The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Pre-Testing Procedures
2.3. Overview
2.4. Blood Measures
2.5. Muscular Performance
2.6. Exercise Protocol
2.7. Treatment
2.8. Creatine Kinase Analysis
2.9. Statistical Analysis
3. Results
3.1. Performance Measures
3.2. Serum Creatine Kinase Activity
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
°C | Degrees Celsius |
°∙S−1 | Degrees per second |
CK | Creatine kinase |
DOMS | Delayed onset muscle soreness |
g∙kg−1·day−1 | Grams per kilogram, per day |
MAPK | Mitogen activated protein kinase |
PLA | Placebo |
ROS | Reactive oxygen species |
rpm | Revolutions per minute |
SD | Standard deviation |
TAU | Taurine |
TBARS | Thiobarbituric acid substances |
References
- Close, G.L.; Ashton, T.; Cable, T.; Doran, D.; MacLaren, D.P. Eccentric exercise, isokinetic muscle torque and delayed onset muscle soreness: The role of reactive oxygen species. Eur. J. Appl. Physiol. 2004, 91, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.; Winterbourn, C.C. Oxidative damage to fibronectin: I. The effects of the neutrophil myeloperoxidase system and hocl. Arch. Biochem. Biophys. 1991, 285, 53–59. [Google Scholar] [CrossRef]
- Schaffer, S.; Azuma, J.; Mozaffari, M. Role of antioxidant activity of taurine in diabetes. Can. J. Physiol. Pharm. 2009, 87, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Satoshi, S.; Kiyoji, T.; Hiroyo, K.; Fumio, N. Exercise-induced lipid peroxidation and leakage of enzymes before and after Vitamin E supplementation. Int. J. Biochem. 1989, 21, 835–838. [Google Scholar] [CrossRef]
- Cannon, J.G.; Orencole, S.F.; Fielding, R.A.; Meydani, M.; Meydani, S.N.; Fiatarone, M.A.; Blumberg, J.B.; Evans, W.J. Acute phase response in exercise: Interaction of age and Vitamin E on neutrophils and muscle enzyme release. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1990, 259, 1214–1219. [Google Scholar]
- Hartmann, A.; Nieβ, A.; Grünert-Fuchs, M.; Poch, B.; Speit, G. Vitamin E prevents exercise-induced DNA damage. Mutat. Res. Lett. 1995, 346, 195–202. [Google Scholar] [CrossRef]
- Rokitzki, L.; Logemann, E.; Huber, G.; Keck, E.; Keul, J. Alpha-tocopherol supplementation in racing cyclists during extreme endurance training. Int. J. Sports Nutr. 1994, 4, 253–264. [Google Scholar] [CrossRef]
- Itoh, H.; Ohkuwa, T.; Yamazaki, Y.; Shimoda, T.; Wakayama, A.; Tamura, S.; Yamamoto, T.; Sato, Y.; Miyamura, M. Vitamin E supplementation attenuates leakage of enzymes following 6 successive days of running training. Int. J. Sports Med. 2000, 21, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Shafat, A.; Butler, P.; Jensen, R.; Donnelly, A. Effects of dietary supplementation with vitamins C and E on muscle function during and after eccentric contractions in humans. Eur. J. Appl. Physiol. 2004, 93, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Bailey, D.; Hill, J.; Hurst, T.; Powell, J.; Williams, C. Prolonged vitamin C supplementation and recovery from eccentric exercise. Eur. J. Appl. Physiol. 2004, 92, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Bryer, S.; Goldfarb, A. Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Jakemanl, P.; Maxwell, S. Effect of antioxidant vitamin supplementation on muscle function after eccentric exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 67, 426–430. [Google Scholar] [CrossRef]
- Connolly, D.; Lauzon, C.; Agnew, J.; Dunn, M.; Reed, B. The effects of vitamin C supplementation on symptoms of delayed onset muscle soreness. J. Sports Med. Phys. Fit. 2006, 46, 462. [Google Scholar]
- Avery, N.; Kaiser, J.; Sharman, M.; Scheett, T.; Barnes, D.; Gomez, A.; Kraemer, W.; Volek, J. Effects of Vitamin E supplementation on recovery from repeated bouts of resistance exercise. J. Strength. Cond. Res. 2003, 17, 801–809. [Google Scholar] [PubMed]
- Childs, A.; Jacobs, C.; Kaminski, T.; Halliwell, B.; Leeuwenburgh, C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic. Biol. Med. 2001, 31, 745–753. [Google Scholar] [CrossRef]
- Close, G.; Ashton, T.; Cable, T.; Doran, D.; Holloway, C.; McArdle, F.; MacLaren, D. Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br. J. Nutr. 2006, 95, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cabrera, M.-C.; Borrás, C.; Pallardó, F.; Sastre, J.; Ji, L.L.; Viña, J. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J. Physiol. 2005, 567, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cabrera, M.-C.; Domenech, E.; Romagnoli, M.; Arduini, A.; Borras, C.; Pallardo, F.V.; Sastre, J.; Viña, J. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am. J. Clin. Nutr. 2008, 87, 142–149. [Google Scholar] [PubMed]
- Makanae, Y.; Kawada, S.; Sasaki, K.; Nakazato, K.; Ishii, N. Vitamin C administration attenuates overload-induced skeletal muscle hypertrophy in rats. Acta Physiol. 2013, 208, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, G.; Cumming, K.; Holden, G.; Hallén, J.; Rønnestad, B.; Sveen, O.; Skaug, A.; Paur, I.; Bastani, N.; Østgaard, H. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: A double-blind, randomised, controlled trial. J. Physiol. 2014, 592, 1887–1901. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, G.; Hamarsland, H.; Cumming, K.; Johansen, R.; Hulmi, J.; Børsheim, E.; Wiig, H.; Garthe, I.; Raastad, T. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. J. Physiol. 2014, 592, 5391–5408. [Google Scholar] [CrossRef] [PubMed]
- Heller-Stilb, B.; van Roeyen, C.; Rascher, K.; Hartwig, H.-G.; Huth, A.; Seeliger, M.; Warskulat, U.; Häussinger, D. Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J. 2002, 16, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Kimura, Y.; Uozumi, Y.; Takai, M.; Muraoka, S.; Matsuda, T.; Ueki, K.; Yoshiyama, M.; Ikawa, M.; Okabe, M. Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J. Mol. Cell. Cardiol. 2008, 44, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Bouscarel, B.; Ikegami, T.; Honda, A.; Matsuzaki, Y. The protective effect of taurine against hepatic damage in a model of liver disease and hepatic stellate cells. Adv. Exp. Med. Biol. 2009, 643, 293–303. [Google Scholar] [PubMed]
- Camerino, D.; Tricarico, D.; Pierno, S.; Desaphy, J.-F.; Liantonio, A.; Pusch, M.; Burdi, R.; Camerino, C.; Fraysse, B.; De Luca, A. Taurine and skeletal muscle disorders. Neurochem. Res. 2004, 29, 135–142. [Google Scholar] [CrossRef]
- Ito, T.; Yoshikawa, N.; Inui, T.; Miyazaki, N.; Schaffer, S.; Azuma, J. Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice. PLoS ONE 2014, 9, e107409. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Pierno, S.; Camerino, D. Taurine: The appeal of a safe amino acid for skeletal muscle disorders. J. Transl. Med. 2015, 13, 243. [Google Scholar] [CrossRef] [PubMed]
- Dawson, R., Jr.; Biasetti, M.; Messina, S.; Dominy, J. The cytoprotective role of taurine in exercise-induced muscle injury. Amino Acids 2002, 22, 309–324. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.; Tromm, C.; Bom, K.; Mariano, I.; Pozzi, B.; da Rosa, G.; Tuon, T.; da Luz, G.; Vuolo, F.; Petronilho, F. Effects of taurine supplementation following eccentric exercise in young adults. Appl. Physiol. Nutr. Metab. 2013, 39, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Ra, S.-G.; Miyazaki, T.; Ishikura, K.; Nagayama, H.; Komine, S.; Nakata, Y.; Maeda, S.; Matsuzaki, Y.; Ohmori, H. Combined effect of branched-chain amino acids and taurine supplementation on delayed onset muscle soreness and muscle damage in high-intensity eccentric exercise. J. Int. Soc. Sports Nutr. 2013, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, D. Effectiveness of using wearable vibration therapy to alleviate muscle soreness. Eur. J. Appl. Physiol. 2017, 117, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.; Blazevich, A.; Newton, M.; Wu, S.; Nosaka, K. Assessment of muscle pain induced by elbow-flexor eccentric exercise. J. Athl. Train. 2015, 50, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Azuma, J.; Hasegawa, H.; Sawamura, A.; Awata, N.; Ogura, K.; Harada, H.; Yamamura, Y.; Kishimoto, S. Therapy of congestive heart failure with orally administered taurine. Clin. Ther. 1982, 5, 398–408. [Google Scholar]
- Durelli, L.; Mutani, R.; Fassio, F. The treatment of myotonia evaluation of chronic oral taurine therapy. Neurology 1983, 33, 599. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Silveira, P.; Ronsani, M.; Souza, P.; Scheffer, D.; Vieira, L.; Benetti, M.; De Souza, C.; Pinho, R. Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise. Cell Biochem. Funct. 2011, 29, 43–49. [Google Scholar] [PubMed]
- Goodman, C.; Horvath, D.; Stathis, C.; Mori, T.; Croft, K.; Murphy, R.; Hayes, A. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. J. Appl. Physiol. 2009, 107, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, E.; Berg, H.; Easton, C.; Bakker, A.J. The effect of taurine depletion on the contractile properties and fatigue in fast-twitch skeletal muscle of the mouse. Amino Acids 2006, 31, 273–278. [Google Scholar] [PubMed]
- Bakker, A.; Berg, H. Effect of taurine on sarcoplasmic reticulum function and force in skinned fast-twitch skeletal muscle fibres of the rat. J. Physiol. 2002, 538, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R. Mechanisms of exercise-induced delayed onset muscular soreness: A brief review. Med. Sci. Sports Exer. 1984, 16, 529–538. [Google Scholar] [CrossRef]
- Cheung, K.; Hume, P.; Maxwell, L. Delayed onset muscle soreness. Sports Med. 2003, 33, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, K.; Clarkson, P. Variability in serum creatine kinase response after eccentric exercise of the elbow flexors. Int. J. Sports Med. 1996, 17, 120–127. [Google Scholar] [CrossRef] [PubMed]
Pre | 24 h | 48 h | 72 h | Pre | 24 h | 48 h | 72 h | |
---|---|---|---|---|---|---|---|---|
Peak ISO | ||||||||
PLA | 74.1 ± 17 | −21.3 ± 16.7 # | −16.3 ± 13.6 # | −10.9 ± 12.4 | 75.5 ± 19.5 | −2.8 ± 4.9 | −2.4 ± 6.7 | −3.7 ± 7.4 |
TAU | 75.4 ± 24.9 | −18.2 ± 4.3 * | −18.5 ± 6.6 * | −9.7 ± 7.9 # | 75 ± 17.1 | −1.7 ± 8.3 | −4.5 ± 6.6 | −5.3 ± 7.1 |
Peak CON | ||||||||
PLA | 56.6 ± 16.2 | −19.7 ± 8.4 * | −16.7 ± 11.4 * | −12.6 ± 7.9 * | 56.5 ± 16 | −3.7 ± 7.6 | −4.7 ± 6.5 | −4.9 ± 6.6 |
TAU | 55.1 ± 17.9 | −14.1 ± 3.9 * | −11.4 ± 7 * | −7.2 ± 9 | 57 ± 17.4 | −5.1± 6.8 | −5.6 ± 6.6 | −6.5 ± 6.6 |
Peak ECC | ||||||||
PLA | 73.8 ± 16.5 | −22.7 ± 13* | −25 ± 11.2 * † | −15.5 ± 9.6 * | 72.5 ± 18.4 | −0.4 ± 9.4 | −0.7 ± 9.4 | −4.9 ± 12.6 |
TAU | 79 ± 24.3 | −25.1 ± 14.9 * | −18.6 ± 12.3 * † | −18.4 ± 14.7 # | 73 ± 21 | −4.8 ± 6.4 | −5.4 ± 6.8 | −6.6 ± 6.8 |
Average ISO | ||||||||
PLA | 71.4 ± 16.4 | −20.5 ± 14.6 * | −17.5 ± 13.6 # | −12.5 ± 12.5 | 72.5 ± 18.4 | −2.4 ± 5.1 | −1.7 ± 9 | −3.9 ± 6 |
TAU | 71 ± 20.7 | −17 ± 7.7 * | −17.3 ± 6.6 * | −9.2 ± 7.3 # | 70.7 ± 15.7 | 0 ± 8.1 | −2.6 ± 7.5 | −3.3 ± 6.5 |
Average CON | ||||||||
PLA | 53.5 ± 15.9 | −19.1 ± 8.3 * | −16.9 ± 11.5 * | −11.8 ± 8.1 * | 52.1 ± 14.4 | −4.2 ± 6.3 | −3.5 ± 5.3 | −5.2 ± 5.4 |
TAU | 51 ± 15 | −12.9 ± 4.9 * | −10.8 ± 8.2 # | −4.6 ± 8.2 | 55.1 ± 14.6 | −4.9 ± 5.8 | −5.3 ± 6 | −5.5 ± 6.6 |
Average ECC | ||||||||
PLA | 69 ± 16.2 | −21 ± 14.5 * | −23.2 ± 11.6 * | −13.9 ± 9.2 * | 67.3 ± 18.2 | −0.6 ± 7.9 | −0.6 ± 7.7 | −3.3 ± 11.2 |
TAU | 72.8 ± 23.2 | −22.7 ± 12.7 * | −17.6 ± 12.6 * | −18 ± 14 # | 70.1 ± 20 | −4.7 ± 6.5 | −6.3 ± 6.2 | −7.5 ± 6.2 # |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McLeay, Y.; Stannard, S.; Barnes, M. The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males. Antioxidants 2017, 6, 79. https://doi.org/10.3390/antiox6040079
McLeay Y, Stannard S, Barnes M. The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males. Antioxidants. 2017; 6(4):79. https://doi.org/10.3390/antiox6040079
Chicago/Turabian StyleMcLeay, Yanita, Stephen Stannard, and Matthew Barnes. 2017. "The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males" Antioxidants 6, no. 4: 79. https://doi.org/10.3390/antiox6040079
APA StyleMcLeay, Y., Stannard, S., & Barnes, M. (2017). The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males. Antioxidants, 6(4), 79. https://doi.org/10.3390/antiox6040079