CrossRef]
- El Yagoubi, R.; Lemaire, P.; Besson, M. Different brain mechanisms mediate two strategies in arithmetic: Evidence from Event-Related brain Potentials. Neuropsychologia 2003, 41, 855–862. [Google Scholar] [CrossRef]
- Luo, W.; Liu, D.; He, W.; Tao, W.; Luo, Y. Dissociated brain potentials for two calculation strategies. NeuroReport 2009, 20, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Stanescu-Cosson, R.; Pinel, P.; Van de Moortele, P.-F.; Le Bihan, D.; Cohen, L.; Dehaene, S. Understanding dissociations in dyscalculia: A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain 2000, 123, 2240–2255. [Google Scholar] [CrossRef] [Green Version]
- He, W.-Q.; Luo, W.-B.; He, H.-M.; Chen, X.; Zhang, D.-J. N170 effects during exact and approximate calculation tasks. NeuroReport 2011, 22, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Peña, M.I.; Honrubia-Serrano, M.L.; Escera, C. Problem size effect in additions and subtractions: An event-related potential study. Neurosci. Lett. 2004, 373, 21–25. [Google Scholar] [CrossRef]
- Neville, H.J.; Schmidt, A.; Kutas, M. Altered visual-evoked potentials in congenitally deaf adults. Brain Res. 1983, 266, 127–132. [Google Scholar] [CrossRef]
- Yukhymenko, L.I. Cortical Visual Evoked Potentials in Subjects with Auditory Deprivation (Congenital Deafness). Neurophysiology 2017, 49, 240–243. [Google Scholar] [CrossRef]
- Uittenhove, K.; Poletti, C.; Dufau, S.; Lemaire, P. The time course of strategy sequential difficulty effects: An ERP study in arithmetic. Exp. Brain Res. 2013, 227, 1–8. [Google Scholar] [CrossRef]
- Hinault, T.; Dufau, S.; Lemaire, P. Sequential modulations of poorer-strategy effects during strategy execution: An event-related potential study in arithmetic. Brain Cogn. 2014, 91, 123–130. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quandt, L.C.; Kubicek, E. Sensorimotor characteristics of sign translations modulate EEG when deaf signers read English. Brain Lang. 2018, 187, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.; Johnson, R. Event-related potential (ERP) studies of memory encoding and retrieval: A selective review. Microsc. Res. Tech. 2000, 51, 6–28. [Google Scholar] [CrossRef]
- Dehaene, S.; Duhamel, J.-R.; Hauser, M.D.; Rizzolatti, G. Evolution of Human Cortical Circuits for Reading and Arithmetic: The ‘neuronal recycling’ hypothesis. In From Monkey Brain to Human Brain; MIT Press: Cambridge, MA, USA, 2005; pp. 133–157. [Google Scholar] [CrossRef] [Green Version]
- Petitto, L.A.; Katerelos, M.; Levy, B.G.; Gauna, K.; Tétreault, K.; Ferraro, V. Bilingual signed and spoken language acquisition from birth: Implications for the mechanisms underlying early bilingual language acquisition. J. Child Lang. 2001, 28, 453–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, M.D.; Hauser, P.C.; Miller, P.; Kargin, T.; Rathmann, C.; Guldenoglu, B.; Kubus, O.; Spurgeon, E.; Israel, E. The Importance of Early Sign Language Acquisition for Deaf Readers. Read. Writ. Q. 2014, 32, 127–151. [Google Scholar] [CrossRef]
- Holmer, E.; Heimann, M.; Rudner, M. Evidence of an association between sign language phonological awareness and word reading in deaf and hard-of-hearing children. Res. Dev. Disabil. 2016, 48, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Mayberry, R.I. When timing is everything: Age of first-language acquisition effects on second-language learning. Appl. Psycholinguist. 2007, 28, 537–549. [Google Scholar] [CrossRef] [Green Version]
- Padden, C.; Ramsey, C. American Sign Language and Reading Ability in Deaf Children. In Language Acquisition by Eye; Mayberry, R.I., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2000; pp. 165–189. [Google Scholar]
- Morford, J.P.; Wilkinson, E.; Villwock, A.; Piñar, P.; Kroll, J.F. When deaf signers read English: Do written words activate their sign translations? Cognition 2011, 118, 286–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berteletti, I.; Kimbley, S.E.; Sullivan, S.J.; Quandt, L.C.; Miyakoshi, M. Different Language Modalities Yet Similar Cognitive Processes in Arithmetic Fact Retrieval. Brain Sci. 2022, 12, 145. https://doi.org/10.3390/brainsci12020145
Berteletti I, Kimbley SE, Sullivan SJ, Quandt LC, Miyakoshi M. Different Language Modalities Yet Similar Cognitive Processes in Arithmetic Fact Retrieval. Brain Sciences. 2022; 12(2):145. https://doi.org/10.3390/brainsci12020145
Chicago/Turabian StyleBerteletti, Ilaria, Sarah E. Kimbley, SaraBeth J. Sullivan, Lorna C. Quandt, and Makoto Miyakoshi. 2022. "Different Language Modalities Yet Similar Cognitive Processes in Arithmetic Fact Retrieval" Brain Sciences 12, no. 2: 145. https://doi.org/10.3390/brainsci12020145
APA StyleBerteletti, I., Kimbley, S. E., Sullivan, S. J., Quandt, L. C., & Miyakoshi, M. (2022). Different Language Modalities Yet Similar Cognitive Processes in Arithmetic Fact Retrieval. Brain Sciences, 12(2), 145. https://doi.org/10.3390/brainsci12020145