Impact of Chlorinated-Assisted Backwash and Air Backwash on Ultrafiltration Fouling Management for Urban Wastewater Tertiary Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Semi-Industrial UF Pilot Plant
2.2. Membrane Cleaning
2.3. Filtration Conditions
2.4. Analysis
2.4.1. Irreversible and Reversible Fouling Resistance
2.4.2. Reversibility
2.4.3. Recovery Rates through Mass Balances
- (1)
- Turbidity recovery rate:
- (2)
- TOC recovery rate:
2.4.4. Statistical Test
2.5. Water Quality Assessment
3. Results
3.1. Permeability Variation
3.2. Fouling Formation Mechanism
3.3. Reversibility of Physical Backwashes
3.4. Cake Layer Removal Efficiency by Backwash through Mass Balance
3.5. The Influence of NaClO Concentration on Air Backwash Efficiency of Condition NNNY
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, I.-S.; Kim, S.-N. Wastewater Treatment Using Membrane Filtration—Effect of Biosolids Concentration on Cake Resistance. Process Biochem. 2005, 40, 1307–1314. [Google Scholar] [CrossRef]
- Yang, J.; Monnot, M.; Ercolei, L.; Moulin, P. Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-of-the-Art and Performance Analysis. Membranes 2020, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Tal, G.; Hankins, N.P.; Gitis, V. Fouling and Cleaning of Ultrafiltration Membranes: A Review. J. Water Process Eng. 2014, 1, 121–138. [Google Scholar] [CrossRef]
- Judd, S. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 978-0-08-096767-7. [Google Scholar]
- Li, Q.; Elimelech, M. Organic Fouling and Chemical Cleaning of Nanofiltration Membranes: Measurements and Mechanisms. Environ. Sci. Technol. 2004, 38, 4683–4693. [Google Scholar] [CrossRef]
- Regula, C.; Carretier, E.; Wyart, Y.; Gésan-Guiziou, G.; Vincent, A.; Boudot, D.; Moulin, P. Chemical Cleaning/Disinfection and Ageing of Organic UF Membranes: A Review. Water Res. 2014, 56, 325–365. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Zhang, S.; Oh, Y.; Zhou, Z.; Shin, H.-S.; Chae, S.-R. Fouling in Membrane Bioreactors: An Updated Review. Water Res. 2017, 114, 151–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Meng, F.; He, X.; Zhou, Z.; Huang, L.-N.; Liang, S. Optimisation and Performance of NaClO-Assisted Maintenance Cleaning for Fouling Control in Membrane Bioreactors. Water Res. 2014, 53, 1–11. [Google Scholar] [CrossRef]
- Yue, X.; Koh, Y.K.K.; Ng, H.Y. Membrane Fouling Mitigation by NaClO-Assisted Backwash in Anaerobic Ceramic Membrane Bioreactors for the Treatment of Domestic Wastewater. Bioresour. Technol. 2018, 268, 622–632. [Google Scholar] [CrossRef]
- Shao, S.; Wang, Y.; Shi, D.; Zhang, X.; Tang, C.Y.; Liu, Z.; Li, J. Biofouling in Ultrafiltration Process for Drinking Water Treatment and Its Control by Chlorinated-Water and Pure Water Backwashing. Sci. Total Environ. 2018, 644, 306–314. [Google Scholar] [CrossRef]
- Weerasekara, N.A.; Choo, K.-H.; Lee, C.-H. Biofouling Control: Bacterial Quorum Quenching versus Chlorination in Membrane Bioreactors. Water Res. 2016, 103, 293–301. [Google Scholar] [CrossRef]
- Yu, W.; Xu, L.; Graham, N.; Qu, J. Pre-Treatment for Ultrafiltration: Effect of Pre-Chlorination on Membrane Fouling. Sci. Rep. 2014, 4, 6513. [Google Scholar] [CrossRef]
- Luo, J.; Huang, W.; Zhang, Q.; Wu, Y.; Fang, F.; Cao, J.; Su, Y. Distinct Effects of Hypochlorite Types on the Reduction of Antibiotic Resistance Genes during Waste Activated Sludge Fermentation: Insights of Bacterial Community, Cellular Activity, and Genetic Expression. J. Hazard. Mater. 2021, 403, 124010. [Google Scholar] [CrossRef]
- Sensorex. Free Chlorine vs. Total Chlorine: What’s the Difference? 2020. Available online: https://sensorex.com/blog/2020/02/11/free-chlorine-vs-total-chlorine/ (accessed on 24 September 2021).
- Block, S.S. Disinfection, Sterilization, and Preservation; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; ISBN 978-0-683-30740-5. [Google Scholar]
- Rutala, W.A.; Weber, D.J.; HICPAC. Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008; HICPAC: Atlanta, GA, USA, 2008; p. 163. [Google Scholar]
- Cai, W.; Liu, Y. Enhanced Membrane Biofouling Potential by On-Line Chemical Cleaning in Membrane Bioreactor. J. Membr. Sci. 2016, 511, 84–91. [Google Scholar] [CrossRef]
- Wei, C.-H.; Huang, X.; Ben Aim, R.; Yamamoto, K.; Amy, G. Critical Flux and Chemical Cleaning-in-Place during the Long-Term Operation of a Pilot-Scale Submerged Membrane Bioreactor for Municipal Wastewater Treatment. Water Res. 2011, 45, 863–871. [Google Scholar] [CrossRef]
- Zhai, S.; Zhang, W.; Li, T.; Zhang, W.; Lv, L.; Pan, B. Sodium Hypochlorite Assisted Membrane Cleaning: Alterations in the Characteristics of Organic Foulants and Membrane Permeability. Chemosphere 2018, 211, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Watson, K.; Shaw, G.; Leusch, F.D.L.; Knight, N.L. Chlorine Disinfection By-Products in Wastewater Effluent: Bioassay-Based Assessment of Toxicological Impact. Water Res. 2012, 46, 6069–6083. [Google Scholar] [CrossRef] [PubMed]
- Caravelli, A.; Contreras, E.M.; Giannuzzi, L.; Zaritzky, N. Modeling of Chlorine Effect on Floc Forming and Filamentous Micro-Organisms of Activated Sludges. Water Res. 2003, 37, 2097–2105. [Google Scholar] [CrossRef]
- Lim, B.-R.; Ahn, K.-H.; Song, K.-G.; Cho, J.W. Microbial Community in Biofilm on Membrane Surface of Submerged MBR: Effect of in-Line Cleaning Chemical Agent. Water Sci. Technol. 2005, 51, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Hanafi, Y.; Loulergue, P.; Ababou-Girard, S.; Mériadec, C.; Rabiller-Baudry, M.; Baddari, K.; Szymczyk, A. Electrokinetic Analysis of PES/PVP Membranes Aged by Sodium Hypochlorite Solutions at Different PH. J. Membr. Sci. 2016, 501, 24. [Google Scholar] [CrossRef]
- Regula, C.; Carretier, E.; Wyart, Y.; Sergent, M.; Gésan-Guiziou, G.; Ferry, D.; Vincent, A.; Boudot, D.; Moulin, P. Ageing of Ultrafiltration Membranes in Contact with Sodium Hypochlorite and Commercial Oxidant: Experimental Designs as a New Ageing Protocol. Sep. Purif. Technol. 2013, 103, 119–138. [Google Scholar] [CrossRef]
- Rouaix, S.; Causserand, C.; Aimar, P. Experimental Study of the Effects of Hypochlorite on Polysulfone Membrane Properties. J. Membr. Sci. 2006, 2, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Gabelich, C.J.; Frankin, J.C.; Gerringer, F.W.; Ishida, K.P.; Suffet, I.H. (Mel) Enhanced Oxidation of Polyamide Membranes Using Monochloramine and Ferrous Iron. J. Membr. Sci. 2005, 258, 64–70. [Google Scholar] [CrossRef]
- Arkhangelsky, E.; Kuzmenko, D.; Gitis, V. Impact of Chemical Cleaning on Properties and Functioning of Polyethersulfone Membranes. J. Membr. Sci. 2007, 305, 176–184. [Google Scholar] [CrossRef]
- Wienk, I.M.; Meuleman, E.E.B.; Borneman, Z.; Van Den Boomgaard, T.; Smolders, C.A. Chemical Treatment of Membranes of a Polymer Blend: Mechanism of the Reaction of Hypochlorite with Poly(Vinyl Pyrrolidone). J. Polym. Sci. Part A Polym. Chem. 1995, 33, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Yadav, K.; Morison, K.; Staiger, M.P. Effects of Hypochlorite Treatment on the Surface Morphology and Mechanical Properties of Polyethersulfone Ultrafiltration Membranes. Polym. Degrad. Stab. 2009, 94, 1955–1961. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, W. Chemical Aging and Impacts on Hydrophilic and Hydrophobic Polyether Sulfone (PES) Membrane Filtration Performances. Polym. Degrad. Stab. 2019, 168, 108960. [Google Scholar] [CrossRef]
- Fukuzaki, S. Mechanisms of Actions of Sodium Hypochlorite in Cleaning and Disinfection Processes. Biocontrol Sci. 2006, 11, 147–157. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Fukushi, K. Effects of Operational Conditions on Ultrafiltration Membrane Fouling. Desalination 2008, 229, 181–191. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Qiu, L.; Yu, S.; Liu, P.; Zhu, Y.; Hu, J.; Liu, Z.; Zhao, D.; Yang, H. Chemical Cleaning of Ultrafiltration Membranes for Polymer-Flooding Wastewater Treatment: Efficiency and Molecular Mechanisms. J. Membr. Sci. 2018, 545, 348–357. [Google Scholar] [CrossRef]
- Decarolis, J.; Hong, S.; Taylor, J. Fouling Behavior of a Pilot Scale Inside-out Hollow Fiber UF Membrane during Dead-End Filtration of Tertiary Wastewater. J. Membr. Sci. 2001, 191, 165–178. [Google Scholar] [CrossRef]
- Chemical Cleaning of Fouled PVC Membrane during Ultrafiltration of Algal-Rich Water. J. Environ. Sci. 2011, 23, 529–536. [CrossRef]
- Chen, J.P.; Kim, S.L.; Ting, Y.P. Optimization of Membrane Physical and Chemical Cleaning by a Statistically Designed Approach. J. Membr. Sci. 2003, 219, 27–45. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Roddick, F.A. Chemical Cleaning of Ultrafiltration Membrane Fouled by an Activated Sludge Effluent. Desalination Water Treat. 2011, 34, 94–99. [Google Scholar] [CrossRef]
- Jiang, C.-K.; Tang, X.; Tan, H.; Feng, F.; Xu, Z.-M.; Mahmood, Q.; Zeng, W.; Min, X.-B.; Tang, C.-J. Effect of Scrubbing by NaClO Backwashing on Membrane Fouling in Anammox MBR. Sci. Total Environ. 2019, 670, 149–157. [Google Scholar] [CrossRef]
- Yang, J.; Monnot, M.; Eljaddi, T.; Ercolei, L.; Simonian, L.; Moulin, P. Ultrafiltration as Tertiary Treatment for Municipal Wastewater Reuse. Sep. Purif. Technol. 2021, 272, 118921. [Google Scholar] [CrossRef]
- Cordier, C.; Eljaddi, T.; Ibouroihim, N.; Stavrakakis, C.; Sauvade, P.; Coelho, F.; Moulin, P. Optimization of Air Backwash Frequency during the Ultrafiltration of Seawater. Membranes 2020, 10, 78. [Google Scholar] [CrossRef]
- Cordier, C.; Stavrakakis, C.; Sauvade, P.; Coelho, F.; Moulin, P. Air Backwash Efficiency on Organic Fouling of UF Membranes Applied to Shellfish Hatchery Effluents. Membranes 2018, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.; Han, Z.; Li, G. Membrane Fouling Control in Ultrafiltration Technology for Drinking Water Production: A Review. Desalination 2011, 272, 1–8. [Google Scholar] [CrossRef]
- Wiesner, M.R.; Aptel, P. Mass Transport and Permeate Flux and Fouling in Pressure-Driven Process. In Water Treatment Membrane Handbook; McGraw-Hill: New York, NY, USA, 1996; ISBN 978-0-07-001559-3. [Google Scholar]
- Howell, J.; Field, R.; Wu, D. Ultrafiltration of High-Viscosity Solutions: Theoretical Developments and Experimental Findings. Chem. Eng. Sci. 1996, 51, 1405–1415. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, V.; Le-Clech, P. Evolution of Fouling Deposition and Removal on Hollow Fibre Membrane during Filtration with Periodical Backwash. Desalination 2011, 283, 198–205. [Google Scholar] [CrossRef]
- Resosudarmo, A.; Ye, Y.; Le-Clech, P.; Chen, V. Analysis of UF Membrane Fouling Mechanisms Caused by Organic Interactions in Seawater. Water Res. 2013, 47, 911–921. [Google Scholar] [CrossRef]
- Chang, H.; Liang, H.; Qu, F.; Shao, S.; Yu, H.; Liu, B.; Gao, W.; Li, G. Role of Backwash Water Composition in Alleviating Ultrafiltration Membrane Fouling by Sodium Alginate and the Effectiveness of Salt Backwashing. J. Membr. Sci. 2016, 499, 429–441. [Google Scholar] [CrossRef]
- Chang, H.; Liang, H.; Qu, F.; Liu, B.; Yu, H.; Du, X.; Li, G.; Snyder, S.A. Hydraulic Backwashing for Low-Pressure Membranes in Drinking Water Treatment: A Review. J. Membr. Sci. 2017, 540, 362–380. [Google Scholar] [CrossRef]
- Guidance Manual for Compliance with the Interim Enhanced Surface Water Treatment Rule: Turbity Provisions; Office of Water: Washington, DC, USA, 1999.
- Pavanelli, D.; Bigi, A. Indirect Methods to Estimate Suspended Sediment Concentration: Reliability and Relationship of Turbidity and Settleable Solids. Biosyst. Eng. 2005, 90, 75–83. [Google Scholar] [CrossRef]
- Lin, C.-F.; Yu-Chen Lin, A.; Sri Chandana, P.; Tsai, C.-Y. Effects of Mass Retention of Dissolved Organic Matter and Membrane Pore Size on Membrane Fouling and Flux Decline. Water Res. 2009, 43, 389–394. [Google Scholar] [CrossRef]
- Ye, Y.; Sim, L.N.; Herulah, B.; Chen, V.; Fane, A.G. Effects of Operating Conditions on Submerged Hollow Fibre Membrane Systems Used as Pre-Treatment for Seawater Reverse Osmosis. J. Membr. Sci. 2010, 365, 78–88. [Google Scholar] [CrossRef]
- Akhondi, E.; Wicaksana, F.; Fane, A.G. Evaluation of Fouling Deposition, Fouling Reversibility and Energy Consumption of Submerged Hollow Fiber Membrane Systems with Periodic Backwash. J. Membr. Sci. 2014, 452, 319–331. [Google Scholar] [CrossRef]
- Alhweij, H.; Amura, I.; Wenk, J.; Emanuelsson, E.A.C.; Shahid, S. Self-Doped Sulfonated Polyaniline Ultrafiltration Membranes with Enhanced Chlorine Resistance and Antifouling Properties. J. Appl. Polym. Sci. 2021, 138, 50756. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Safe Use of Wastewater, Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006; Volume 4. [Google Scholar]
- Légifrance. Arrêté Du 2 Août 2010 Relatif à L’utilisation D’eaux Issues Du Traitement D’épuration Des Eaux Résiduaires Urbaines Pour L’irrigation De Cultures Ou D’espaces Verts. 2010. Available online: https://www.legifrance.gouv.fr/loda/id/JORFTEXT000022753522/ (accessed on 24 September 2021).
- European Parliament. European Parliament Legislative Resolution of 13 May 2020 on the Council Position at First Reading with a View to the Adoption of a Regulation of the European Parliament and of the Council on Minimum Requirements for Water Reuse (15301/2/2019–C9-0107/2020–2018/0169(COD)). 2020. Available online: https://op.europa.eu/en/publication-detail/-/publication/ea0faa83-a1c0-11eb-b85c-01aa75ed71a1 (accessed on 24 September 2021).
- Gohil, J.M.; Suresh, A.K. Chlorine Attack on Reverse Osmosis Membranes: Mechanisms and Mitigation Strategies. J. Membr. Sci. 2017, 541, 108–126. [Google Scholar] [CrossRef]
- Son, S.H.; Jegal, J. Preparation and Characterization of Polyamide Reverse-Osmosis Membranes with Good Chlorine Tolerance. J. Appl. Polym. Sci. 2011, 120, 1245–1252. [Google Scholar] [CrossRef]
- Kourde-Hanafi, Y.; Loulergue, P.; Szymczyk, A.; Van der Bruggen, B.; Nachtnebel, M.; Rabiller-Baudry, M.; Audic, J.-L.; Pölt, P.; Baddari, K. Influence of PVP Content on Degradation of PES/PVP Membranes: Insights from Characterization of Membranes with Controlled Composition. J. Membr. Sci. 2017, 533, 261–269. [Google Scholar] [CrossRef]
- Wypysek, D.; Rall, D.; Wiese, M.; Neef, T.; Koops, G.; Wessling, M. Shell and Lumen Side Flow and Pressure Communication during Permeation and Filtration in a Multibore Polymer Membrane Module. J. Membr. Sci. 2019, 584, 254–267. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Z.; Wang, J. Lab-Scale and Pilot-Scale Fabrication of Amine-Functional Reverse Osmosis Membrane with Improved Chlorine Resistance and Antimicrobial Property. J. Membr. Sci. 2018, 554, 221–231. [Google Scholar] [CrossRef]
- Abdullah, S.Z.; Bérubé, P.R. Assessing the Effects of Sodium Hypochlorite Exposure on the Characteristics of PVDF Based Membranes. Water Res. 2013, 47, 5392–5399. [Google Scholar] [CrossRef]
- Vatsha, B.; Ngila, J.C.; Moutloali, R.M. Preparation of Antifouling Polyvinylpyrrolidone (PVP 40K) Modified Polyethersulfone (PES) Ultrafiltration (UF) Membrane for Water Purification. Phys. Chem. Earth Parts A/B/C 2014, 67–69, 125–131. [Google Scholar] [CrossRef]
- Zhao, C.; Xue, J.; Ran, F.; Sun, S. Modification of Polyethersulfone Membranes—A Review of Methods. Prog. Mater. Sci. 2013, 58, 76–150. [Google Scholar] [CrossRef]
- Kalboussi, N.; Harmand, J.; Rapaport, A.; Bayen, T.; Ellouze, F.; Ben Amar, N. Optimal Control of Physical Backwash Strategy—Towards the Enhancement of Membrane Filtration Process Performance. J. Membr. Sci. 2018, 545, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Remize, P.J.; Guigui, C.; Cabassud, C. Evaluation of Backwash Efficiency, Definition of Remaining Fouling and Characterisation of Its Contribution in Irreversible Fouling: Case of Drinking Water Production by Air-Assisted Ultra-Filtration. J. Membr. Sci. 2010, 355, 104–111. [Google Scholar] [CrossRef]
- Park, S.; Kang, J.S.; Lee, J.J.; Vo, T.K.Q.; Kim, H.S. Application of Physical and Chemical Enhanced Backwashing to Reduce Membrane Fouling in the Water Treatment Process Using Ceramic Membranes. Membranes 2018, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Guigui, C.; Mougenot, M.; Cabassud, C. Air sparging backwash in ultrafiltration hollow fibres for drinking water production. Water Supply 2003, 3, 415–422. [Google Scholar] [CrossRef]
No. | Backwash Types | Concentration | Backwash Time × Flux or TMP | Filtration Time × Flux | Feed Water | Membrane Process (Pore Size/Area) | Remarks | Ref. |
---|---|---|---|---|---|---|---|---|
1 | NaClO-assisted backwash | 23.8 mg Cl2·L−1 | 24 s/(207–241.5 kPa) | (15–30 min) × (34–102 L·m−2·h−1) | Tertiary treated wastewater | UF (150 kDa/1.9 m2) | ● Frequent backwash with chlorine addition significantly improved membrane productivity, primarily due to enhanced foulant removal by organic oxidation and bio-growth control. | [34] |
2 | NaClO-assisted backwash | 0.191 mg Cl2·L−1 (optimized) | 15 min × 8.33 L L·m−2·h−1 | 12 h × 6 L·m−2·h−1 | Synthetic municipal wastewater | MBR (0.01 μm/0.1 m2) | ● NaClO backflush enhanced the detachment of biopolymers from the fouled membranes and enhanced the denitrification of MBR. ● Low level NaClO-assisted backflush has slight or few adverse effects on sludge and membranes. | [8] |
3 | NaClO-assisted backwash | 0.953 mg Cl2·L−1 (optimized) | 30 s × 30 L·m−2·h−1 | 9 min × 10 L·m−2·h−1 | Domestic wastewater | anaerobic ceramic MBR (0.08 μm/0.08 m2) | ● The biodegradability of organics in the wastewater and the microbial activities of biomass were improved with low level of NaClO-assisted backwash. ● High level of NaClO-assisted backwash deteriorated cell metabolism and led to excessive production of cell lytic products. | [9] |
4 | Backwash with chlorinated water | 3 mg Cl2·L−1 | 2 min × 60 L·m−2·h−1 | 58 min × 20 L·m−2·h−1 | Lake water/the Yangtze River water/micro-polluted water/municipal secondary effluent | UF (100 kDa/29.0 cm2) | ● The use of chlorinated-water backwashing decreased the number of microorganisms in the biofouling layer, but increased the level of EPS; thus, the membrane fouling resistance decreased by 8.6%. | [10] |
5 | NaClO-assisted backwash | 95.3 mg Cl2·L−1 | 1 h soaking | (TMP up to 40 kPa) × 20 L·m−2·h−1 | Algal-rich water | UF (0.01 μm/0.025 m2) | ● Among the tested cleaning reagents (NaOH, HCl, EDTA, and NaClO), 95.3 mg Cl2·L−1 NaClO exhibited the best performance (88.4% ± 1.1%) in removing the irreversible fouling resistance. ● The surface morphology of the fouled membrane almost recovered the original state of new membrane after cleaning with NaClO. | [35] |
6 | NaClO-assisted backwash (CEB) | 284 mg Cl2·L−1 (optimized) | 5.22 L·m−2·h−1 | - | Synthetic mediumcontained (NH4)2SO4, NaNO2 and some trace elements | MBR (0.01 μm/0.05 m2) | ● The best cleaning effect was evident at the NaClO concentration of 284 mg Cl2·L−1. | [38] |
Characteristics | Data |
---|---|
Material | Blended PES (polyethersulfone) |
Pore size–MWCO | 0.02 µm–200 kDa |
Length | 1.2 m |
Internal diameter ID | 0.9 mm |
Number of channels | 7 |
Filtration surface | 9 m2 |
Volume of fibers | 2.0 L |
Maximum TMP | 2.5 bar |
pH tolerant value | 1–13 |
Parameters | Values |
---|---|
E. coli (CFU 100 mL−1) | (2.3 ± 1.9) × 104 |
Enterococci (CFU 100 mL−1) | (9.3 ± 5.5) × 103 |
Anaerobic sulphito-reducers (spores) (CFU 100 mL−1) | (9.6 ± 5.1) × 102 |
Specific F-RNA bacteriophages (PFP 100 mL−1) | <30 |
COD (mgO2·L−1) | 45 ± 21 |
TSS (mg·L−1) | 12.1 ± 8 |
TOC (mgC·L−1) | 6.6 ± 0.4 |
Turbidity (NTU) | 1.9 ± 0.6 |
NH4+ (mgN·L−1) | 3.8 ± 2.4 |
pH | 7.5 ± 0.1 |
Steps | AB with Cl (RL A1) | AB without Cl (RL A2) | CB with Cl (RL C1) | CB without Cl (RL C2) |
---|---|---|---|---|
Step 1 | Air injection into the fibers (2 min) | Air injection into the fibers (2 min) | - | - |
Step 2 | Decompression before standard backwash | Decompression before standard backwash | Decompression before standard backwash | Decompression before standard backwash |
Step 3 | Backwash top head (31 s) | Backwash top head (31 s) | Backwash top head (31 s) | Backwash top head (31 s) |
Step 4 | Backwash 2 heads (3 s) | Backwash 2 heads (3 s) | Backwash 2 heads (3 s) | Backwash 2 heads (3 s) |
Step 5 | Backwash bottom head (18 s) | Backwash bottom head (18 s) | Backwash bottom head (18 s) | Backwash bottom head (18 s) |
Step 6 | Backwash prefilter (12 s) | Backwash prefilter (12 s) | Backwash prefilter (12 s) | Backwash prefilter (12 s) |
Permeate tank (volume) | T1 (29.25 L) + T2 (6.75 L) | T2 (36 L) | T1 (29.25 L) + T2 (6.75 L) | T2 (36 L) |
Duration | 184 s | 184 s | 64 s | 64 s |
No. | CB | CB | CB | AB | Name |
---|---|---|---|---|---|
1 | No Cl | No Cl | No Cl | No Cl | NNNN |
2 | No Cl | No Cl | No Cl | 10 mg Cl2·L−1 Cl | NNNY |
3 | 10 mg Cl2·L−1 Cl | 10 mg Cl2·L−1 Cl | 10 mg Cl2·L−1 Cl | No Cl | YYYN |
4 | 10 mg Cl2·L−1 Cl | 10 mg Cl2·L−1 Cl | 10 mg Cl2·L−1 Cl | 10 mg Cl2·L−1 Cl | YYYY |
Name | Estimated Total CT in 10 Years (mg Cl2·L−1·h) | CT of Backwash in 10 Years (mg Cl2·L−1·h) | Equivalent Consumption of NaClO [gCl2·m−3 (Permeate)] | CEB Frequency | Maximum NaClO CT Value of UF Module |
---|---|---|---|---|---|
NNNN | 60,833 | 0 | 272 | Once per day | 23,853 mg Cl2·L−1·day |
NNNY | 15,225 | 3058 | 175 | Once in 5 days | |
YYYN | 19,630 | 9490 | 414 | Once in 6 days | |
YYYY | 24,820 | 10,544 | 546 | Once in 5 days |
Condition | 3rd CB | AB | ||||
---|---|---|---|---|---|---|
Min | Max | Mean ± SD | Min | Max | Mean ± SD | |
NNNN | 76% | 102% | 91 ± 7% | 92% | 140% | 118 ± 12% |
NNNY | 75% | 104% | 86 ± 8% | 98% | 174% | 133 ± 16% |
YYYN | 85% | 125% | 96 ± 7% | 81% | 135% | 107 ± 12% |
YYYY | 64% | 114% | 87 ± 14% | 85% | 165% | 125 ± 21% |
Condition | Water Types | Turbidity (NTU) | TOC (mg·L−1) |
---|---|---|---|
All conditions | UF feed | 1.9 ± 0.9 | 6.6 ± 0.4 |
UF permeate | 0.4 ± 0.3 | 6.3 ± 0.3 | |
NNNN | AB | 20.2 ± 2 | 9.3 ± 1 |
3rd CB | 10.1 ± 2 | 9.4 ± 0.6 | |
NNNY | AB | 30.9 ± 6 | 16.4 ± 2 |
3rd CB | 14.1 ± 4 | 8.6 ± 0.6 | |
YYYN | AB | 20.5 ± 3 | 18.9 ± 3 |
3rd CB | 17.2 ± 2 | 17.6 ± 2 | |
YYYY | AB | 20.2 ± 9 | 14.7 ± 6 |
3rd CB | 17.0 ± 8 | 16.1 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Monnot, M.; Ercolei, L.; Moulin, P. Impact of Chlorinated-Assisted Backwash and Air Backwash on Ultrafiltration Fouling Management for Urban Wastewater Tertiary Treatment. Membranes 2021, 11, 733. https://doi.org/10.3390/membranes11100733
Yang J, Monnot M, Ercolei L, Moulin P. Impact of Chlorinated-Assisted Backwash and Air Backwash on Ultrafiltration Fouling Management for Urban Wastewater Tertiary Treatment. Membranes. 2021; 11(10):733. https://doi.org/10.3390/membranes11100733
Chicago/Turabian StyleYang, Jiaqi, Mathias Monnot, Lionel Ercolei, and Philippe Moulin. 2021. "Impact of Chlorinated-Assisted Backwash and Air Backwash on Ultrafiltration Fouling Management for Urban Wastewater Tertiary Treatment" Membranes 11, no. 10: 733. https://doi.org/10.3390/membranes11100733
APA StyleYang, J., Monnot, M., Ercolei, L., & Moulin, P. (2021). Impact of Chlorinated-Assisted Backwash and Air Backwash on Ultrafiltration Fouling Management for Urban Wastewater Tertiary Treatment. Membranes, 11(10), 733. https://doi.org/10.3390/membranes11100733