Serum Paraoxonase-1 Activity in Prostate Cancer Patients Treated with Brachytherapy as a Measure of Irradiation Efficacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Brachytherapy
2.3. Determination of the PON1 Activity
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the PCa Patients
3.2. PON1 Activity in the PCa Patients
3.3. PON1 Activity in the PCa Patients Receiving and Not Receiving Hormone Therapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoskin, P. High dose rate brachytherapy for prostate cancer. Cancer Radiother. 2008, 12, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Crook, J.; Marbán, M.; Batchelar, D. HDR Prostate Brachytherapy. Semin. Radiat. Oncol. 2020, 30, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Skowronek, J. Low-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer—Between options. J. Contemp. Brachytherapy 2013, 5, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Garbaulet, A.; Potter, R.; Mazeron, J.J.; Meertens, H.; Van Limbergen, E. The GEC ESTRO Handbook of Brachytherapy; ESTRO: Brussels, Belgium, 2002; Chapter 20; pp. 473–480. [Google Scholar]
- Challapalli, A.; Jones, E.; Harvey, C.; Hellawell, G.O.; Mangar, S.A. High dose rate prostate brachytherapy: An overview of the rationale, experience and emerging applications in the treatment of prostate cancer. Br. J. Radiol. 2012, 85, S18–S27. [Google Scholar] [CrossRef]
- Bertermann, H.; Brix, F. Ultrasonically guided interstitial high-dose rate brachytherapy with 192Ir: Technique and preliminary results in locally confined prostate cancer. In Brachytherapy HDR and LDR: Remote Afterloading State-Of-The-Art; Martinez, A.A., Orton, C.G., Mould, R.F., Eds.; Nucletron International: Veenendaal, The Netherlands, 1990; pp. 281–303. [Google Scholar]
- Skowronek, J. Brachytherapy in the therapy of prostate cancer—An interesting choice. Wspolczesna Onkol. 2013, 17, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Zarkovic, N. Roles and Functions of ROS and RNS in Cellular Physiology and Pathology. Cells 2020, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Oberley, L.W.; Oberley, T.D. Role of antioxidant enzymes in cell immortalization and transformation. Mol. Cell Biochem. 1988, 84, 147–153. [Google Scholar] [CrossRef]
- Bostwick, D.G.; Qian, J.; Maihle, N.J. Amphiregulin Expression in Prostatic Intraepithelial Neoplasia and Adenocarcinoma: A Study of 93 Cases. Prostate 2004, 58, 164–168. [Google Scholar] [CrossRef]
- Bostwick, D.G.; Meiers, I.; Shanks, J.H. Glutathione S-transferase: Differential expression of α, μ, and π isoenzymes in benign prostate, prostatic intraepithelial neoplasia, and prostatic adenocarcinoma. Hum. Pathol. 2007, 38, 1394–1401. [Google Scholar] [CrossRef]
- Chen, Q.; Chai, Y.-C.; Mazumder, S.; Jiang, C.; Macklis, R.M.; Chisolm, G.M.; Almasan, A. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ. 2003, 10, 323–334. [Google Scholar] [CrossRef]
- Précourt, L.P.; Amre, D.; Denis, M.C.; Lavoie, J.C.; Delvin, E.; Seidman, E.; Levy, E. The three-gene paraoxonase family: Physiologic roles, actions and regulation. Atherosclerosis 2011, 214, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Zielaskowska, J.; Olszewska-Słonina, D. The polymorphism of paraoxonase and its effects in physiological and pathological processes. Adv. Clin. Exp. Med. 2006, 15, 1073–1078. [Google Scholar]
- Li, H.L.; Liu, D.P.; Liang, C.C. Paraoxonase gene polymorphisms, oxidative stress, and diseases. J. Mol. Med. 2003, 81, 766–779. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; Vitalone, A.; Cole, T.B.; Furlong, C.E. Modulation of paraoxonase (PON1) activity. Biochem. Pharmacol. 2005, 69, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Bacchetti, T. Effect of dietary lipids on paraoxonase-1 activity and gene expression. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Arenas, M.; Rodríguez, E.; Sahebkar, A.; Sabater, S.; Rizo, D.; Pallisé, O.; Hernández, M.; Riu, F.; Camps, J.; Joven, J. Paraoxonase-1 activity in patients with cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2018, 127, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, C.J.; Lamichhane, S.; Connolly, J.A.; Soehnlen, S.M.; Khalaf, F.K.; Malhotra, D.; Haller, S.T.; Isailovic, D.; Kennedy, D.J. A PON for All Seasons: Comparing Paraoxonase Enzyme Substrates, Activity and Action including the Role of PON3 in Health and Disease. Antioxidants 2022, 11, 590. [Google Scholar] [CrossRef]
- Camps, J.; García-Heredia, A.; Hernández-Aguilera, A.; Joven, J. Paraoxonases, mitochondrial dysfunction and non-communicable diseases. Chem. Interact. 2016, 259, 382–387. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Li, Z. Unfolded protein response in cancer: The Physician’s perspective. J. Hematol. Oncol. 2011, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Grandi, A.; Santi, A.; Campagnoli, S.; Parri, M.; De Camilli, E.; Song, C.; Jin, B.; Lacombe, A.; Castori-Eppenberger, S.; Sarmientos, P.; et al. ERMP1, a novel potential oncogene involved in UPR and oxidative stress defense, is highly expressed in human cancer. Oncotarget 2016, 7, 63596–63610. [Google Scholar] [CrossRef] [Green Version]
- Bacchetti, T.; Ferretti, G.; Sahebkar, A. The role of paraoxonase in cancer. Semin. Cancer Biol. 2019, 56, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Tomàs, E.; Murcia, M.; Arenas, M.; Arguis, M.; Gil, M.; Amigó, N.; Correig, X.; Torres, L.; Sabater, S.; Baiges-Gayà, G.; et al. Serum Paraoxonase-1-Related Variables and Lipoprotein Profile in Patients with Lung or Head and Neck Cancer: Effect of Radiotherapy. Antioxidants 2019, 8, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Sampath, H. Mitochondrial DNA Integrity: Role in Health and Disease. Cells 2019, 8, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prise, K.M.; O’Sullivan, J.M. Radiation-induced bystander signalling in cancer therapy. Nat. Rev. Cancer 2009, 9, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Goto, S.; Kawakatsu, M.; Urata, Y.; Li, T.S. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic. Res. 2012, 46, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Deakin, S.P.; Bioletto, S.; Bochaton-Piallat, M.-L.; James, R.W. HDL-associated paraoxonase-1 can redistribute to cell membranes and influence sensitivity to oxidative stress. Free Radic. Biol. Med. 2011, 50, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Mekkawy, M.H.; Fahmy, H.A.; Nada, A.S.; Ali, O.S. Study of the Radiosensitizing and Radioprotective Efficacy of Bromelain (a Pineapple Extract): In Vitro and In Vivo. Integr. Cancer Ther. 2020, 19, 1–14. [Google Scholar] [CrossRef]
- Greene, F.L.; Page, D.L.; Fleming, I.D.; Fritz, A.G.; Balch, C.M.; Haller, D.G.; Morrow, M. (Eds.) AJCC Cancer Staging Manual; Springer: New York, NY, USA, 2002; pp. 309–316. [Google Scholar]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef]
- Woźniak, A.; Masiak, R.; Szpinda, M.; Mila-Kierzenkowska, C.; Woźniak, B.; Makarewicz, R.; Szpinda, A. Oxidative Stress Markers in Prostate Cancer Patients after HDR Brachytherapy Combined with External Beam Radiation. Oxid. Med. Cell. Longev. 2012, 2012, 789870. [Google Scholar] [CrossRef]
- Jasinski, M.; Olszewska-Slonina, D. Serum Paraoxonase-1 Activity and the Risk of Prostate Cancer Recurrence in Patients Treated with Radiotherapy. Antioxidants 2022, 11, 346. [Google Scholar] [CrossRef] [PubMed]
- Playfer, J.R.; Eze, L.C.; Bullen, M.F.; Evans, D.A. Genetic polymorphism and interethnic variability of plasma paroxonase activity. J. Med. Genet. 1976, 13, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Sogorb, M.A.; García-Argüelles, S.; Carrera, V.; Vilanova, E. Serum Albumin is as Efficient as Paraxonase in the Detoxication of Paraoxon at Toxicologically Relevant Concentrations. Chem. Res. Toxicol. 2008, 21, 1524–1529. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Holley, A.K.; Zhao, Y.; Clair, W.H.S.; Clair, D.K.S. Redox-Mediated and Ionizing-Radiation-Induced Inflammatory Mediators in Prostate Cancer Development and Treatment. Antioxid. Redox Signal. 2014, 20, 1481–1500. [Google Scholar] [CrossRef] [Green Version]
- Prada, P.J.; González, H.; Fernández, J.; Jiménez, I.; Iglesias, A.; Romo, I. Biochemical outcome after high-dose-rate intensity modulated brachytherapy with external beam radiotherapy: 12 years of experience. BJU Int. 2012, 109, 1787–1793. [Google Scholar] [CrossRef] [PubMed]
- Savdie, R.; Symons, J.; Spernat, D.; Yuen, C.; Pe Benito, R.A.; Haynes, A.M.; Matthews, J.; Rasiah, K.K.; Jagavkar, R.S.; Yu, C.; et al. High-dose rate brachytherapy compared with open radical prostatectomy for the treatment of high-risk prostate cancer: 10 year biochemical freedom from relapse. BJU Int. 2012, 110 (Suppl. 4), 71–76. [Google Scholar] [CrossRef] [PubMed]
- Gutt, R.; Tonlaar, N.; Kunnavakkam, R.; Karrison, T.; Weichselbaum, R.R.; Liauw, S.L. Statin use and risk of prostate cancer recurrence in men treated with radiation therapy. J. Clin. Oncol. 2010, 28, 2653–2659. [Google Scholar] [CrossRef] [Green Version]
- Jaouad, L.; De Guise, C.; Berrougui, H.; Cloutier, M.; Isabelle, M.; Fulop, T.; Payette, H.; Khalil, A. Age-related decrease in high-density lipoproteins antioxidant activity is due to an alteration in the PON1’s free sulfhydyl groups. Atherosclerosis 2006, 185, 191–200. [Google Scholar] [CrossRef]
- Serhatlioglu, S.; Ferit Gursu, M.; Gulcu, F.; Canatan, H.; Godekmerdan, A. Levels of paraoxonase and arylesterase activities and malondialdehyde in workers exposed to ionizing radiation. Cell Biochem. Funct. 2003, 21, 371–375. [Google Scholar] [CrossRef]
- Sokolov, M.V.; Panyutin, I.G.; Neumann, R.D. Whole-genome gene expression profiling reveals the major role of nitric oxide in mediating the cellular transcriptional response to ionizing radiation in normal human fibroblasts. Genomics 2012, 100, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Szumiel, I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: The pivotal role of mitochondria. Int. J. Radiat. Biol. 2014, 91, 1–12. [Google Scholar] [CrossRef]
- Li, L.; Steinauer, K.K.; Dirks, A.J.; Husbeck, B.; Gibbs, I.; Knox, S.J. Radiation-induced cyclooxygenase 2 up-regulation is dependent on redox status in prostate cancer cells. Radiat Res. 2003, 160, 617–621. [Google Scholar] [CrossRef]
- Aviram, M.; Rosenblat, M.; Billecke, S.; Erogul, J.; Sorenson, R.; Bisgaier, C.L.; Newton, R.S.; La Du, B. Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic. Biol. Med. 1999, 26, 892–904. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kang, M.J.; Cho, Y.M. Low production of reactive oxygen species and high DNA repair: Mechanism of radioresistance of prostate cancer stem cells. Anticancer Res. 2013, 33, 4469–4474. [Google Scholar] [PubMed]
- Perovic Blagojevic, I.M.; Vekic, J.Z.; Macut, D.P.; Ignjatovic, S.D.; Miljkovic-Trailovic, M.M.; Zeljkovic, A.R.; Spasojevic-Kalimanovska, V.V.; Bozic-Antic, I.B.; Bjekic-Macut, J.D.; Kastratovic-Kotlica, B.A.; et al. Overweight and obesity in polycystic ovary syndrome: Association with inflammation, oxidative stress and dyslipidaemia. Br. J. Nutr. 2022, 128, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Krzystek-Korpacka, M.; Patryn, E.; Hotowy, K.; Czapińska, E.; Majda, J.; Kustrzeba-Wójcicka, I.; Noczyńska, A.; Gamian, A. Paraoxonase-1 activity in overweight and obese children and adolescents: Association with obesity-related inflammation and oxidative stress. Adv. Clin. Exp. Med. 2013, 22, 229–236. [Google Scholar] [PubMed]
- Onur, R.I.; Orhan Necip, I.; Semercioz, A. Role of Tissue Polypeptide Specific Antigen in the Detection of Prostate Cancer. Urol. Int. 2002, 69, 278–282. [Google Scholar] [CrossRef]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
- Asare, G.A.; Andam, S.E.; Asare-Anane, H.; Ammanquah, S.; Anang-Quartey, Y.; Afriyie, D.K.; Musah, I. Lipid associated antioxidants: Arylesterase and paraoxonase-1 in benign prostatic hyperplasia treatment-naïve patients. Prostate Int. 2018, 6, 36–40. [Google Scholar] [CrossRef]
Study Group | |
---|---|
n | 84 |
Age (mean ± SD) (years) | 67.6 ± 13.2 |
BMI (mean ± SD) (kg/m2) | 28.2 ± 4.4 |
Adipose tissue thickness (mean ± SD) (mm) | 45.21 ± 16.04 |
TNM | |
T1 | 20.2% (n = 17) |
T2 | 73.8% (n = 62) |
T3 | 6.0% (n = 5) |
Gleason score | |
<7 | 75.0% (n = 63) |
7 | 15.5% (n = 13) |
>7 | 9.5% (n = 8) |
PSA (mean ± SD, range) (ng/mL) | 12.42 ± 11.78 (2–88) |
PSA | |
<10 ng/mL | 51.2% (n = 43) |
10–20 ng/mL | 40.5% (n = 34) |
>20 ng/mL | 8.3% (n = 7) |
Risk group | |
Low | 39.3% (n = 33) |
Intermediate | 42.8% (n = 36) |
High | 17.9% (n = 15) |
Prostate volume (mean, range) (mL) | 34.7 (10–64) |
Therapy applied | |
HDR BT | 42.8% (n = 36) |
HDR BT + EBRT | 6.0% (n = 5) |
Hormone therapy + RT | 51.2% (n = 43) |
Control Group | PCa Patients | |||
---|---|---|---|---|
Before BT | Immediately after BT | 2 Months after BT | ||
n | 60 | 84 | 70 | 55 |
PON1 (IU) | 83.96 ± 34.52 | 84.05 ± 43.53 | 75.72 ± 51.63 | 59.75 ± 37.95 |
Z-test | p = 0.997 | p = 0.281 | p < 0.001 |
PCa Patients | |||
---|---|---|---|
Before BT | Immediately after BT | p | |
n | 70 | 70 | |
PON1 (IU) | 86.32 ± 42.38 | 75.72 ± 51.63 | 0.006 |
Before BT | Two months after BT | ||
n | 55 | 55 | |
PON1 (IU) | 77.54 ± 39.74 | 59.75 ± 37.95 | <0.001 |
Immediately after BT | Two months after BT | ||
n | 53 | 53 | |
PON1 (IU) | 57.71 ± 36.12 | 60.27 ± 37.97 | 0.542 |
PON1 vs. BMI | PON1 vs. Adipose Tissue Thickness | PON1 vs. Prostate Volume | PON1 vs. PSA | PON1 vs. Gleason Score | |
---|---|---|---|---|---|
n | 65 | 54 | 73 | 84 | 84 |
r | −0.090 | 0.256 | −0.196 | 0.236 | −0.122 |
Student’s t-test | p = 0.474 | p = 0.061 | p = 0.096 | p = 0.031 | p = 0.268 |
PCa Patients | |||
---|---|---|---|
Hormone Therapy | Without Hormone Therapy | p | |
n | 33 | 39 | |
PON1 [IU] Before BT | 90.7 ± 46.3 | 83.6 ± 38.4 | 0.51 |
PON1 [IU] Immediately after BT | 81.1 ± 56.9 | 71.2 ± 47.0 | 0.65 |
PON1 [IU] 2 month after BT | 45.9 ± 31.6 | 69.7 ± 39.4 | 0.01 |
PCa Patients Not Receiving Hormonal Therapy | |||
---|---|---|---|
Before BT | Immediately after BT | p | |
n | 38 | 38 | |
PON1 (IU) Mean ± SD Median | 82.49 ± 38.29 71.42 | 71.19 ± 47.04 62.58 | 0.002 |
Before BT | Two months after BT | ||
n | 32 | 32 | |
PON1 (IU) Mean ± SD Median | 79.72 ± 37.99 68.77 | 69.73 ± 39.40 64.58 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olszewska-Słonina, D.; Jasiński, M. Serum Paraoxonase-1 Activity in Prostate Cancer Patients Treated with Brachytherapy as a Measure of Irradiation Efficacy. Antioxidants 2023, 12, 212. https://doi.org/10.3390/antiox12020212
Olszewska-Słonina D, Jasiński M. Serum Paraoxonase-1 Activity in Prostate Cancer Patients Treated with Brachytherapy as a Measure of Irradiation Efficacy. Antioxidants. 2023; 12(2):212. https://doi.org/10.3390/antiox12020212
Chicago/Turabian StyleOlszewska-Słonina, Dorota, and Miłosz Jasiński. 2023. "Serum Paraoxonase-1 Activity in Prostate Cancer Patients Treated with Brachytherapy as a Measure of Irradiation Efficacy" Antioxidants 12, no. 2: 212. https://doi.org/10.3390/antiox12020212
APA StyleOlszewska-Słonina, D., & Jasiński, M. (2023). Serum Paraoxonase-1 Activity in Prostate Cancer Patients Treated with Brachytherapy as a Measure of Irradiation Efficacy. Antioxidants, 12(2), 212. https://doi.org/10.3390/antiox12020212