Prognostic Role of Invasion-Related Extracellular Matrix Molecules in Diffusely Infiltrating Grade 2 and 3 Astrocytomas
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Grade-2 Astrocytoma
3.1.1. Clinico-Pathological Results
3.1.2. Clinical Follow-Up—Survival Data
3.1.3. mRNA Expression
3.1.4. Protein Expression
3.1.5. Invasion Spectrum Analysis
3.2. Grade-3 Astrocytoma
3.2.1. Clinico-Pathological Results
3.2.2. Clinical Follow-Up and Survival Data
3.2.3. mRNA Expression
3.2.4. Invasion Spectrum Analysis
3.3. Comparison of Different Grades (Grade 2 and Grade 3)
3.3.1. Clinico-Pathological Results
3.3.2. mRNA Expression
3.3.3. Invasion Spectrum Analysis
4. Discussion
4.1. Prognostic Analysis of Grade 2 Tumors
4.2. Analysis of Grade 3 Tumors in Terms of the Impact of Oncotherapy on the Invasion Spectrum
4.3. Comparison of Grade 2 and Grade 3 Tumors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro-Oncology 2022, 24, v1–v95. [Google Scholar] [CrossRef] [PubMed]
- Brat, D.J.; Aldape, K.; Colman, H.; Holland, E.C.; Louis, D.N.; Jenkins, R.B.; Kleinschmidt-DeMasters, B.K.; Perry, A.; Reifenberger, G.; Stupp, R.; et al. CIMPACT-NOW Update 3: Recommended Diagnostic Criteria for “Diffuse Astrocytic Glioma, IDH-Wildtype, with Molecular Features of Glioblastoma, WHO Grade IV”. Acta Neuropathol. 2018, 136, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Noorbakhsh, A.; Hirshman, B.R.; Zhou, T.; Tang, J.A.; Chang, D.C.; Carter, B.S.; Chen, C.C. Survival Trends of Grade I, II, and III Astrocytoma Patients and Associated Clinical Practice Patterns between 1999 and 2010: A SEER-Based Analysis. Neuro-Oncol. Pract. 2016, 3, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Ius, T.; Isola, M.; Budai, R.; Pauletto, G.; Tomasino, B.; Fadiga, L.; Skrap, M. Low-Grade Glioma Surgery in Eloquent Areas: Volumetric Analysis of Extent of Resection and Its Impact on Overall Survival. A Single-Institution Experience in 190 Patients: Clinical Article. J. Neurosurg. 2012, 117, 1039–1052. [Google Scholar] [CrossRef]
- Wijnenga, M.M.J.; French, P.J.; Dubbink, H.J.; DInjens, W.N.M.; Atmodimedjo, P.N.; Kros, J.M.; Smits, M.; Gahrmann, R.; Rutten, G.J.; Verheul, J.B.; et al. The Impact of Surgery in Molecularly Defined Low-Grade Glioma: An Integrated Clinical, Radiological, and Molecular Analysis. Neuro-Oncology 2018, 20, 103–112. [Google Scholar] [CrossRef]
- Ius, T.; Mazzucchi, E.; Tomasino, B.; Pauletto, G.; Sabatino, G.; Della Pepa, G.M.; La Rocca, G.; Battistella, C.; Olivi, A.; Skrap, M. Multimodal Integrated Approaches in Low Grade Glioma Surgery. Sci. Rep. 2021, 11, 9964. [Google Scholar] [CrossRef]
- Virga, J.; Bognár, L.; Hortobágyi, T.; Zahuczky, G.; Csősz, É.; Kalló, G.; Tóth, J.; Hutóczki, G.; Reményi-Puskár, J.; Steiner, L.; et al. Tumor Grade versus Expression of Invasion-Related Molecules in Astrocytoma. Pathol. Oncol. Res. 2018, 24, 35–43. [Google Scholar] [CrossRef]
- Virga, J.; Bognar, L.; Hortobagyi, T.; Csosz, E.; Kallo, G.; Zahuczki, G.; Steiner, L.; Hutoczki, G.; Remenyi-Puskar, J.; Klekner, A. The Expressional Pattern of Invasion-Related Extracellular Matrix Molecules in CNS Tumors. Cancer Investig. 2018, 36, 492–503. [Google Scholar] [CrossRef]
- Virga, J.; Szivos, L.; Hortobágyi, T.; Chalsaraei, M.K.; Zahuczky, G.; Steiner, L.; Tóth, J.; Reményi-Puskár, J.; Bognár, L.; Klekner, A. Extracellular Matrix Differences in Glioblastoma Patients with Different Prognoses. Oncol. Lett. 2019, 17, 797–806. [Google Scholar] [CrossRef]
- Novak, U.; Kaye, A.H. Extracellular Matrix and the Brain: Components and Function. J. Clin. Neurosci. 2017, 7, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, V.P.; Moura Neto, V.; Mentlein, R. Glioma Infiltration and Extracellular Matrix: Key Players and Modulators. Glia 2018, 66, 1542–1565. [Google Scholar] [CrossRef] [PubMed]
- Tonn, J.C.; Goldbrunner, R. Mechanisms of Glioma Cell Invasion. Acta Neurochir. Suppl. 2003, 88, 163–167. [Google Scholar] [PubMed]
- Paw, I.; Carpenter, R.C.; Watabe, K.; Debinski, W.; Lo, H.W. Mechanisms Regulating Glioma Invasion. Cancer Lett. 2015, 362, 1–7. [Google Scholar] [CrossRef]
- Demuth, T.; Berens, M.E. Molecular Mechanisms of Glioma Cell Migration and Invasion. J. Neurooncol. 2004, 70, 217–228. [Google Scholar] [CrossRef]
- Seker-Polat, F.; Pinarbasi Degirmenci, N.; Solaroglu, I.; Bagci-Onder, T. Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers 2022, 14, 443. [Google Scholar] [CrossRef]
- Van Den Bent, M.J.; Afra, D.; De Witte, O.; Ben Hassel, M.; Schraub, S.; Hoang-Xuan, K.; Malmström, P.O.; Collette, L.; Piérart, M.; Mirimanoff, R.; et al. Long-Term Efficacy of Early versus Delayed Radiotherapy for Low-Grade Astrocytoma and Oligodendroglioma in Adults: The EORTC 22845 Randomised Trial. Lancet 2005, 336, 985–990. [Google Scholar] [CrossRef]
- Buckner, J.C.; Pugh, S.L.; Shaw, E.G.; Gilbert, M.R.; Barger, G.; Coons, S.; Ricci, P.; Bullard, D.; Brown, P.D.; Stelzer, K.; et al. Phase III Study of Radiation Therapy (RT) with or without Procarbazine, CCNU, and Vincristine (PCV) in Low-Grade Glioma: RTOG 9802 with Alliance, ECOG, and SWOG. J. Clin. Oncol. 2019, 32, 2000. [Google Scholar] [CrossRef]
- van den Bent, M.J.; Tesileanu, C.M.S.; Wick, W.; Sanson, M.; Brandes, A.A.; Clement, P.M.; Erridge, S.; Vogelbaum, M.A.; Nowak, A.K.; Baurain, J.F.; et al. Adjuvant and Concurrent Temozolomide for 1p/19q Non-Co-Deleted Anaplastic Glioma (CATNON.; EORTC Study 26053–22054): Second Interim Analysis of a Randomised, Open-Label, Phase 3 Study. Lancet Oncol. 2021, 22, 813–823. [Google Scholar] [CrossRef]
- Virga, J.; Szemcsak, C.D.; Remenyi-Puskar, J.; Toth, J.; Hortobagyi, T.; Csosz, E.; Zahuczky, G.; Szivos, L.; Bognar, L.; Klekner, A. Differences in Extracellular Matrix Composition and Its Role in Invasion in Primary and Secondary Intracerebral Malignancies. Anticancer Res. 2017, 37, 4119–4126. [Google Scholar] [CrossRef]
- Sjöstedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; et al. An Atlas of the Protein-Coding Genes in the Human, Pig, and Mouse Brain. Science 2020, 367, 5947. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.H.; Zhang, P.; Shaw, E.G.; Buckner, J.C.; Barger, G.R.; Bullard, D.E.; Mehta, M.P.; Gilbert, M.R.; Brown, P.D.; Stelzer, K.J.; et al. Comprehensive Genomic Analysis in NRG Oncology/RTOG 9802: A Phase III Trial of Radiation Versus Radiation Plus Procarbazine, Lomustine (CCNU), and Vincristine in High-Risk Low-Grade Glioma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 3407–3417. [Google Scholar] [CrossRef] [PubMed]
- Baumert, B.G.; Hegi, M.E.; van den Bent, M.J.; von Deimling, A.; Gorlia, T.; Hoang-Xuan, K.; Brandes, A.A.; Kantor, G.; Taphoorn, M.J.B.; Hassel, M.B.; et al. Temozolomide Chemotherapy versus Radiotherapy in High-Risk Low-Grade Glioma (EORTC 22033–26033): A Randomised, Open-Label, Phase 3 Intergroup Study. Lancet Oncol. 2016, 17, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.J.; Hu, C.; Macdonald, D.R.; Lesser, G.J.; Coons, S.W.; Brachman, D.G.; Ryu, S.; Werner-Wasik, M.; Bahary, J.P.; Liu, J.; et al. Phase 2 Study of Temozolomide-Based Chemoradiation Therapy for High-Risk Low-Grade Gliomas: Preliminary Results of Radiation Therapy Oncology Group 0424. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 497–504. [Google Scholar] [CrossRef]
- Weller, M.; Le Rhun, E.; Van den Bent, M.; Chang, S.M.; Cloughesy, T.F.; Goldbrunner, R.; Hong, Y.-K.; Jalali, R.; Jenkinson, M.D.; Minniti, G.; et al. Diagnosis and Management of Complications from the Treatment of Primary Central Nervous System Tumors in Adults. Neuro-Oncology 2023, 25, 1200–1224. [Google Scholar] [CrossRef]
- Wick, W.; Roth, P.; Hartmann, C.; Hau, P.; Nakamura, M.; Stockhammer, F.; Sabel, M.C.; Wick, A.; Koeppen, S.; Ketter, R.; et al. Long-Term Analysis of the NOA-04 Randomized Phase III Trial of Sequential Radiochemotherapy of Anaplastic Glioma with PCV or Temozolomide. Neuro-Oncology 2016, 18, 1529–1537. [Google Scholar] [CrossRef]
- Sarkaria, J.N.; Kitange, G.J.; James, C.D.; Plummer, R.; Calvert, H.; Weller, M.; Wick, W. Mechanisms of Chemoresistance to Alkylating Agents in Malignant Glioma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 2900–2908. [Google Scholar] [CrossRef]
- Louis, D.N.; Wesseling, P.; Paulus, W.; Giannini, C.; Batchelor, T.T.; Cairncross, J.G.; Capper, D.; Figarella-Branger, D.; Lopes, M.B.; Wick, W.; et al. CIMPACT-NOW Update 1: Not Otherwise Specified (NOS) and Not Elsewhere Classified (NEC). Acta Neuropathol. 2018, 135, 481–484. [Google Scholar] [CrossRef]
- Louis, D.N.; Giannini, C.; Capper, D.; Paulus, W.; Figarella-Branger, D.; Lopes, M.B.; Batchelor, T.T.; Cairncross, J.G.; van den Bent, M.; Wick, W.; et al. CIMPACT-NOW Update 2: Diagnostic Clarifications for Diffuse Midline Glioma, H3 K27M-Mutant and Diffuse Astrocytoma/Anaplastic Astrocytoma, IDH-Mutant. Acta Neuropathol. 2018, 135, 639–642. [Google Scholar] [CrossRef]
- Ellison, D.W.; Hawkins, C.; Jones, D.T.W.; Onar-Thomas, A.; Pfister, S.M.; Reifenberger, G.; Louis, D.N. CIMPACT-NOW Update 4: Diffuse Gliomas Characterized by MYB, MYBL1, or FGFR1 Alterations or BRAFV600E Mutation. Acta Neuropathol. 2019, 137, 683–687. [Google Scholar] [CrossRef]
- Gittleman, H.; Sloan, A.E.; Barnholtz-Sloan, J.S. An Independently Validated Survival Nomogram for Lower-Grade Glioma. Neuro-Oncology 2020, 22, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, E.; Wakimoto, H. Extracellular Matrix in Glioblastoma: Opportunities for Emerging Therapeutic Approaches. Am. J. Cancer Res. 2021, 11, 3742–3754. [Google Scholar] [PubMed]
- So, J.-S.; Kim, H.; Han, K.-S. Mechanisms of Invasion in Glioblastoma: Extracellular Matrix, Ca2+ Signaling, and Glutamate. Front. Cell. Neurosci. 2021, 15, 663092. [Google Scholar] [CrossRef] [PubMed]
- Ellert-Miklaszewska, A.; Poleszak, K.; Pasierbinska, M.; Kaminska, B. Integrin Signaling in Glioma Pathogenesis: From Biology to Therapy. Int. J. Mol. Sci. 2020, 21, 888. [Google Scholar] [CrossRef]
- Goldbrunner, R.H.; Bernstein, J.J.; Tonn, J.C. Cell-Extracellular Matrix Interaction in Glioma Invasion. Acta Neurochir. 1999, 141, 295–305. [Google Scholar] [CrossRef]
- Friedlander, D.R.; Zagzag, D.; Shiff, B.; Cohen, H.; Allen, J.C.; Kelly, P.J.; Grumet, M. Migration of Brain Tumor Cells on Extracellular Matrix Proteins in Vitro Correlates with Tumor Type and Grade and Involves AlphaV and Beta1 Integrins. Cancer Res. 1996, 56, 1939–1947. [Google Scholar]
- Min, W.; Zou, C.; Dai, D.; Zuo, Q.; Chen, C.; Xu, J.; Li, Y.; Yue, Z. Integrin Beta 1 Promotes Glioma Cell Proliferation by Negatively Regulating the Notch Pathway. J. Oncol. 2020, 2020, 8297017. [Google Scholar] [CrossRef]
- D’Abaco, G.M.; Kaye, A.H. Integrins: Molecular Determinants of Glioma Invasion. J. Clin. Neurosci. 2007, 14, 1041–1048. [Google Scholar] [CrossRef]
- Carbonell, W.S.; DeLay, M.; Jahangiri, A.; Park, C.C.; Aghi, M.K. Β1 Integrin Targeting Potentiates Antiangiogenic Therapy and Inhibits the Growth of Bevacizumab-Resistant Glioblastoma. Cancer Res. 2013, 73, 3145–3154. [Google Scholar] [CrossRef]
- Schittenhelm, J.; Schwab, E.I.; Sperveslage, J.; Tatagiba, M.; Meyermann, R.; Fend, F.; Goodman, S.L.; Sipos, B. Longitudinal Expression Analysis of Av Integrins in Human Gliomas Reveals Upregulation of Integrin Avβ3 as a Negative Prognostic Factor. J. Neuropathol. Exp. Neurol. 2013, 72, 194–210. [Google Scholar] [CrossRef]
- Nabors, L.B.; Mikkelsen, T.; Hegi, M.E.; Ye, X.; Batchelor, T.; Lesser, G.; Peereboom, D.; Rosenfeld, M.R.; Olsen, J.; Brem, S.; et al. A Safety Run-in and Randomized Phase 2 Study of Cilengitide Combined with Chemoradiation for Newly Diagnosed Glioblastoma (NABTT 0306). Cancer 2012, 118, 5601–5607. [Google Scholar] [CrossRef]
- Chinot, O.L. Cilengitide in Glioblastoma: When Did It Fail? Lancet Oncol. 2014, 15, 1044–1045. [Google Scholar] [CrossRef] [PubMed]
- Echavidre, W.; Picco, V.; Faraggi, M.; Montemagno, C. Integrin-Avβ3 as a Therapeutic Target in Glioblastoma: Back to the Future? Pharmaceutics 2022, 14, 1053. [Google Scholar] [CrossRef] [PubMed]
- Cobb, D.A.; de Rossi, J.; Liu, L.; An, E.; Lee, D.W. Targeting of the Alpha(v) Beta(3) Integrin Complex by CAR-T Cells Leads to Rapid Regression of Diffuse Intrinsic Pontine Glioma and Glioblastoma. J. Immunother. Cancer 2022, 10, e00381. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Zhang, Z.; Yu, K.; Yang, H.; Liang, H.; Lu, T.; Ji, Y.; Chen, J.; He, W.; Chen, Z.; et al. Integrin Subunit Alpha V Is a Potent Prognostic Biomarker Associated with Immune Infiltration in Lower-Grade Glioma. Front. Neurol. 2022, 13, 964590. [Google Scholar] [CrossRef]
- Nakada, M.; Nambu, E.; Furuyama, N.; Yoshida, Y.; Takino, T.; Hayashi, Y.; Sato, H.; Sai, Y.; Tsuji, T.; Miyamoto, K.; et al. Integrin A3 Is Overexpressed in Glioma Stem-like Cells and Promotes Invasion. Br. J. Cancer 2013, 108, 2516–2524. [Google Scholar] [CrossRef]
- Park, J.B.; Kwak, H.-J.; Lee, S.-H. Role of Hyaluronan in Glioma Invasion. Cell Adh. Migr. 2008, 2, 202–207. [Google Scholar] [CrossRef]
- Tilghman, J.; Wu, H.; Sang, Y.; Shi, X.; Guerrero-Cazares, H.; Quinones-Hinojosa, A.; Eberhart, C.G.; Laterra, J.; Ying, M. HMMR Maintains the Stemness and Tumorigenicity of Glioblastoma Stem-like Cells. Cancer Res. 2014, 74, 3168–3179. [Google Scholar] [CrossRef]
- Zhu, H.; Tan, J.; Pan, X.; Ouyang, H.; Zhang, Z.; Li, M.; Zhao, Y. HELLPAR/RRM2 Axis Related to HMMR as Novel Prognostic Biomarker in Gliomas. BMC Cancer 2023, 23, 125. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, K.; Wang, Z.; Zhao, M.; Deng, Y.; Ji, W.; Zou, Y.; Qian, C.; Liu, Y.; Xiao, H.; et al. CD44-Mediated Poor Prognosis in Glioma Is Associated with M2-Polarization of Tumor-Associated Macrophages and Immunosuppression. Front. Surg. 2021, 8, 775194. [Google Scholar] [CrossRef]
No. | Invasion Panel | A 2-qRT-PCR | A 2-IF | A 3-qRT-PCR | A 3-IF |
---|---|---|---|---|---|
1. | Brevican | + | + | + | + |
2. | CD 44 | + | + | + | + |
3. | CSGPG-5 | + | + | + | - |
4. | EGFR | + | - | + | - |
5. | GFAP | + | - | + | - |
6. | HMMR/CD168 | + | + | + | - |
7. | IDH-1 | + | - | + | + |
8. | Integrin α-3 | + | - | + | + |
9. | Integrin α-V | + | + | + | - |
10. | Integrin β-1 | + | - | + | - |
11. | Integrin β-5 | + | + | + | - |
12. | Laminin α-4 | + | - | + | - |
13. | Laminin β-1 | + | - | + | - |
14. | MDM-2 | + | + | + | + |
15. | MKI-67 | + | - | + | - |
16. | MMP-2 | + | + | + | - |
17. | Neurocan | + | - | + | + |
18. | PDGF-A | + | - | + | - |
19. | Tenascin-C | + | - | + | - |
20. | Versican | + | + | + | + |
21. | FLT-4 | + | + | - | - |
22. | Laminin α-5 | + | - | - | - |
23. | HAS-2 | - | - | + | - |
24. | MMP-9 | - | - | + | - |
25. | Integrin α-5 | - | - | + | - |
Groups | Age (Average ± SD; Years) | Localization | Side | Extent of 1st Surgical Intervention | Reoperation Rate | PFS 1 (Average ± SD; Months) | PFS 1-Mod. (Average ± SD; Months) | PFS 2 (Average ± SD; Months) | OS (Average ± SD; Months) |
---|---|---|---|---|---|---|---|---|---|
Gr 2-“Group A” n = 8 | 32.1 ± 6.96 | Frontal: 3 Temporal: 1 Parietal: 0 Multilobular: 3 Other: 1 | Right-sided: 7 Left-sided: 1 | Macroscopically total: 6 Partial: 2 | 7/8 | 20.0 ± 20.61 | 20.0 ± 20.61 | 36.3 ± 34.78 | 54.6 ± 44.98 |
Gr 2-“Group B” n = 11 | 35.4 ± 10.57 | Frontal: 2 Temporal: 5 Parietal: 3 Multilobular: 1 Other: 0 | Right-sided: 5 Left-sided: 6 | Macroscopically total: 4 Partial: 7 | 8/11 | 32.3 ± 29.34 | 37.7 ± 25.39 | 70.9 ± 37.97 | 85.5 ± 39.24 |
p-value | 0.67 | 0.10 | 0.06 | 0.11 | 0.45 | 0.45 | 0.02 * | 0.04 * | 0.18 |
ECM Molecules | Mean ± SD mRNA Expression in Group A | Mean ± SD mRNA Expression in Group B | Greater mRNA Expression in Group | Fold Change | LDA-Value | Contribution to Decision Tree in the Direction of Group | p-Value |
---|---|---|---|---|---|---|---|
Brevican | 0.37 ± 0.46 | 0.87 ± 0.55 | B | 2.35 | −0.348 | A | 0.13 |
CD 44 | 0.13 ± 0.07 | 0.12 ± 0.07 | A | 0.92 | −3.910 | A | 0.72 |
CSGPG-5 | 0.07 ± 0.07 | 0.1 ± 0.07 | B | 1.43 | −3.995 | A | 0.49 |
EGFR | 0.08 ± 0.11 | 0.12 ± 0.08 | B | 1.5 | 3.721 | B | 0.12 |
FLT-4 | 0.001 ± 0.002 | 0.0008 ± 0.0005 | A | 0.8 | - | - | 0.56 |
GFAP | 8.63 ± 6.75 | 11.46 ± 8.72 | B | 1.33 | −3.375 | A | 0.35 |
HMMR | 0.0002 ± 0.0001 | 0.0006 ± 0.0006 | B | 3.0 | 3.910 | B | 0.02 * |
IDH-1 | 0.003 ± 0.002 | 0.007 ± 0.0041 | B | 2.33 | −1.829 | A | 0.009 ** |
Integrin α-3 | 0.007 ± 0.002 | 0.0059 ± 0.003 | A | 0.84 | 2.250 | B | 0.78 |
Integrin α-V | 0.06 ± 0.03 | 0.09 ± 0.04 | B | 1.5 | 7.091 | B | 0.11 |
Integrin β-1 | 0.04 ± 0.015 | 0.05 ± 0.03 | B | 1.25 | −7.396 | A | >0.99 |
Integrin β-5 | 0.03 ± 0.02 | 0.04 ± 0.03 | B | 1.33 | 4.019 | B | 0.18 |
Laminin α-4 | 0.014 ± 0.011 | 0.032 ± 0.026 | B | 2.29 | −1.591 | A | 0.051 |
Laminin α-5 | 0.010 ± 0.006 | 0.022 ± 0.012 | B | 2.2 | - | - | 0.03 * |
Laminin β-1 | 0.006 ± 0.006 | 0.013 ± 0.012 | B | 2.2 | 2.078 | B | 0.11 |
MDM-2 | 0.03 ± 0.03 | 0.027 ± 0.012 | A | 0.9 | −0.976 | A | 0.54 |
MKI-67 | 0.0021 ± 0.0032 | 0.0048 ± 0.0061 | B | 2.3 | - | - | 0.03 * |
MMP-2 | 0.013 ± 0.006 | 0.017 ± 0.008 | B | 1.3 | −0.104 | A | 0.24 |
Neurocan | 0.065 ± 0.06 | 0.11 ± 0.09 | B | 1.7 | 1.935 | B | 0.44 |
PDGF-A | 0.017 ± 0.016 | 0.03 ± 0.018 | B | 1.76 | 0.645 | B | 0.04 * |
Tenascin-C | 0.1 ± 0.061 | 0.09 ± 0.05 | A | 0.9 | - | - | 0.84 |
Versican | 0.14 ± 0.18 | 0.42 ± 0.27 | B | 3.0 | - | - | 0.03 * |
No. | ECM Molecule | Protein Expression in Group A [Mean ± SD] | Protein Expression in Group B [Mean ± SD] | p-Value | Concordant Change with mRNA Expression (Yes/No) |
---|---|---|---|---|---|
1. | Brevican-ECM | 5.6 ± 1.1 | 6.6 ± 1.0 | 0.08 | Yes |
2. | CSPG5-ECM | 5.4 ± 1.1 | 5.5 ± 1.0 | 0.67 | Yes |
3. | Versican-ECM | 6.1 ± 1.4 | 6.4 ± 1.4 | 0.62 | Yes |
4. | Integrin β-5-ECM | 5.0 ± 1.3 | 5.4 ± 2.0 | 0.81 | Yes |
5. | CD-44-Tumor cells | 7.3 ± 2.0 | 6.8 ± 1.6 | 0.62 | Yes |
CD-44-ECM | 6.7 ± 1.4 | 6.6 ± 1.4 | 0.69 | Yes | |
6. | MDM2-Tumor cells | 5.4 ± 3.0 | 5.2 ± 2.2 | >0.99 | Yes |
MDM2-ECM | 4.5 ± 1.2 | 4.7 ± 1.2 | 0.89 | No | |
7. | HMMR-Tumor cells | 8.1 ± 2.1 | 7.6 ± 2.9 | 0.91 | No |
HMMR-ECM | 5.3 ± 1.2 | 5.2 ± 1.7 | 0.91 | No | |
8. | Integrin αV-Tumor cells | 8.0 ± 1.2 | 9.0 ± 1.1 | 0.04 * | Yes |
Integrin αV-ECM | 6.6 ± 0.8 | 7.5 ± 0.8 | 0.06 | Yes | |
9. | MMP-2-Tumor cells | 6.5 ± 1.7 | 7.6 ± 1.4 | 0.14 | Yes |
MMP-2-ECM | 5.5 ± 1.8 | 5.3 ± 0.9 | 0.84 | No | |
10. | FLT-4-Tumor cells | 5.0 ± 0.9 | 4.9 ± 1.9 | 0.87 | Yes |
FLT-4-ECM | 4.5 ± 1.7 | 4.7 ± 1.6 | 0.79 | No |
No. | ECM Molecules | Gr. 2 Astrocytoma LDA Values | ECM Molecules | Gr. 3 Astrocytoma LDA Values |
---|---|---|---|---|
1. | Integrin β-1 | −7.396 | GFAP | 30.709 |
2. | Integrin α-V | 7.091 | HMMR/CD168 | 21.611 |
3. | Integrin β-5 | 4.019 | CD 44 | −13.732 |
4. | CSGPG-5 | −3.995 | Integrin α-3 | 10.511 |
5. | HMMR/CD168 | 3.910 | IDH-1 | −8.970 |
6. | CD 44 | −3.910 | Integrin α-V | −8.845 |
7. | EGFR | 3.721 | Integrin β-1 | −7.480 |
8. | GFAP | −3.375 | MDM-2 | −6.136 |
9. | Integrin α-3 | 2.250 | HAS-2 | −4.548 |
10. | Laminin β-1 | 2.078 | Brevican | 2.063 |
11. | Neurocan | 1.935 | CSPG-5 | 2.027 |
12. | IDH-1 | −1.829 | EGFR | −1.871 |
13. | Laminin α-4 | −1.591 | Integrin β-5 | 1.682 |
14. | MDM-2 | −0.976 | Integrin α-5 | 0.704 |
15. | PDGF-A | 0.645 | MKI-67 | x |
16. | Brevican | −0.348 | MMP-2 | x |
17. | MMP-2 | −0.104 | Neurocan | x |
18. | MKI-67 | x | PDGF-A | x |
19. | Tenascin-C | x | Tenascin-C | x |
20. | Versican | x | Versican | x |
21. | FLT-4 | x | FLT-4 | x |
22. | Laminin α-5 | x | Laminin α-5 | x |
23. | HAS-2 | x | MMP-9 | x |
24. | MMP-9 | x | Laminin α-4 | x |
25. | Integrin α-5 | x | Laminin β-1 | x |
Parameter | Gr. 2-Group A vs. B | Gr. 3-Group A vs. B | Gr. 2 vs. Gr. 3 |
---|---|---|---|
Sensitivity | 87.5% | 85.7% | 93.7% |
Specificity | 72.7% | 88.9% | 100% |
Positive predictive value | 70.0% | 85.7% | 100% |
Negative predictive value | 88.9% | 88.9% | 95% |
Groups | Age (Average ± SD; Years) | Localization | Side | Extent of 1st Surgical Intervention | OS (Average ± SD; Months) |
---|---|---|---|---|---|
Gr 2-“Group A” n = 8 | 32.1 ± 6.96 | Frontal: 3 Temporal: 1 Parietal: 0 Multilobular: 3 Other: 1 | Right-sided: 7 Left-sided: 1 | Macroscopically total: 6 Partial: 2 | 54.6 ± 44.98 |
Gr 2-“Group B” n = 11 | 35.4 ± 10.57 | Frontal: 2 Temporal: 5 Parietal: 3 Multilobular: 1 Other: 0 | Right-sided: 5 Left-sided: 6 | Macroscopically total: 4 Partial: 7 | 85.5 ± 39.24 |
p-value | 0.67 | 0.10 | 0.06 | 0.11 | 0.18 |
ECM Molecules | mRNA Expression in Group A [Mean ± SD] | mRNA Expression in Group B [Mean ± SD] | Greater mRNA Expression in Group | Fold Change (B/A) | LDA-Value | Contribution to Decision Tree in the Direction of Group | p-Value |
---|---|---|---|---|---|---|---|
Brevican | 1.0712 ± 1.0548 | 0.7272 ± 0.77 | A | 0.68 | 2.063 | A | 0.43 |
CD 44 | 0.2872 ± 0.2174 | 0.5433 ± 0.48 | B | 1.89 | −13.732 | B | 0.27 |
CSGPG-5 | 0.4502 ± 0.3992 | 0.2439 ± 0.18 | A | 0.54 | 2.027 | A | 0.22 |
EGFR | 1.3601 ± 2.9338 | 0.4111 ± 0.82 | A | 0.30 | −1.871 | B | 0.79 |
GFAP | 16.0084 ± 8.0520 | 27.4170 ± 22.38 | B | 1.71 | 30.709 | A | 0.56 |
FLT-4 | - | - | - | - | - | - | - |
HAS-2 | 0.0027 ± 0.0012 | 0.0030 ± 0.003 | B | 1.11 | −4.548 | B | 0.71 |
HMMR | 0.0005 ± 0.00048 | 0.0004 ± 0.0004 | A | 0.80 | 21.611 | A | 0.37 |
IDH-1 | 0.0200 ± 0.016 | 0.0202 ± 0.011 | B | 1.01 | −8.970 | B | 0.71 |
Integrin α-3 | 0.0341 ± 0.03 | 0.0134 ± 0.0057 | A | 0.39 | 10.511 | A | 0.04 * |
Integrin α-5 | 0.051 ± 0.034 | 0.027 ± 0.031 | A | 0.53 | 0.704 | A | 0.15 |
Integrin α-V | 0.0829 ± 0.032 | 0.1029 ± 0.05 | B | 1.24 | −8.845 | B | 0.49 |
Integrin β-1 | 0.0318 ± 0.012 | 0.0341 ± 0.018 | B | 1.07 | −7.480 | B | 0.87 |
Integrin β-5 | 0.0275 ± 0.019 | 0.0527 ± 0.04 | B | 1.92 | 1.682 | A | 0.22 |
Laminin α-4 | 0.0086 ± 0.0049 | 0.0077 ± 0.005 | A | 0.90 | - | - | 0.71 |
Laminin α-5 | - | - | - | - | - | - | - |
Laminin β-1 | 0.0048 ± 0.0025 | 0.0061 ± 0.004 | B | 1.27 | - | - | 0.79 |
MDM-2 | 0.0102 ± 0.0028 | 0.0278 ± 0.05 | B | 2.73 | −6.136 | B | 0.27 |
MKI-67 | 0.0050 ± 0.003 | 0.0053 ± 0.006 | B | 1.06 | - | - | 0.49 |
MMP-2 | 0.0177 ± 0.014 | 0.0177 ± 0.018 | B | 1.0 | - | - | 0.79 |
MMP-9 | 0.0337 ± 0.06 | 0.0040 ± 0.004 | A | 0.12 | - | - | 0.37 |
Neurocan | 0.1707 ± 0.15 | 0.2033 ± 0.1 | B | 1.19 | - | - | 0.43 |
PDGF-A | 0.0352 ± 0.038 | 0.0274 ± 0.017 | A | 0.78 | - | - | 0.96 |
Tenascin-C | 0.1011 ± 0.078 | 0.1127 ± 0.15 | B | 1.11 | - | - | 0.56 |
Versican | 0.2631 ± 0.24 | 0.2045 ± 0.16 | A | 0.78 | - | - | 0.71 |
Groups | Age (Average ± SD; Years) | Localization | Side | Extent of 1st Surgical Intervention | OS (Average ± SD; Months) |
---|---|---|---|---|---|
Gr 2-“Group A” n = 7 | 54.4 ± 7.44 | Frontal: 2 Temporal: 2 Parietal: 1 Multilobular: 2 Other: - | Right-sided: 5 Left-sided: 2 | Macroscopically total: 4 Partial/biopsy: 3 Not specified: 0 | 48.9 ± 70.66 |
Gr 3-‘Group A” n = 9 | 43.0 ± 13.09 | Frontal: 2 Temporal: 3 Parietal: 0 Multilobular: 4 Other: - | Right-sided: 8 Left-sided: 1 | Macroscopically total: 3 Partial/biopsy: 5 Not specified: 1 | 45.8 ± 34.78 |
p-value | 0.1 | 0.65 | 0.37 | 0.49 | 0.46 |
ECM Molecules | mRNA Expression in Gr 2-Group A [Mean ± SD] | mRNA Expression in Gr 3-Group A [Mean ± SD] | Greater mRNA Expression in Group | Fold Change (Gr. 3/Gr. 2) | LDA-Value | Contribution to Decision Tree in the Direction of Group | p-Value |
---|---|---|---|---|---|---|---|
Brevican | 0.37 ± 0.46 | 1.0712 ± 1.0548 | Gr. 3 | 2.90 | 6.81 | Gr. 3 | 0.19 |
CD 44 | 0.13 ± 0.07 | 0.2872 ± 0.2174 | Gr. 3 | 2.21 | −2.54 | Gr. 2 | 0.34 |
CSGPG-5 | 0.07 ± 0.07 | 0.4502 ± 0.3992 | Gr. 3 | 6.43 | 1.44 | Gr. 3 | 0.02 * |
EGFR | 0.08 ± 0.11 | 1.3601 ± 2.9338 | Gr. 3 | 17.0 | 2.7 | Gr. 3 | 0.34 |
GFAP | 8.63 ± 6.75 | 16.0084 ± 8.0520 | Gr. 3 | 1.85 | 1.11 | Gr. 3 | 0.054 |
FLT-4 | - | - | - | - | - | - | - |
HAS-2 | - | - | - | - | - | - | - |
HMMR | 0.0002 ± 0.0001 | 0.0005 ± 0.00048 | Gr. 3 | 2.5 | −7.39 | Gr. 2 | 0.19 |
IDH-1 | 0.003 ± 0.002 | 0.0200 ± 0.016 | Gr. 3 | 6.67 | 2.6 | Gr. 3 | 0.01 * |
Integrin α-3 | 0.007 ± 0.002 | 0.0341 ± 0.03 | Gr. 3 | 4.87 | 3.44 | Gr. 3 | 0.0003 *** |
Integrin α-5 | - | - | - | - | - | - | - |
Integrin α-V | 0.06 ± 0.03 | 0.0829 ± 0.032 | Gr. 3 | 1.38 | 1.47 | Gr. 3 | 0.23 |
Integrin β-1 | 0.04 ± 0.015 | 0.0318 ± 0.012 | Gr. 2 | 0.8 | 5.02 | Gr. 3 | 0.34 |
Integrin β-5 | 0.03 ± 0.02 | 0.0275 ± 0.019 | Gr. 2 | 0.92 | −7.27 | Gr. 2 | 0.87 |
Laminin α-4 | 0.014 ± 0.011 | 0.0086 ± 0.0049 | Gr. 2 | 0.61 | 7.2 | Gr. 3 | 0.34 |
Laminin α-5 | - | - | - | - | - | - | - |
Laminin β-1 | 0.006 ± 0.006 | 0.0048 ± 0.0025 | Gr. 2 | 0.8 | −0.6 | Gr. 2 | 0.78 |
MDM-2 | 0.03 ± 0.03 | 0.0102 ± 0.0028 | Gr. 2 | 0.34 | −7.61 | Gr. 2 | 0.12 |
MKI-67 | 0.0021 ± 0.0032 | 0.0050 ± 0.003 | Gr. 3 | 2.38 | 6.4 | Gr. 3 | 0.02 * |
MMP-2 | 0.013 ± 0.006 | 0.0177 ± 0.014 | Gr. 3 | 1.36 | −5.8 | Gr. 2 | 0.46 |
MMP-9 | - | - | - | - | - | - | - |
Neurocan | 0.065 ± 0.06 | 0.1707 ± 0.15 | Gr. 3 | 2.63 | - | - | 0.19 |
PDGF-A | 0.017 ± 0.016 | 0.0352 ± 0.038 | Gr. 3 | 2.07 | - | - | 0.28 |
Tenascin-C | 0.1 ± 0.061 | 0.1011 ± 0.078 | Gr. 3 | 1.01 | - | - | 0.99 |
Versican | 0.14 ± 0.18 | 0.2631 ± 0.24 | Gr. 3 | 1.88 | - | - | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szivos, L.; Virga, J.; Mészár, Z.; Rostás, M.; Bakó, A.; Zahuczki, G.; Hortobágyi, T.; Klekner, Á. Prognostic Role of Invasion-Related Extracellular Matrix Molecules in Diffusely Infiltrating Grade 2 and 3 Astrocytomas. Brain Sci. 2024, 14, 1157. https://doi.org/10.3390/brainsci14111157
Szivos L, Virga J, Mészár Z, Rostás M, Bakó A, Zahuczki G, Hortobágyi T, Klekner Á. Prognostic Role of Invasion-Related Extracellular Matrix Molecules in Diffusely Infiltrating Grade 2 and 3 Astrocytomas. Brain Sciences. 2024; 14(11):1157. https://doi.org/10.3390/brainsci14111157
Chicago/Turabian StyleSzivos, László, József Virga, Zoltán Mészár, Melinda Rostás, Andrea Bakó, Gábor Zahuczki, Tibor Hortobágyi, and Álmos Klekner. 2024. "Prognostic Role of Invasion-Related Extracellular Matrix Molecules in Diffusely Infiltrating Grade 2 and 3 Astrocytomas" Brain Sciences 14, no. 11: 1157. https://doi.org/10.3390/brainsci14111157
APA StyleSzivos, L., Virga, J., Mészár, Z., Rostás, M., Bakó, A., Zahuczki, G., Hortobágyi, T., & Klekner, Á. (2024). Prognostic Role of Invasion-Related Extracellular Matrix Molecules in Diffusely Infiltrating Grade 2 and 3 Astrocytomas. Brain Sciences, 14(11), 1157. https://doi.org/10.3390/brainsci14111157