Antioxidative, Antidiabetic, and Hypolipidemic Properties of Probiotic-Enriched Fermented Camel Milk Combined with Salvia officinalis Leaves Hydroalcoholic Extract in Streptozotocin-Induced Diabetes in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of FCM
2.2. Preparation of S. officinalis Leaves Hydroalcoholic Extract
2.3. Determination of Total Phenolic Content (TPC), Total Carotenoids (TC), Total Flavonoids (TF), and Total Flavonols (TFL) in S. officinalis Leaves
2.4. Antioxidant Capacity Determination
2.5. Quantification of Phenolic Compounds in S. officinalis Leaves by HPLC-DAD
2.6. Preparation of FCM Incorporated SOHE
2.7. Animals and Experimental Design
2.7.1. Determination of Fasting Blood Glucose Level (FBG), Lipid Profile, Liver and Kidneys’ Functions
2.7.2. Oxidative Stress Biomarkers
2.7.3. Histopathological Examination
2.8. Statistical Analysis
3. Results
3.1. Phytochemicals and Antioxidant Capacity of S. officinalis Leaves
3.2. Quantification of Phenolic Compounds in S. officinalis Leaves Extract
3.3. The Hypoglycemic Efficiency and Weight Gain %
3.4. The Hypolipidemic Efficiency
3.5. The Liver’s Functions
3.6. The Kidneys’ Functions
3.7. Antioxidant Biomarkers
3.8. Effects of Probiotic-Enriched FCM Combined with S. officinalis Pancreas Histoarchitecture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Centers for Disease Control and Prevention. Diabetes Report Card 2019; Centers for Disease Control and Prevention, US Department of Health and Human Services: Atlanta, GA, USA, 2020.
- Marthandam Asokan, S.; Wang, T.; Su, W.-T.; Lin, W.-T. Antidiabetic Effects of a Short Peptide of Potato Protein Hydrolysate in STZ-Induced Diabetic Mice. Nutrients 2019, 11, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, P.; Mandal, S.; Tomar, S.K.; Anand, S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur. J. Nutr. 2015, 54, 863–880. [Google Scholar] [CrossRef] [PubMed]
- Jayaswal, R.; Prabhakar, P. Probiotics-A new diabetes management tool. Int. J. Green Pharm. 2017, 11, 395–400. [Google Scholar]
- Agrawal, R.P.; Agrawal, R.; Ghazzawi, H.A. Potential anti-diabetic effect of camel milk. In Handbook of Research on Health and Environmental Benefits of Camel Products; IGI Global: Hershey, PA, USA, 2020; pp. 185–196. [Google Scholar]
- Chaudhary, J.K.; Mudgal, S. Antidiabetic and hypolipidaemic action of finger millet (Eleusine coracana)-enriched probiotic fermented milk: An in vivo rat study. Food Technol. Biotechnol. 2020, 58, 192–202. [Google Scholar] [CrossRef]
- Widodo, W.; Harsita, P.A.; Sukarno, A.S.; Nurrochmad, A. Antidiabetic effect of milk fermented using intestinal probiotics. Nutr. Food Sci. 2019, 49, 1063–1074. [Google Scholar] [CrossRef]
- Shori, A.B. Camel milk as a potential therapy for controlling diabetes and its complications: A review of in vivo studies. J. Food Drug Anal. 2015, 23, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Behradmanesh, S.; Derees, F.; Rafieian-Kopaei, M. Effect of Salvia officinalis on diabetic patients. J. Renal. Inj. Prev. 2013, 2, 51–54. [Google Scholar] [CrossRef]
- Pivovarova-Ramich, O.; Markova, M.; Weber, D.; Sucher, S.; Hornemann, S.; Rudovich, N.; Raila, J.; Sunaga-Franze, D.; Sauer, S.; Rohn, S.; et al. Effects of diets high in animal or plant protein on oxidative stress in individuals with type 2 diabetes: A randomized clinical trial. Redox Biol. 2020, 29, 101397. [Google Scholar] [CrossRef]
- Tiderencel, K.A.; Hutcheon, D.A.; Ziegler, J. Probiotics for the treatment of type 2 diabetes: A review of randomized controlled trials. Diabetes Metab. Res. Rev. 2020, 36, e3213. [Google Scholar] [CrossRef]
- Eva, Y.; Annisa, A.; Andrafikar. Effectiveness of jicama probiotic yoghurt (Pachyrhizus erosus) on blood glucose in diabetic mice. KnE Life Sci. 2019, 4, 250–261. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Azizi, F. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World J. Diabetes 2014, 5, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Abou-Dobara, M.; Ismail, M.M.; Refat, N.M. Preparation of functional fermented dairy product containing high levels of omega-6, omega-9, antioxidants activity and probiotic. Diabetes Manag. 2017, 7, 306–318. [Google Scholar]
- Malik, A.; Al-Senaidy, A.; Skrzypczak-Jankun, E.; Jankun, J. A study of the anti-diabetic agents of camel milk. Int. J. Mol. Med. 2012, 30, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumaira, A.M.S.; Solangi, G.A.; Anwar, I.; Kalwar, Q. Composition and beneficial impact of camel milk on human health. Punjab. Univ. J. Zool. 2020, 35, 179–189. [Google Scholar] [CrossRef]
- Youssif, M.R.G.; Mohamed, S.A.; Mahmoud, M.A. A comparative study on antidiabetic effect of buffalo and camel fermented milk in induced diabetic rats. Adv. Food Sci. 2017, 39, 124–132. [Google Scholar]
- Fallah, Z.; Feizi, A.; Hashemipour, M.; Kelishadi, R. Effect of fermented camel milk on glucose metabolism, insulin resistance, and inflammatory biomarkers of adolescents with metabolic syndrome: A double-blind, randomized, crossover trial. J. Res. Med. Sci. 2018, 23, 32. [Google Scholar] [CrossRef]
- Ismail, M.M.; Ammar, E.-T.M.; Khalil, A.E.-W.E.; Eid, M.Z.J.C.N. Effect of Honey & Olive Oil Supplemented Bio-Yoghurt Feeding on Lipid Profile, Blood Glucose and Hematological Parameters in Rats. Curr. Nutr. Food Sci. 2019, 15, 140–147. [Google Scholar]
- Habib, E.; Awad, S.; Shamsia, S.; Ziena, H. Physicochemical characteristics and antioxidant capacity of bio drinking yoghurt fortified with salvia officinalis extract. Asian J. Biol. Sci. 2017, 12, 430–436. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, M.; Berkay Yılmaz, Y.; Antika, G.; Salehi, B.; Tumer, T.B.; Kulandaisamy Venil, C.; Das, G.; Patra, J.K.; Karazhan, N.; Akram, M.; et al. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother. Res. 2021, 35, 95–121. [Google Scholar] [CrossRef]
- Hussain, G.; Huang, J.; Rasul, A.; Anwar, H.; Imran, A.; Maqbool, J.; Razzaq, A.; Aziz, N.; Makhdoom, E.u.H.; Konuk, M.; et al. Putative Roles of Plant-Derived Tannins in Neurodegenerative and Neuropsychiatry Disorders: An Updated Review. Molecules 2019, 24, 2213. [Google Scholar] [CrossRef] [Green Version]
- Almundarij, T.I.; Alharbi, Y.M.; Abdel-Rahman, H.A.; Barakat, H. Antioxidant activity, phenolic profile, and nephroprotective potential of Anastatica hierochuntica ethanolic and aqueous extracts against ccl4-induced nephrotoxicity in rats. Nutrients 2021, 13, 2973. [Google Scholar] [CrossRef]
- Hassan, B.; Tariq, I. Phenolic compounds and hepatoprotective potential of Anastatica hierochuntica ethanolic and aqueous extracts against CCl4-induced hepatotoxicity in rats. J. Tradit. Chin. Med. 2020, 40, 947–955. [Google Scholar] [PubMed]
- Ollanketo, M.; Peltoketo, A.; Hartonen, K.; Hiltunen, R.; Riekkola, M.-L. Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: Antioxidant activity of the extracts. Eur. Food Res. Technol. 2002, 215, 158–163. [Google Scholar] [CrossRef]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B., III. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Saljooghi, S.; Mansouri-Najand, L.; Ebrahimnejad, H.; Doostan, F.; Askari, N. Microbiological, biochemical and organoleptic properties of fermented-probiotic drink produced from camel milk. Vet. Res. Forum. 2017, 8, 313–317. [Google Scholar]
- Aljutaily, T.; Barakat, H.; Moustafa, M.M.A.; Rehan, M. Incorporation of Sukkari Date in Probiotic-Enriched Fermented Camel Milk Improves the Nutritional, Physicochemical, and Organoleptical Characteristics. Fermentation 2022, 8, 5. [Google Scholar] [CrossRef]
- Hernández-Saavedra, D.; Pérez-Ramírez, I.F.; Ramos-Gómez, M.; Mendoza-Díaz, S.; Loarca-Piña, G.; Reynoso-Camacho, R. Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk. Med. Chem. Res. 2016, 25, 163–172. [Google Scholar] [CrossRef]
- Yawadio Nsimba, R.; Kikuzaki, H.; Konishi, Y. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem. 2008, 106, 760–766. [Google Scholar] [CrossRef]
- Yuan, G.F.; Sun, J.; Yuan, Q.; Wang, Q.M. Effects of different cooking methods on health-promoting compounds of broccoli. J. Zhejiang Univ.-Sci. B 2009, 10, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohdaly, A.A.A.; Hassanien, M.F.R.; Mahmoud, A.; Sarhan, M.A.; Smetanska, I. Phenolics Extracted from Potato, Sugar Beet, and Sesame Processing By-Products. Int. J. Food Prop. 2012, 16, 1148–1168. [Google Scholar] [CrossRef]
- Barakat, H.; Rohn, S. Effect of different cooking methods on bioactive compounds in vegetarian, broccoli-based bars. J. Funct. Foods 2014, 11, 407–416. [Google Scholar] [CrossRef]
- Koleva, I.I.; van Beek, T.A.; Linssen, J.P.H.; Groot, A.d.; Evstatieva, L.N. Screening of Plant Extracts for Antioxidant Activity: A Comparative Study on Three Testing Methods. Phytochem. Anal. 2002, 13, 8–17. [Google Scholar] [CrossRef]
- Zhao, H.; Dong, J.; Lu, J.; Chen, J.; Li, Y.; Shan, L.; Lin, Y.; Fan, W.; Gu, G. Effects of Extraction Solvent Mixtures on Antioxidant Activity Evaluation and Their Extraction Capacity and Selectivity for Free Phenolic Compounds in Barley (Hordeum vulgare L.). J. Agri. Food Chem. 2006, 54, 7277–7286. [Google Scholar] [CrossRef]
- Kim, K.-H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 Purified diets for laboratory rodents: Final report of the american institute of nutrition ad hoc writing committee on the reformulation of the AIN-76a rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef]
- Lima, C.F.; Azevedo, M.F.; Araujo, R.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Metformin-like effect of Salvia officinalis (common sage): Is it useful in diabetes prevention? Br. J. Nutr. 2006, 96, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Moradabadi, L.; Kouhsari, S.M.; Sani, M.F. Hypoglycemic Effects of Three Medicinal Plants in Experimental Diabetes: Inhibition of Rat Intestinal α-glucosidase and Enhanced Pancreatic Insulin and Cardiac Glut-4 mRNAs Expression. Iran. J. Pharm. Res. 2013, 12, 387–397. [Google Scholar]
- Zafar, M.; Naqvi, S.N.-u.-H. Effects of STZ-Induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: A comparative study. Int. J. Morphol. 2010, 28, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Nwagha, U.; Ikekpeazu, E.; Ejezie, F.; Neboh, E.; Maduka, I. Atherogenic index of plasma as useful predictor of cardiovascular risk among postmenopausal women in Enugu, Nigeria. Afr. Health Sci. 2010, 10, 248–252. [Google Scholar] [PubMed]
- Beutler, E. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase in vitro. Meth. Enzymol. 1984, 105, 121–126. [Google Scholar]
- Banchroft, J.; Stevans, A.; Turnes, D.J.E. Theory and Practice of Histological Techniques, 4th ed.; Churchill Livingstone: London, UK; Melbourne, Australia; New York, NY, USA; Tokyo, Japan, 1996. [Google Scholar]
- Steel, R.G. Pinciples and Procedures of Statistics a Biometrical Approach, 3rd ed.; McGraw-Hill: Boston, MA, USA, 1997. [Google Scholar]
- Farhat, M.B.; Chaouch-Hamada, R.; Sotomayor, J.A.; Landoulsi, A.; Jordán, M.J. Antioxidant potential of Salvia officinalis L. residues as affected by the harvesting time. Ind. Crops Prod. 2014, 54, 78–85. [Google Scholar] [CrossRef]
- Salah, M.; Hussein, M.; Rana, I.; Khalid, L.B. Effect of Salvia officinalis L.(Sage) aqueous extract on liver and testicular function of diabetic albino male rats. J. Babylon Univ. Pure Appl. Sci. 2016, 24, 83–90. [Google Scholar]
- Dabija, A.; Codină, G.G.; Ropciuc, S.; Gâtlan, A.-M.; Rusu, L. Assessment of the Antioxidant Activity and Quality Attributes of Yogurt Enhanced with Wild Herbs Extracts. J. Food Qual. 2018, 2018, 5329386. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.-H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Tosun, M.; Ercisli, S.; Sengul, M.; Ozer, H.; Polat, T.; Ozturk, E. Antioxidant properties and total phenolic content of eight Salvia species from Turkey. Biol. Res. 2009, 42, 175–181. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Nabavi, S.M.; Nabavi, S.F.; Bahramian, F.; Bekhradnia, A.R. Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata, B. hyrcana and C. speciosum. Pak. J. Pharm. Sci. 2010, 23, 29–34. [Google Scholar] [PubMed]
- Hasanein, P.; Felehgari, Z.; Emamjomeh, A. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms. Neurosci. Lett. 2016, 622, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Walch, S.G.; Tinzoh, L.N.; Zimmermann, B.F.; Stuhlinger, W.; Lachenmeier, D.W. Antioxidant capacity and polyphenolic composition as quality indicators for aqueous infusions of Salvia officinalis L. (sage tea). Front. Pharmacol. 2011, 2, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eidi, M.; Eidi, A.; Zamanizadeh, H. Effect of Salvia officinalis L. leaves on serum glucose and insulin in healthy and streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2005, 100, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Kianbakht, S.; Dabaghian, F.H. Improved glycemic control and lipid profile in hyperlipidemic type 2 diabetic patients consuming Salvia officinalis L. leaf extract: A randomized placebo. Controlled clinical trial. Complement. Ther. Med. 2013, 21, 441–446. [Google Scholar] [CrossRef]
- Ejtahed, H.S.; Naslaji, A.N.; Mirmiran, P.; Yeganeh, M.Z.; Hedayati, M.; Azizi, F.; Movahedi, A.M. Effect of camel milk on blood sugar and lipid profile of patients with type 2 diabetes: A pilot clinical trial. Int. J. Endocrinol. Metab. 2015, 13, e21160. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A.; Alzohairy, M.A.; Mohieldein, A.H. Antidiabetic effects of camel milk in streptozotocin-induced diabetic rats. Am. J. Biochem. Mol. Biol. 2013, 3, 151–158. [Google Scholar] [CrossRef] [Green Version]
- El-Feky, A.M.; Aboulthana, W.M. Phytochemical and biochemical studies of sage (Salvia officinalis L.). Pharm. Biosci. J. 2016, 4, 56–62. [Google Scholar] [CrossRef]
- Mahdizadeh, R.; Moein, S.; Soltani, N.; Malekzadeh, K.; Mahmoodreza, M. Study the molecular mechanism of salvia species in prevention of diabetes. IJPSR 2018, 9, 4512–4521. [Google Scholar]
- Naydenov, K.; Anastasov, A.; Avramova, M.; Mindov, I.; Tacheva, T.; Tolekova, A.; Vlaykova, T. Probiotics and diabetes mellitus. Trakia J. Sci. 2012, 10, 300–306. [Google Scholar]
- Azarang, A.; Farshad, O.; Ommati, M.M.; Jamshidzadeh, A.; Heidari, R.; Abootalebi, S.N.; Gholami, A. Protective Role of Probiotic Supplements in Hepatic Steatosis: A Rat Model Study. BioMed Res. Int. 2020, 2020, 5487659. [Google Scholar] [CrossRef] [PubMed]
- Pecoits-Filho, R.; Abensur, H.; Betônico, C.C.R.; Machado, A.D.; Parente, E.B.; Queiroz, M.; Salles, J.E.N.; Titan, S.; Vencio, S. Interactions between kidney disease and diabetes: Dangerous liaisons. Diabetol. Metab. Syndr. 2016, 8, 50. [Google Scholar] [CrossRef]
- Jung, H.H. Evaluation of Serum Glucose and Kidney Disease Progression Among Patients With Diabetes. JAMA Netw. Open 2021, 4, e2127387. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem-Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Dringen, R.; Pawlowski, P.G.; Hirrlinger, J. Peroxide detoxification by brain cells. J. Neurosci. Res. 2005, 79, 157–165. [Google Scholar] [CrossRef]
- Ng, S.-C.; Anderson, A.; Coker, J.; Ondrus, M. Characterization of lipid oxidation products in quinoa (Chenopodium quinoa). Food Chem. 2007, 101, 185–192. [Google Scholar] [CrossRef]
- Shah, R.; Subhan, F.; Sultan, S.M.; Ali, G.; Ullah, I.; Ullah, S. Comparative evaluation of pancreatic histopathology of rats treated with olanzapine, risperidone and streptozocin. Braz. J. Pharm. Sci. 2018, 54, e17669. [Google Scholar] [CrossRef] [Green Version]
- Pirmoradi, L.; Noorafshan, A.; Safaee, A.; Dehghani, G.A. Quantitative Assessment of Proliferative Effects of Oral Vanadium on Pancreatic Islet Volumes and Beta Cell Numbers of Diabetic Rats. Iran. Biomed. J. 2016, 20, 18–25. [Google Scholar] [CrossRef]
- El-Sheikh, N.; Mohamad, E.; Abdel-Fattah, H.; El-Ansary, M.S. Cooperation of Nicotinamide with Mesenchymal Stem Cells to Control Diabetes Mellitus-Induced by Streptozotocin in Rats. J. Sci. Res. Sci. 2015, 32, 250–268. [Google Scholar] [CrossRef]
- Abunasef, S.K.; Amin, H.A.; Abdel-Hamid, G.A. A histological and immunohistochemical study of beta cells in streptozotocin diabetic rats treated with caffeine. Folia Histochem. Cytobiol. 2014, 52, 42–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, A.A.; Nassan, M.A.; Saleh, O.M.; Soliman, M.M. Protective effect of camel milk as anti-diabetic supplement: Biochemical, molecular and immunohistochemical study. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandari, D.; Rafiq, S.; Gat, Y.; Gat, P.; Waghmare, R.; Kumar, V. A review on bioactive peptides: Physiological functions, bioavailability and safety. Biomed. Res. Int. 2020, 26, 139–150. [Google Scholar] [CrossRef]
Item | S. officinalis |
---|---|
TPC (mg GAE g−1) | 102.81 ± 2.14 |
TC (µg g−1) | 4.11 ± 0.73 |
TF (mg QE g−1) | 37.57 ± 1.98 |
TFL (mg QE g−1) | 53.87 ± 0.91 |
DPPH (µmol of TE g−1) | 337.62 ± 4.15 |
ABTS (µmol of TE g−1) | 374.31 ± 3.48 |
β-CB * (RAA) % | 63.27 ± 3.25 |
CA (mg g−1) | 71.21 ± 3.17 |
Item | No. | Compound | SOHE (mg 100 g−1) |
---|---|---|---|
Phenolic acids | 1 | Pyrogallol | - |
2 | Quinol | - | |
3 | 3-Hydroxytyrosol catechol | - | |
4 | p-Hydroxy benzoic acid | 23.28 ± 1.25 | |
5 | Caffeic acid | 39.15 ± 2.17 | |
6 | Chlorogenic acid | 1.27 ± 0.21 | |
7 | Cinnamic acid | 28.34 ± 3.27 | |
8 | Ellagic acid | 5.57 ± 0.78 | |
9 | Vanillic acid | 49.73 ± 4.58 | |
10 | Ferulic acid | 814.17 ± 14.87 | |
11 | Gallic acid | 1.17 ± 0.14 | |
12 | O-coumaric acid | 7.08 ± 0.87 | |
13 | p-coumaric acid | 12.27 ± 1.59 | |
14 | Benzoic acid | 89.37 ± 5.47 | |
15 | Rosmarinic acid | 13.35 ± 2.14 | |
16 | Syringic acid | 5.09 ± 1.85 | |
Flavonoids | 1 | Catechin | 0.25 ± 0.03 |
2 | Epicatechin | 98.12 ± 4.17 | |
3 | Kaempferol | 356.52 ± 12.01 | |
4 | Myricetin | 18.81 ± 3.27 | |
5 | Naringin | 18.18 ± 2.71 | |
6 | Hispidulin | 13.17 ± 2.07 | |
7 | Cirsimaritin | 89.43 ± 5.13 | |
8 | Quercetin | 91.07 ± 2.64 | |
9 | Luteolin-7-O-glucoside | 25.18 ± 3.27 | |
10 | Luteolin | 87.12 ± 1.78 | |
11 | Rutin | 19.67 ± 3.17 | |
12 | apigenin | 97.17 ± 1.89 | |
13 | Chrysin | 102.57 ± 3.18 | |
14 | Resveratrol | 1876.95 ± 23.49 |
Groups | Weight Gain % | RBG | FBG | |||
---|---|---|---|---|---|---|
Weak-2 | Weak-4 | Weak-0 | Weak-2 | Weak-4 | ||
G1 | 29.59 ± 1.68 a | 42.60 ± 0.48 a | 100.17 ± 2.23 d | 104.67 ± 1.87 e | 104.67 ± 1.83 g | 73.07 ± 4.70 d |
G2 | 1.72 ± 0.07 d | 2.58 ± 0.16 d | 341.50 ± 17.83 bc | 399.33 ± 8.17 a | 291.67 ± 16.84 a | 201.74 ± 10.93 a |
G3 | 17.16 ± 1.02 b | 27.25 ± 1.43 b | 358.17 ± 14.26 ab | 316.67 ± 17.26 b | 264.00 ± 5.45 b | 130.25 ± 9.70 b |
G4 | 11.66 ± 4.82 c | 15.62 ± 1.07 c | 344.50 ± 13.45 b | 281.17 ± 11.12 c | 187.67 ± 11.44 c | 113.35 ± 37.13 bc |
G5 | 12.36 ± 1.34 c | 17.92 ± 1.17 c | 378.67 ± 12.95 a | 289.83 ± 14.73 cb | 168.17 ± 4.32 d | 107.50 ± 14.41 bc |
G6 | 29.36 ± 2.69 a | 29.18 ± 1.14 b | 357.83 ± 23.98 ab | 208.67 ± 24.37 d | 133.00 ± 4.50 f | 103.82 ± 7.41 bc |
G7 | 23.68 ± 3.57 a | 26.32 ± 2.34 b | 320.33 ± 16.99 bc | 174.83 ± 13.98 d | 159.33 ± 3.09 e | 101.09 ± 6.17 bc |
Groups | Lipid Profile Parameters | |||||
---|---|---|---|---|---|---|
TG | CHO | HDL-CHO | LDL-CHO | VLDL-CHO | AI | |
G1 | 50.32 ± 3.12 b | 106.22 ± 8.87 b | 42.39 ± 4.64 b | 53.76 ± 3.10 bc | 10.06 ± 0.88 c | 0.10 ± 0.21 b |
G2 | 97.92 ± 4.86 a | 176.36 ± 14.95 a | 32.61 ± 3.23 d | 124.16 ± 6.59 a | 19.58 ± 1.37 a | 0.50 ± 0.18 a |
G3 | 62.70 ± 4.59 b | 119.87 ± 7.17 b | 39.13 ± 3.07 bc | 68.20 ± 8.29 b | 12.54 ± 1.30 b | 0.21 ± 0.14 b |
G4 | 57.84 ± 3.57 b | 108.22 ± 10.87 b | 43.48 ± 5.81 b | 53.18 ± 9.99 bc | 11.57 ± 1.01 b | 0.22 ± 0.32 b |
G5 | 49.38 ± 6.10 b | 108.97 ± 5.00 b | 45.65 ± 3.02 b | 53.44 ± 3.39 bc | 9.87 ± 1.73 bc | 0.01 ± 0.29 c |
G6 | 47.56 ± 4.59 b | 98.87 ± 5.52 b | 55.43 ± 5.74 a | 34.13 ± 4.51 c | 9.31 ± 1.48 bc | −0.07 ± 0.21 d |
G7 | 55.33 ± 5.48 b | 113.56 ± 5.32 b | 38.04 ± 4.10 c | 64.45 ± 4.11 b | 11.07 ± 1.55 b | 0.16 ± 0.31 b |
Groups | Liver’s Functions | ||||
---|---|---|---|---|---|
ALT (U L−1) | AST(U L−1) | ALP(U L−1) | T. Bili (mg dL−1) | D. Bili (mg dL−1) | |
G1 | 42.99 ± 1.98 bc | 95.53 ± 5.03 c | 74.61 ± 3.93 b | 0.85 ± 0.01 c | 0.23 ± 0.04 b |
G2 | 66.53 ± 4.94 a | 133.37 ± 5.31 a | 100.03 ± 3.01 a | 1.44 ± 0.08 a | 0.36 ± 0.08 a |
G3 | 51.40 ± 1.01 b | 108.99 ± 8.14 b | 85.12 ± 6.36 b | 0.88 ± 0.01 c | 0.26 ± 0.05 ab |
G4 | 47.13 ± 3.12 b | 102.81 ± 4.10 bc | 73.75 ± 1.91 c | 1.07 ± 0.12 bc | 0.21 ± 0.03 b |
G5 | 45.48 ± 2.61 bc | 94.65 ± 5.28 c | 74.44 ± 1.75 c | 1.14 ± 0.05 b | 0.24 ± 0.04 b |
G6 | 39.69 ± 4.15 c | 92.45 ± 6.51 c | 69.82 ± 2.40 c | 1.14 ± 0.05 b | 0.23 ± 0.04 b |
G7 | 43.83 ± 2.94 bc | 101.14 ± 2.95 bc | 78.99 ± 2.31 b | 0.92 ± 0.08 c | 0.26 ± 0.04 ab |
Group | Kidneys’ functions | |||||
---|---|---|---|---|---|---|
T. Protein (g dL−1) | Albumin (g dL−1) | Globulin (g dL−1) | Createnine (mg dL−1) | Urea (mg dL−1) | BUN (mg dL−1) | |
G1 | 8.51 ± 0.42 ab | 3.87 ± 0.26 ab | 4.64 ± 0.57 a | 0.69 ± 0.08 b | 50.68 ± 2.27 d | 19.68 ± 1.34 bc |
G2 | 6.25 ± 0.19 d | 2.85 ± 0.19 c | 3.41 ± 0.31 b | 1.55 ± 0.09 a | 97.56 ± 3.48 a | 27.76 ± 1.63 a |
G3 | 7.03 ± 0.18 c | 3.25 ± 0.30 bc | 3.78 ± 0.32 ab | 0.85 ± 0.05 b | 65.34 ± 5.39 b | 22.07 ± 2.02 bc |
G4 | 7.36 ± 0.23 bc | 3.31 ± 0.20 bc | 4.05 ± 0.22 a | 0.79 ± 0.05 bc | 63.53 ± 3.18 b | 22.43 ± 1.34 bc |
G5 | 8.03 ± 0.24 abc | 3.48 ± 0.14 abc | 4.55 ± 0.34 a | 0.72 ± 0.04 c | 56.96 ± 1.96 c | 21.12 ± 1.25 bc |
G6 | 8.70 ± 0.25 a | 4.28 ± 0.23 a | 4.41 ± 0.45 a | 0.69 ± 0.05 c | 51.04 ± 3.01 cd | 21.26 ± 1.13 bc |
G7 | 7.54 ± 0.34 abc | 3.06 ± 0.19 bc | 4.48 ± 0.29 a | 0.77 ± 0.05 bc | 62.35 ± 6.95 b | 20.77 ± 1.28 bc |
Group | Antioxidant Biomarkers | |||
---|---|---|---|---|
GSH (µg dL−1) | MDA (n mol mL−1) | CAT (U L−1) | SOD (U L−1) | |
G1 | 62.51 ± 4.38 ab | 21.25 ± 1.33 c | 56.96 ± 5.64 bc | 83.63 ± 1.85 b |
G2 | 44.91 ± 2.66 d | 36.43 ± 4.37 a | 39.53 ± 2.92 d | 56.14 ± 0.51 e |
G3 | 50.40 ± 1.37 c | 23.57 ± 1.85 c | 50.21 ± 4.59 c | 70.17 ± 0.64 d |
G4 | 49.88 ± 4.80 c | 19.65 ± 3.59 c | 64.92 ± 4.30 ab | 79.31 ± 0.84 c |
G5 | 65.13 ± 4.48 ab | 16.14 ± 1.98 d | 65.65 ± 5.86 ab | 84.79 ± 0.74 b |
G6 | 69.06 ± 5.08 a | 15.05 ± 2.78 d | 75.08 ± 5.45 a | 91.54 ± 0.79 a |
G7 | 50.96 ± 7.45 c | 27.32 ± 2.74 b | 56.88 ± 6.22 bc | 70.17 ± 0.46 d |
G1 | G2 | G3 | G4 | G5 | G6 | G7 | |
---|---|---|---|---|---|---|---|
Atrophy in islets of Langerhans | – | +++ | – | + | + | – | – |
Necrobiosis in acini | – | ++ | + | – | – | – | – |
Interlobular fibrosis | – | +++ | + | + | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, Y.M.; Sakr, S.S.; Albarrak, S.M.; Almundarij, T.I.; Barakat, H.; Hassan, M.F.Y. Antioxidative, Antidiabetic, and Hypolipidemic Properties of Probiotic-Enriched Fermented Camel Milk Combined with Salvia officinalis Leaves Hydroalcoholic Extract in Streptozotocin-Induced Diabetes in Rats. Antioxidants 2022, 11, 668. https://doi.org/10.3390/antiox11040668
Alharbi YM, Sakr SS, Albarrak SM, Almundarij TI, Barakat H, Hassan MFY. Antioxidative, Antidiabetic, and Hypolipidemic Properties of Probiotic-Enriched Fermented Camel Milk Combined with Salvia officinalis Leaves Hydroalcoholic Extract in Streptozotocin-Induced Diabetes in Rats. Antioxidants. 2022; 11(4):668. https://doi.org/10.3390/antiox11040668
Chicago/Turabian StyleAlharbi, Yousef M., Sally S. Sakr, Saleh M. Albarrak, Tariq I. Almundarij, Hassan Barakat, and Mohamed F. Y. Hassan. 2022. "Antioxidative, Antidiabetic, and Hypolipidemic Properties of Probiotic-Enriched Fermented Camel Milk Combined with Salvia officinalis Leaves Hydroalcoholic Extract in Streptozotocin-Induced Diabetes in Rats" Antioxidants 11, no. 4: 668. https://doi.org/10.3390/antiox11040668
APA StyleAlharbi, Y. M., Sakr, S. S., Albarrak, S. M., Almundarij, T. I., Barakat, H., & Hassan, M. F. Y. (2022). Antioxidative, Antidiabetic, and Hypolipidemic Properties of Probiotic-Enriched Fermented Camel Milk Combined with Salvia officinalis Leaves Hydroalcoholic Extract in Streptozotocin-Induced Diabetes in Rats. Antioxidants, 11(4), 668. https://doi.org/10.3390/antiox11040668