Phlorotannins of the Brown Algae Sargassum vulgare from the Mediterranean Sea Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solvents and Reagents
2.2. Seaweed Samples
2.3. Chemical Characterization of S. vulgare
2.4. Obtainment of Phlorotannin Extract and Purification
2.5. Characterization of Phlorotannins
2.6. Antioxidant Activities
2.6.1. DPPH• Scavenging Test
2.6.2. ABTS•+ Scavenging Activity
2.6.3. Cupric Reducing Antioxidant Capacity (CUPRAC)
2.6.4. β-Carotene Bleaching Assay
2.6.5. Superoxide Radical Scavenging Activity
2.6.6. Galvinoxyl Radical (GOR) Scavenging Assay
2.6.7. Reducing Power Assay
2.6.8. Phenanthroline Assay
2.7. Enzymatic Assays
2.7.1. α-Amylase Inhibition Assay
2.7.2. Pancreatic Lipase Inhibition Assay
2.8. Inhibition of Bovine Serum Albumin Denaturation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of S. vulgare
3.2. Extraction and Fractionation of Phlorotannins
3.3. Antioxidant Activities
3.4. Inhibition of Enzymatic Activity
3.5. Anti-Inflammatory Activity
3.6. Characterization of Phlorotannins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein, J.M. Marine bioactive compounds and their health benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 446–465. [Google Scholar] [CrossRef]
- MacArtain, P.; Gill, C.I.R.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional value of edible seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Goncąlves, A.M.M.; Da Silva, G.J.; Pereira, L. Seaweed phenolics: From extraction to applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Dar, A.; Baig, H.S.; Saifullah, S.M.; Ahmad, V.U.; Yasmeen, S.; Nizamuddin, M. Effect of seasonal variation on the anti-inflammatory activity of Sargassum wightii growing on the N. Arabian Sea coast of Pakistan. J. Exp. Mar. Biol. Ecol. 2007, 351, 1–9. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, L.; Fu, X.; Wang, L.; Fu, X.; Yang, M.; Han, Z.; Mou, H.; Jeon, Y.J. Anti-oxidant and anti-inflammatory activities of ultrasonic-assistant extracted polyphenol-rich compounds from Sargassum muticum. J. Oceanol. Limnol. 2019, 37, 836–847. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Kang, N.; Ahn, G.; Jee, Y.; Kim, Y.T.; Jeon, Y.J. Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: A review. Food Hydrocoll. 2018, 81, 200–208. [Google Scholar] [CrossRef]
- Ali, S.S.; Shaaban, M.T.; Abomohra, A.E.F.; El-Safity, K. Macroalgal activity against multiple drug resistant Aeromonas hydrophila: A novel treatment study towards enhancement of fish growth performance. Microb. Pathog. 2016, 101, 89–95. [Google Scholar] [CrossRef]
- Metwally, M.A.; Ali, S.S.; Khatab, I.A.; El-Sayed, M.K. Antibacterial potential of some seaweeds species to combat biofilm-producing multi-drug resistant staphylococcus aureus of nile tilapia. Egypt. J. Bot. 2020, 60, 9–24. [Google Scholar] [CrossRef]
- Ghania, A.; Nabila, B.B.; Larbi, B.; Elisabeth, M.; Philippe, G.; Mariem, B.; Khadidja, K.K.; Wacila, B.R.; Fawzia, A.B. Antimicrobial and antiparasitic activities of three algae from the northwest coast of Algeria. Nat. Prod. Res. 2019, 33, 742–745. [Google Scholar] [CrossRef]
- Santos, J.P.; Torres, P.B.; dos Santos, D.Y.A.C.; Motta, L.B.; Chow, F. Seasonal effects on antioxidant and anti-HIV activities of Brazilian seaweeds. J. Appl. Phycol. 2019, 31, 1333–1341. [Google Scholar] [CrossRef]
- Guerra Dore, C.M.P.; Faustino Alves, M.G.C.; Santos, N.D.; Cruz, A.K.M.; Câmara, R.B.G.; Castro, A.J.G.; Guimarães Alves, L.; Nader, H.B.; Lisboa Leite, E. Antiangiogenic activity and direct antitumor effect from a sulfated polysaccharide isolated from seaweed. Microvasc. Res. 2013, 88, 12–18. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, A.P.A.; Torres, M.R.; Pessoa, C.; Moraes, M.O.D.; Filho, F.D.R.; Alves, A.P.N.N.; Costa-Lotufo, L.V. In vivo growth-inhibition of Sarcoma 180 tumor by alginates from brown seaweed Sargassum vulgare. Carbohydr. Polym. 2007, 69, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Kolsi, R.B.A.; Salah, H.B.; Jardak, N.; Chaaben, R.; Jribi, I.; Feki, A.E.; Rebai, T.; Jamoussi, K.; Allouche, N.; Blecker, C.; et al. Sulphated polysaccharide isolated from Sargassum vulgare: Characterization and hypolipidemic effects. Carbohydr. Polym. 2017, 170, 148–159. [Google Scholar] [CrossRef]
- Lins, K.O.A.L.; Vale, M.L.; Ribeiro, R.A.; Costa-Lotufo, L.V. Proinflammatory activity of an alginate isolated from Sargassum vulgare. Carbohydr. Polym. 2013, 92, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Dore, C.M.P.G.; Faustino Alves, M.G.D.C.; Pofírio Will, L.S.E.; Costa, T.G.; Sabry, D.A.; De Souza Rêgo, L.A.R.; Accardo, C.M.; Rocha, H.A.O.; Filgueira, L.G.A.; Leite, E.L. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydr. Polym. 2013, 91, 467–475. [Google Scholar] [CrossRef]
- Catarino, D.M.; Silva, M.A.; Cardoso, M.S. Fucaceae: A Source of Bioactive Phlorotannins. Int. J. Mol. Sci. 2017, 18, 1327. [Google Scholar] [CrossRef] [Green Version]
- de Lima, R.L.; Pires-Cavalcante, K.M.D.S.; de Alencar, D.B.; Viana, F.A.; Sampaio, A.H.; Saker-Sampaio, S. In vitro evaluation of antioxidant activity of methanolic extracts obtained from seaweeds endemic to the coast of Ceará, Brazil. Acta Sci. Technol. 2016, 38, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.D.L.; Ramlov, F.; Nocchi Carneiro, N.P.; Gestinari, L.M.; dos Santos, B.F.; Bento, L.M.; Lhullier, C.; Gouvea, L.; Bastos, E.; Horta, P.A.; et al. Antioxidant properties and total phenolic contents of some tropical seaweeds of the Brazilian coast. J. Appl. Phycol. 2013, 25, 1179–1187. [Google Scholar] [CrossRef]
- Kosanić, M.; Ranković, B.; Stanojković, T. Brown macroalgae from the Adriatic Sea as a promising source of bioactive nutrients. J. Food Meas. Charact. 2019, 13, 330–338. [Google Scholar] [CrossRef]
- Arunkumar, K.; Raj, R.; Raja, R.; Carvalho, I.S. Brown seaweeds as a source of anti-hyaluronidase compounds. S. Afr. J. Bot. 2021, 139, 470–477. [Google Scholar] [CrossRef]
- Sargassum vulgare C. Agardh in GBIF Secretariat (2021). GBIF Backbone Taxonomy. Checklist Dataset. Accessed via GBIF.org. Available online: https://doi.org/10.15468/39omei (accessed on 1 February 2022).
- Ould-Ahmed, N.; Gómez Garreta, A.; Ribera Siguan, M.A.; Bougue-doura, N. Checklist of the benthic marine macroalgae from Algeria. I. Phaeophyceae. An. Jard. Bot. Madr. 2013, 70, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Perret-Boudouresque, M.; Seridi, H. Inventory of Benthic Marine Algae in Algeria; GIS Posidonie Publ.: Marseill, France, 1989; pp. 1–117. [Google Scholar]
- Seridi, H. Étude de la Flore Algale de l’Algérie. Etude Phytosociologique des Peuplements Algaux Photophiles de l’infralittoral Supérieur de Substrat dur. Ph.D. Thesis, University of Science and Technology Houari Boumediene, Algiers, Algeria, 2007. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Catarino, M.D.; Silva, A.M.S.; Mateus, N.; Cardoso, S.M. Optimization of phlorotannins extraction from fucus vesiculosus and evaluation of their potential to prevent metabolic disorders. Mar. Drugs 2019, 17, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarante, S.J.; Catarino, M.D.; Marçal, C.; Silva, A.M.S.; Ferreira, R.; Cardoso, S.M. Microwave-Assisted Extraction of Phlorotannins from Fucus vesiculosus. Food Res. Int. 2018, 113, 559. [Google Scholar] [CrossRef]
- Catarino, M.D.; Fernandes, I.; Oliveira, H.; Carrascal, M.; Ferreira, R.; Silva, A.M.S.; Cruz, M.T.; Mateus, N.; Cardoso, S.M. Antitumor Activity of Fucus vesiculosus-Derived Phlorotannins through Activation of Apoptotic Signals in Gastric and Colorectal Tumor Cell Lines. Int. J. Mol. Sci. 2021, 22, 7604. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.M.S.; Saraiva, S.C.; Sobral, A.J.F.N.; Cardoso, S.M. Characterization of phenolic constituents and evaluation of antioxidant properties of leaves and stems of Eriocephalus africanus. Arab. J. Chem. 2018, 11, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Nickavar, B.; Esbati, N. Evaluation of the antioxidant capacity and phenolic content of three Thymus species. J. Acupunct. Meridian Stud. 2012, 5, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Rechek, H.; Haouat, A.; Hamaidia, K.; Allal, H.; Boudiar, T.; Pinto, D.C.G.A.; Cardoso, S.M.; Bensouici, C.; Soltani, N.; Silva, A.M.S. Chemical composition and antioxidant, anti-inflammatory, and enzyme inhibitory activities of an endemic species from southern algeria: Warionia saharae. Molecules 2021, 26, 5257. [Google Scholar] [CrossRef]
- Chaibeddra, Z.; Akkal, S.; Ouled-haddar, H.; Silva, A.M.S.; Zellagui, A.; Sebti, M.; Cardoso, S.M. Scrophularia Tenuipes Coss and Durieu: Phytochemical Composition and Biological Activities. Molecules 2020, 25, 1647. [Google Scholar] [CrossRef] [Green Version]
- Bakhouche, I.; Aliat, T.; Boubellouta, T.; Gali, L.; Şen, A.; Bellik, Y. Phenolic contents and in vitro antioxidant, anti-tyrosinase, and anti-inflammatory effects of leaves and roots extracts of the halophyte Limonium delicatulum. S. Afr. J. Bot. 2021, 139, 42–49. [Google Scholar] [CrossRef]
- Sandeli, A.E.K.; Khiri-Meribout, N.; Benzerka, S.; Gürbüz, N.; Dündar, M.; Karcı, H.; Bensouici, C.; Mokrani, E.H.; Özdemir, İ.; Koç, A.; et al. Silver (I)-N-heterocyclic carbene complexes: Synthesis and characterization, biological evaluation of Anti-Cholinesterase, anti-alpha-amylase, anti-lipase, and antibacterial activities, and molecular docking study. Inorganica Chim. Acta 2021, 525, 120486. [Google Scholar] [CrossRef]
- Pereira, O.R.; Macias, R.I.R.; Perez, M.J.; Marin, J.J.G.; Cardoso, S.M. Protective effects of phenolic constituents from Cytisus multiflorus, Lamium album L. and Thymus citriodorus on liver cells. J. Funct. Foods 2013, 5, 1170–1179. [Google Scholar] [CrossRef]
- Kumar, S.; Sahoo, D.; Levine, I. Assessment of nutritional value in a brown seaweed Sargassum wightii and their seasonal variations. Algal Res. 2015, 9, 117–125. [Google Scholar] [CrossRef]
- Ruperez, P. Mineral content of edible marine seaweeds. Food Chem. 2002, 79, 23–26. [Google Scholar] [CrossRef]
- Arguelles, E.D.L.R.; Monsalud, R.G.; Sapin, A.B. Chemical composition and in vitro antioxidant and antibacterial activities of Sargassum vulgare c. Agardh from Lobo, Batangas, Philippines. J. Int. Soc. Southeast Asian Agric. Sci. 2019, 25, 112–122. [Google Scholar]
- Marinho-Soriano, E.; Fonseca, P.C.; Carneiro, M.A.A.; Moreira, W.S.C. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 2006, 97, 2402–2406. [Google Scholar] [CrossRef]
- Heo, S.J.; Lee, G.W.; Song, C.B.; Jeon, Y.J. Antioxidant Activity of Enzymatic Extracts from Brown Seaweeds. ALGAE 2003, 18, 71–81. [Google Scholar] [CrossRef]
- Vijay, K.; Velayathum, P.; Reshma, R.; Balasundari, S.; Jeyashakila, R.; Masilan, K. Proximate and mineral composition of brown seaweed from Gulf of Mannar. Int. J. Fish. Aquat. Stud. 2017, 5, 106–112. [Google Scholar]
- Behairy, A.; El-Sayed, M. Biochemical composition of some marine brown algae from Jeddah Coast, Saudi Arabia. Indian J. Geo-Marine Sci. 1983, 12, 200–201. [Google Scholar]
- Casas-Valdez, M.; Hernández-Contreras, H.; Marín-Álvarez, A.; Aguila-Ramírez, R.N.; Hernández-Guerrero, C.J.; Sánchez-Rodríguez, I.; Carrillo-Domínguez, S. The seaweed Sargassum (Sargassaceae) as tropical alternative for goats’ feeding. Rev. Biol. Trop. 2006, 54, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Mcdermid, K.J.; Stuercke, B. Nutritional composition of edible Hawaiian seaweeds. J. Appl. Phycol. 2003, 15, 513–524. [Google Scholar] [CrossRef]
- Acevedo-García, V.; Flórez-Fernández, N.; López-García, M.; Vilariño, J.M.L.; Domínguez, H.; Torres, M.D. Acetone Precipitation of Heterofucoidans from Sargassum muticum autohydrolysis extracts. Waste Biomass Valorization 2021, 12, 867–877. [Google Scholar] [CrossRef]
- Lopes, G.; Sousa, C.; Silva, L.R.; Pinto, E.; Andrade, P.B.; Bernardo, J.; Mouga, T.; Valentão, P. Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions. PLoS ONE 2012, 7, e031145. [Google Scholar] [CrossRef]
- Isaza Martínez, J.H.; Torres Castañeda, H.G. Preparation and chromatographic analysis of phlorotannins. J. Chromatogr. Sci. 2013, 51, 825–838. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fu, X.; Duan, D.; Liu, X.; Xu, J.; Gao, X. Extraction and Identification of Phlorotannins from the Brown Alga, Sargassum fusiforme (Harvey) Setchell. Mar. Drugs 2017, 15, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero, L.; Sánchez-Camargo, A.P.; García-Cañas, V.; Tanniou, A.; Stiger-Pouvreau, V.; Russo, M.; Rastrelli, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J. Chromatogr. A 2016, 1428, 115–125. [Google Scholar] [CrossRef]
- Catarino, M.D.; Marçal, C.; Bonifácio-Lopes, T.; Campos, D.; Mateus, N.; Silva, A.M.S.; Pintado, M.M.; Cardoso, S.M. Impact of Phlorotannin Extracts from Fucus vesiculosus on Human Gut Microbiota. Mar. Drugs 2021, 19, 375. [Google Scholar] [CrossRef]
- Tucci, S. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: A review of current and emerging therapeutic agents. Diabetes Metab. Syndr. Obes. Targets Ther. 2010, 3, 125. [Google Scholar] [CrossRef] [Green Version]
- Pantidos, N.; Boath, A.; Lund, V.; Conner, S.; Mcdougall, G.J. Phenolic-rich extracts from the edible seaweed, ascophyllum nodosum, inhibit α-amylase and α-glucosidase: Potential anti-hyperglycemic effects. J. Funct. Foods 2014, 10, 201–209. [Google Scholar] [CrossRef]
- Arthitaya, K.-A.; Taehwan, K.A.; Moo, K.S. Inhibitory activities of microalgal fucoxanthin against α-amylase, α-glucosidase, and glucose oxidase in 3T3-L1 cells linked to type 2 diabetes. J. Oceanol. Limnol. 2019, 37, 928–937. [Google Scholar] [CrossRef]
- Han, L.K.; Zheng, Y.N.; Xu, B.J.; Okuda, H.; Kimura, Y. Saponins from Platycodi radix ameliorate high fat diet-induced obesity in mice. J. Nutr. 2002, 132, 2241–2245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, L.; Qian, Z.; Zheng, S.; Xi, L. Mechanism of hypolipidemic effect of crocin in rats: Crocin inhibits pancreatic lipase. Eur. J. Pharmacol. 2006, 543, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Moreno, D.A.; Ilic, N.; Poulev, A.; Brasaemle, D.L.; Fried, S.K.; Raskin, I. Inhibitory effects of grape seed extract on lipases. Nutrition 2003, 19, 876–879. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Shimoda, H.; Nishida, N.; Takada, M.; Matsuda, H. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J. Nutr. 2002, 132, 1819–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Los, E.; Arguelles, R. Chemical Composition and Bioactive Properties of Sargassum aquifolium (Turner) C. Agardh and Its Potential for Pharmaceutical Application. Mar. Bot. 2021, 151, 9–24. [Google Scholar]
- Kawamura-Konishi, Y.; Watanabe, N.; Saito, M.; Nakajima, N.; Sakaki, T.; Katayama, T.; Enomoto, T. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate- hydrolyzing enzymes, from the brown alga Sargassum patens. J. Agric. Food Chem. 2012, 60, 5565–5570. [Google Scholar] [CrossRef]
- Bitou, N.; Ninomiya, M.; Tsujita, T.; Okuda, H. Screening of Lipase Inhibitors from Marine Algae. Lipids 1999, 34, 441–445. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ruiz, J.C.; Matus-Basto, A.J.; Acereto-Escoffié, P.; Segura-Campos, M.R. Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food Agric. Immunol. 2017, 28, 1424–1437. [Google Scholar] [CrossRef] [Green Version]
- Corona, G.; Ji, Y.; Anegboonlap, P.; Hotchkiss, S.; Gill, C.; Yaqoob, P.; Spencer, J.P.E.; Rowland, I. Gastrointestinal modifications and bioavailability of brown seaweed phlorotannins and effects on inflammatory markers. Br. J. Nutr. 2016, 115, 1240–1253. [Google Scholar] [CrossRef] [Green Version]
- Allwood, J.W.; Evans, H.; Austin, C.; McDougall, G.J. Extraction, Enrichment, and LC-MSn-Based Characterization of Phlorotannins and Related Phenolics from the Brown Seaweed, Ascophyllum nodosum. Mar. Drugs 2020, 18, 448. [Google Scholar] [CrossRef] [PubMed]
- Glombitza, K.-W.; Knoss, W. Sulphated phlorotannins from the brown alga pleurophycus gardneri. Phytochemistry 1992, 31, 279–281. [Google Scholar] [CrossRef]
- Emeline, C.B.; Ludovic, D.; Laurent, V.; Catherine, L.; Kruse, I.; Erwan, A.G.; Florian, W.; Philippe, P. Induction of Phlorotannins and Gene Expression in the Brown Macroalga Fucus vesiculosus in Response to the Herbivore Littorina littorea. Mar. Drugs 2021, 19, 185. [Google Scholar] [CrossRef] [PubMed]
- Romero, F.; Oehme, M. Organosulfates-A New Component of Humic-Like Substances in Atmospheric Aerosols. J. Atmos. Chem. 2005, 52, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Fernando, I.P.S.; Kim, M.; Son, K.-T.; Jeong, Y.; Jeon, J. Antioxidant Activity of Marine Algal Polyphenolic Compounds: A Mechanistic Approach. J. Med. Food 2016, 19, 615–628. [Google Scholar] [CrossRef]
- Koivikko, R.; Loponen, J.; Honkanen, T.; Jormalainen, V. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol. 2005, 31, 195–212. [Google Scholar] [CrossRef] [Green Version]
Components | Amount (% DW) |
---|---|
Carbohydrate | 68.0 ± 1.0 |
Ash | 23.7 ± 0.1 |
Crude Fiber | 22.9 ± 1.2 |
Protein content | 7.70 ± 0.1 |
Fat content | 0.51 ± 0.04 |
Sample | Yield (%) | TPhC (mg PGE/g ext) |
---|---|---|
Crude extract | 25.9 ± 0.80 b | 4.7 ± 0.11 b |
Hex | 10.8 ± 2.57 d | 0.4 ± 0.02 c |
EtOAc | 6.1 ± 1.11 c | 9.4 ± 0.03 a |
AQ | 63.0 ± 2.20 a | 0.8 ± 0.2 c |
Sample | DPPH• | ABTS•+ | Superoxide | Galvinoxyl | β-Carotene | CUPRAC | FRAP | Phenanthroline |
---|---|---|---|---|---|---|---|---|
IC50 (µg/mL) | A0.5 (µg/mL) | |||||||
Crude Ext | 97.41 ± 2.15 a | 72.9 ± 5.83 b | >800 | 364.65 ± 0.93 a | 65.17 ± 0.68 b | 303.08 ± 3.59 a | >200 | >200 |
Hex | 29.77 ± 1.72 b | 93.76 ± 2.28 a | 37.07 ± 1.72 a | 148.7 ± 1.74 b | 41.29 ± 1.37 d | 69.04 ± 5.65 b | 126.5 ± 3.43 b | 126.14 ±1.38 a |
EtOAc | 25.83 ± 0.54 C | 25.07 ± 0.21 c | 27 ± 0.26 c | 15.33 ± 0.21 c | 72.05 ± 0.92 a | 37.79 ± 0.21 c | 64.63 ± 3.66 c | 32.3 ± 0.21 b |
AQ | 96.64 ± 2.12 a | 74.9 ± 4.8 b | >800 | >800 | >800 | >800 | 251.8 ± 5.5 a | >200 |
BHA * | 6.14 ± 0.41 e | 1.81 ± 0.10 d | >200 | 5.38 ± 0.06 d | 0.90 ± 0.02 f | 6.62 ± 0.05 e | 7.99 ± 0.87 e | 2.24 ± 0.17 d |
BHT * | 12.99 ± 0.41 d | 1.29 ± 0.30 d | >200 | 3.32 ± 0.18 e | 1.05 ± 0.01 f | 8.97 ± 3.94 e | >200 | 0.93 ± 0.07 d |
Tocopherol * | 13.02 ± 5.17 d | 7.59 ± 0.53 d | 31.52 ± 2.22 b | 22.02 ± 0.03 | 1.79 ± 0.03 f | 19.92 ± 1.46 d | 34.93 ± 2.38 d | 5.78 ± 030 |
AA * | 13.94 ± 2.81 d | 1.74 ± 0.10 d | 7.5 9 ± 1.16 d | 5.02 ± 0.01 d | 52.59 ± 1.98 c | 13.43 ± 0.09 d | 6.37 ± 0.42 e | 5.25 ± 0.20 c |
A-Amylase (IC50, µg/mL) | Pancreatic Lipase (IC50, µg/mL) | |
---|---|---|
Crude Extract | >400 | >1000 |
Hex | 45.43 ± 0.22 b | 34.49 ± 1.37 a |
EtOAc | 42.28 ±5.85 b | 17.98 ± 2.2 b |
AQ | >400 | >1000 |
Acarbose | 359.3 ± 8.0 a | -- |
Orlistat * | -- | 0.06 ± 0.001 c |
Peak | RT (min) | [M − H]− (m/z) | MS/MS Ions | Tentative Assignment |
---|---|---|---|---|
1 | 1.4 | 217 | 181, 137, 173, 149, 179, 97 | Hydroxy sulfobenzoic acid |
2 | 1.8 | 191 | 111, 173, 147, 117, 129, 101, 87, 155 | Quinic acid |
3 | 2.2 | 395 | 179, 269, 293, 305, 377, 275, 359, 351, 253, 335, 209, 139, 249, 125, 235 | Phlorethol-fucoside |
267 | 221, 223, 249, 231, 205, 195, 177, 169, 151, 125, 141 | Phlorotannin derivative | ||
409 | 265, 291, 365 263, 319, 303, 143, 139, 347, 373, 269 | Phlorotannin derivative | ||
4 | 2.8 | 247 | 203, 121, 81, 229, 167 | Dibenzodioxine-1,3,6,8-tetraol |
345 | 265, 263, 245, 205, 239, 123, 203, 219, 247, 301, 327 | Fuhalol sulfate | ||
287 | 241, 249, 269, 243, 215, 197, 173, 181, 225, 251, 259, 125 | Phlorotannins derivative | ||
5 | 4.5 | 469 | 263, 389, 245, 265, 387, 205, 139, 425, 219, 189 | Trifuhalol sulfate |
6 | 4.8 | 469 | 263, 245, 389, 265, 387, 205, 139 | Trifuhalol sulfate isomer |
7 | 5.6 | 363 | 345, 283, 319, 237, 301, 247, 327, 273, 263, 291, 317, 221, 138, 275, 257 | Phlorotannins derivative |
8 | 6.1 | 265 | 221, 247, 139, 123, 89, 193, 237, 219, 229, 177, 191, 153, 141, 125 | Fuhalol |
9 | 7.0 | 505 | 425, 407, 289, 331, 487, 279, 215, 363, 379, 461 | Phlorotannin sulfate |
10 | 7.3 | 521 | 431, 503, 373, 255, 401, 395, 305, 477, 461, 423, 365, 247, 347, 233, 165, 229 | Phlorotanin derivative |
621 | 481, 373, 233, 247, 497, 577, 603, 355, 437, 311, 531, 589, 283 | Pentaphlorethol | ||
745 | 497, 727, 619, 353, 479, 601, 701, 371, 339, 209, 585, 229, 245 | Fucopentaphlorethol | ||
11 | 8.2 | 573 | 431, 359, 529, 555, 341, 323, 297, 291, 269, 217, 511, 403 | Phlorotannin derivative |
12 | 8.4 | 669 | 651, 625, 401, 465, 637, 607, 527, 579, 499, 367, 263, 299, 245 | Dihydroxypentafuhalol |
13 | 8.7 | 698 | 680, 666, 550, 432 | Unkown |
14 | 9.2 | 503 | 261, 387, 485, 423, 459, 245, 205, 297, 325, 279 359, 173, 467, 441 | Phlorotannin sulfate |
15 | 9.6 | 421 | 403, 377, 277, 345, 361, 389, 331, 303, 249, 213 | Phlorotannins derivative |
16 | 9.8 | 747 | 729, 703, 685, 621, 387, 497, 481, 607, 667, 715, 515, 359, 303, 261, 249 | Phlorotannins derivative |
435 | 417, 403, 391, 249, 315, 207, 329, 373, 355, 345, 293, 217, 189 | Phlorotannins derivative | ||
17 | 10.4 | 407 | 375, 331, 313, 389, 357, 287, 345, 259 | Unkown |
18 | 10.9 | 577 | 297, 279, 192, 210, 559 | Unkown |
19 | 12.6 | 335 | 171, 317, 291, 163, 299, 275, 247, 127 | Unkown |
403 | 327, 385, 371, 309, 341, 359, 353, 269, 293 | Unkown | ||
20 | 13.0 | 723 | 677, 705, 643, 583, 597, 455, 333 | Phlorotannin sulfate |
755 | 679, 737, 692, 641, 477, 351 | Unkown | ||
559 | 279, 235, 297, 192, 515, 541 | Unkown | ||
713 | 677, 695, 669, 633, 449, 315 | Unkown |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouh, A.; Nouadri, T.; Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Phlorotannins of the Brown Algae Sargassum vulgare from the Mediterranean Sea Coast. Antioxidants 2022, 11, 1055. https://doi.org/10.3390/antiox11061055
Chouh A, Nouadri T, Catarino MD, Silva AMS, Cardoso SM. Phlorotannins of the Brown Algae Sargassum vulgare from the Mediterranean Sea Coast. Antioxidants. 2022; 11(6):1055. https://doi.org/10.3390/antiox11061055
Chicago/Turabian StyleChouh, Amina, Tahar Nouadri, Marcelo D. Catarino, Artur M. S. Silva, and Susana M. Cardoso. 2022. "Phlorotannins of the Brown Algae Sargassum vulgare from the Mediterranean Sea Coast" Antioxidants 11, no. 6: 1055. https://doi.org/10.3390/antiox11061055
APA StyleChouh, A., Nouadri, T., Catarino, M. D., Silva, A. M. S., & Cardoso, S. M. (2022). Phlorotannins of the Brown Algae Sargassum vulgare from the Mediterranean Sea Coast. Antioxidants, 11(6), 1055. https://doi.org/10.3390/antiox11061055