A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions
Abstract
:1. Introduction
2. The Nature of Foulants and Methods of Their Identification
- Dissolved substances (size less than 1 nm), including ions of inorganic substances, as well as ions and molecules of organic acids, saccharides, amino acids, proteins, phe-nolic compounds, etc.
- Colloidal particles (size from 1 nm to 1 μm) formed by inorganic, organic substances or their mixtures, the surface of which has a positive or negative charge;
- Suspended particles (larger than 1 μm) include biological objects (viruses, bacteria, and fungi), fragments of biological cells, colloidal aggregates and salt crystals.
2.1. Identification of Foulants
2.1.1. Mineral Foulants
2.1.2. Organic Foulants and Colloidal Particles
Identification of Typical Chemical Elements
Identification of Characteristic Chemical Groups
Identification of Substances Included in the Composition of Foulant
2.1.3. Biofouling
2.2. Characterization of the Interaction of Foulants with the Membrane Surface
2.2.1. Localization of Foulants and Surface Roughness Parameters
2.2.2. Membrane Surface Charge and Hydrophobicity
3. Mechanisms of Foulants Interaction with Ion-Exchange Materials
3.1. Physicochemical Interactions
3.2. Stretching of the Polymer ion Exchange Matrix
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AEM | Anion-exchange membrane |
AFM | Atomic force microscopy |
ARISA | Automated ribosomal intergenic spacer analysis |
ATR–FTIR | Reflectance–Fourier-transform infrared spectroscopy |
BSA | Bovine serum albumin |
CEM | Cation-exchange membrane |
CLSM | Confocal laser scanning microscopy |
ED | Electrodialysis |
EDS | Energy dispersive X-ray spectrometry |
EEM | Excitation-emission matrix |
EIS | Electrochemical impedance spectroscopy (spectrum) |
EXAFS | X-ray absorption fine structure |
FISH | Fluorescence in situ hybridization |
FT-ICR-MS | Fourier transform-ion cyclotron resonance-mass spectrometry |
HPLC | High-liquid performance chromatography |
HPLC-MS | Mass spectrometry coupled to the HPLC |
IEC | Ion exchange capacity |
IEM | Ion-exchange membrane |
MS | Mass spectrometry |
MW | Moleculer weight |
OCT | Optical coherence tomography |
PARAFAC | Parallel factor analysis |
PCR-DGGE | Polymerase chain reaction denaturing gradient gel electrophoresis |
PDA | Polydopamine |
PEF | Pulsed electric field |
PP | Polyphenol |
PS | Polystyrene |
PVDF | Polyvinylidene fluoride |
RBS | Rutherford backscattering spectroscopy |
RO | Reverse osmosis |
SDS | Sodium dodecyl sulphate |
SDS-PAGE | Sodium dodecyl sulphate–polyacrylamide gel electrophoresis |
SEC | Size-exclusion chromatography |
SECM | Scanning electrochemical microscopy |
SEM | Scanning electron microscopy |
SERS | Surface-enhanced Raman spectroscopy |
SICM | Scanning ion conductance microscopy |
SPHS | Soy protein hydrolysate solution |
SPR | Surface plasmon resonance |
TERS | Tip-enhanced Raman spectroscopy |
T-RFLP | Terminal restriction fragment length polymorphism |
UF | Ultrafiltration |
UPLC | Ultra-high-liquid performance chromatography |
UPLC-MS | Mass spectrometry coupled to the UPLC |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
References
- Galama, A.H.; Saakes, M.; Bruning, H.; Rijnaarts, H.H.M.; Post, J.W. Seawater predesalination with electrodialysis. Desalination 2014, 342, 61–69. [Google Scholar] [CrossRef]
- Regula, C.; Carretier, E.; Wyart, Y.; Gésan-Guiziou, G.; Vincent, A.; Boudot, D.; Moulin, P. Chemical cleaning/disinfection and ageing of organic UF membranes: A review. Water Res. 2014, 56, 325–365. [Google Scholar] [CrossRef]
- Valero, F.; Arbós, R. Desalination of brackish river water using Electrodialysis Reversal (EDR): Control of the THMs formation in the Barcelona (NE Spain) area. Desalination 2010, 253, 170–174. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Abu Hasan, H. Electrodialysis desalination for water and wastewater: A review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Chen, Y.; Liao, J.; Pan, J.; Sotto, A.; Shen, J. Preparation of water-based anion-exchange membrane from PVA for anti-fouling in the electrodialysis process. J. Membr. Sci. 2019, 570–571, 130–138. [Google Scholar] [CrossRef]
- Delyannis, E.-E. Status of solar assisted desalination: A review. Desalination 1987, 67, 3–19. [Google Scholar] [CrossRef]
- Bauer, B.; Gerner, F.J.; Strathmann, H. Development of bipolar membranes. Desalination 1988, 68, 279–292. [Google Scholar] [CrossRef]
- Fu, R.; Xu, T.; Yang, W.; Pan, Z. Preparation of a mono-sheet bipolar membrane by simultaneous irradiation grafting polymerization of acrylic acid and chloromethylstyrene. J. Appl. Polym. Sci. 2003, 90, 572–576. [Google Scholar] [CrossRef]
- Qian, Z.; Miedema, H.; Sahin, S.; de Smet, L.C.P.M.; Sudhölter, E.J.R. Separation of alkali metal cations by a supported liquid membrane (SLM) operating under electro dialysis (ED) conditions. Desalination 2020, 495, 114631. [Google Scholar] [CrossRef]
- Irfan, M.; Wang, Y.; Xu, T. Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity. Chem. Eng. J. 2020, 383, 123171. [Google Scholar] [CrossRef]
- Pelletier, S.; Serre, É.; Mikhaylin, S.; Bazinet, L. Optimization of cranberry juice deacidification by electrodialysis with bipolar membrane: Impact of pulsed electric field conditions. Sep. Purif. Technol. 2017, 186, 106–116. [Google Scholar] [CrossRef]
- Serre, E.; Rozoy, E.; Pedneault, K.; Lacour, S.; Bazinet, L. Deacidification of cranberry juice by electrodialysis: Impact of membrane types and configurations on acid migration and juice physicochemical characteristics. Sep. Purif. Technol. 2016, 163, 228–237. [Google Scholar] [CrossRef]
- Bazinet, L.; Montpetit, D.; Ippersiel, D.; Amiot, J.; Lamarche, F. Identification of Skim Milk Electroacidification Fouling: A Microscopic Approach. J. Colloid Interface Sci. 2001, 237, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Mikhaylin, S.; Patouillard, L.; Margni, M.; Bazinet, L. Milk protein production by a more environmentally sustainable process: Bipolar membrane electrodialysis coupled with ultrafiltration. Green Chem. 2018, 20, 449–456. [Google Scholar] [CrossRef]
- Gonçalves, F.; Fernandes, C.; Cameira dos Santos, P.; de Pinho, M.N. Wine tartaric stabilization by electrodialysis and its assessment by the saturation temperature. J. Food Eng. 2003, 59, 229–235. [Google Scholar] [CrossRef]
- Ghalloussi, R.; Garcia-Vasquez, W.; Chaabane, L.; Dammak, L.; Larchet, C.; Deabate, S.V.; Nevakshenova, E.; Nikonenko, V.; Grande, D. Ageing of ion-exchange membranes in electrodialysis: A structural and physicochemical investigation. J. Membr. Sci. 2013, 436, 68–78. [Google Scholar] [CrossRef]
- Ghalloussi, R.; Garcia-Vasquez, W.; Bellakhal, N.; Larchet, C.; Dammak, L.; Huguet, P.; Grande, D. Ageing of ion-exchange membranes used in electrodialysis: Investigation of static parameters, electrolyte permeability and tensile strength. Sep. Purif. Technol. 2011, 80, 270–275. [Google Scholar] [CrossRef]
- Garcia-Vasquez, W.; Ghalloussi, R.; Dammak, L.; Larchet, C.; Nikonenko, V.; Grande, D. Structure and properties of heterogeneous and homogeneous ion-exchange membranes subjected to ageing in sodium hypochlorite. J. Membr. Sci. 2014, 452, 104–116. [Google Scholar] [CrossRef]
- Al-Amoudi, A.; Lovitt, R.W. Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci. 2007, 303, 4–28. [Google Scholar] [CrossRef]
- Gautam, A.; Menkhaus, T.J. Performance evaluation and fouling analysis for reverse osmosis and nanofiltration membranes during processing of lignocellulosic biomass hydrolysate. J. Membr. Sci. 2014, 451, 252–265. [Google Scholar] [CrossRef]
- Grossman, G.; Sonin, A.A. Membrane fouling in electrodialysis: A model and experiments. Desalination 1973, 12, 107–125. [Google Scholar] [CrossRef]
- Mikhaylin, S.; Bazinet, L. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control. Adv. Colloid Interface Sci. 2016, 229, 34–56. [Google Scholar] [CrossRef] [PubMed]
- Persico, M.; Bazinet, L. Fouling prevention of peptides from a tryptic whey hydrolysate during electromembrane processes by use of monovalent ion permselective membranes. J. Membr. Sci. 2018, 549, 486–494. [Google Scholar] [CrossRef]
- Suwal, S.; Doyen, A.; Bazinet, L. Characterization of protein, peptide and amino acid fouling on ion-exchange and filtration membranes: Review of current and recently developed methods. J. Membr. Sci. 2015, 496, 267–283. [Google Scholar] [CrossRef]
- Bdiri, M.; Larchet, C.; Dammak, L. A review on ion-exchange membranes fouling and antifouling during electrodialysis used in food industry: Cleanings and strategies of prevention. Chem. Afr. 2020, 3, 609–633. [Google Scholar] [CrossRef]
- Bdiri, M.; Perreault, V.; Mikhaylin, S.; Larchet, C.; Hellal, F.; Bazinet, L.; Dammak, L. Identification of phenolic compounds and their fouling mechanisms in ion-exchange membranes used at an industrial scale for wine tartaric stabilization by electrodialysis. Sep. Purif. Technol. 2019, 233, 115995. [Google Scholar] [CrossRef]
- Bazinet, L.; Degrandpre, Y.; Porter, A. Enhanced tobacco polyphenol electromigration and impact on membrane integrity. J. Membr. Sci. 2005, 254, 111–118. [Google Scholar] [CrossRef]
- Casademont, C.; Sistat, P.; Ruiz, B.; Pourcelly, G.; Bazinet, L. Electrodialysis of model salt solution containing whey proteins: Enhancement by pulsed electric field and modified cell configuration. J. Membr. Sci. 2009, 328, 238–245. [Google Scholar] [CrossRef]
- Ruiz, B.; Sistat, P.; Huguet, P.; Pourcelly, G.; Araya-Farias, M.; Bazinet, L. Application of relaxation periods during electrodialysis of a casein solution: Impact on anion-exchange membrane fouling. J. Membr. Sci. 2007, 287, 41–50. [Google Scholar] [CrossRef]
- Lee, H.-J.; Hong, M.-K.; Han, S.-D.; Shim, J.; Moon, S.-H. Analysis of fouling potential in the electrodialysis process in the presence of an anionic surfactant foulant. J. Membr. Sci. 2008, 325, 719–726. [Google Scholar] [CrossRef]
- Bdiri, M.; Dammak, L.; Larchet, C.; Hellal, F.; Porozhnyy, M.; Nevakshenova, E.; Pismenskaya, N.; Nikonenko, V. Characterization and cleaning of anion-exchange membranes used in electrodialysis of polyphenol-containing food industry solutions; comparison with cation-exchange membranes. Sep. Purif. Technol. 2019, 210, 636–650. [Google Scholar] [CrossRef]
- Bdiri, M.; Dammak, L.; Chaabane, L.; Larchet, C.; Hellal, F.; Nikonenko, V.; Pismenskaya, N.D. Cleaning of cation-exchange membranes used in electrodialysis for food industry by chemical solutions. Sep. Purif. Technol. 2018, 199, 114–123. [Google Scholar] [CrossRef]
- Sarapulova, V.; Nevakshenova, E.; Nebavskaya, X.; Kozmai, A.; Aleshkina, D.; Pourcelly, G.; Nikonenko, V.; Pismenskaya, N. Characterization of bulk and surface properties of anion-exchange membranes in initial stages of fouling by red wine. J. Membr. Sci. 2018, 559, 170–182. [Google Scholar] [CrossRef]
- Bukhovets, A.; Eliseeva, T.; Oren, Y. Fouling of anion-exchange membranes in electrodialysis of aromatic amino acid solution. J. Membr. Sci. 2010, 364, 339–343. [Google Scholar] [CrossRef]
- Mustafa, G.; Wyns, K.; Buekenhoudt, A.; Meynen, V. New insights into the fouling mechanism of dissolved organic matter applying nanofiltration membranes with a variety of surface chemistries. Water Res. 2016, 93, 195–204. [Google Scholar] [CrossRef]
- Grossman, G.; Sonin, A.A. Experimental study of the effects of hydrodynamics and membrane fouling in electrodialysis. Desalination 1972, 10, 157–180. [Google Scholar] [CrossRef]
- Akhondi, E.; Zamani, F.; Law, A.W.K.; Krantz, W.B.; Fane, A.G.; Chew, J.W. Influence of backwashing on the pore size of hollow fiber ultrafiltration membranes. J. Membr. Sci. 2017, 521, 33–42. [Google Scholar] [CrossRef]
- Krahnstöver, T.; Hochstrat, R.; Wintgens, T. Comparison of methods to assess the integrity and separation efficiency of ultrafiltration membranes in wastewater reclamation processes. J. Water Process Eng. 2019, 30, 100646. [Google Scholar] [CrossRef]
- Taghavijeloudar, M.; Park, J.; Han, M.; Taghavi, A. A new approach for modeling flux variation in membrane filtration and experimental verification. Water Res. 2019, 166, 115027. [Google Scholar] [CrossRef] [PubMed]
- Judd, S. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2011; p. 536. ISBN 9780080966823. [Google Scholar]
- Spettmann, D.; Eppmann, S.; Flemming, H.C.; Wingender, J. Simultaneous visualisation of biofouling, organic and inorganic particle fouling on separation membranes. Water Sci. Technol. 2007, 55, 207–210. [Google Scholar] [CrossRef]
- El Rayess, Y.; Mietton-Peuchot, M. Membrane Technologies in Wine Industry: An Overview. Crit. Rev. Food Sci. Nutr. 2016, 56, 2005–2020. [Google Scholar] [CrossRef] [PubMed]
- Bleha, M.; Tishchenko, G.; Sumberova, V.; Kudela, V. Characteristic of the critical state of membranes in ED-desalination of milk whey. Desalination 1992, 86, 173–186. [Google Scholar] [CrossRef]
- Korngold, E.; De Körösy, F.; Rahav, R.; Taboch, M.F. Fouling of anionselective membranes in electrodialysis. Desalination 1970, 8, 195–220. [Google Scholar] [CrossRef]
- Lindstrand, V.; Sundström, G.; Jönsson, A.S. Fouling of electrodialysis membranes by organic substances. Desalination 2000, 128, 91–102. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, H.J.; Moon, S.H. Determination of an optimum frequency of square wave power for fouling mitigation in desalting electrodialysis in the presence of humate. Sep. Purif. Technol. 2003, 30, 101–112. [Google Scholar] [CrossRef]
- Mikhaylin, S.; Nikonenko, V.; Pourcelly, G.; Bazinet, L. Intensification of demineralization process and decrease in scaling by application of pulsed electric field with short pulse/pause conditions. J. Membr. Sci. 2014, 468, 389–399. [Google Scholar] [CrossRef]
- Asfar-Snir, M.; Gilron, J.; Oren, Y. Gypsum scaling on anion exchange membrane during Donnan exchange. J. Membr. Sci. 2014, 455, 384–391. [Google Scholar] [CrossRef]
- Higa, M.; Tanaka, N.; Nagase, M.; Yutani, K.; Kameyama, T.; Takamura, K.; Kakihana, Y. Electrodialytic properties of aromatic and aliphatic type hydrocarbonbased anion-exchange membranes with various anion-exchange groups. Polymer 2014, 55, 3951–3960. [Google Scholar] [CrossRef]
- Mikhaylin, S.; Nikonenko, V.; Pourcelly, G.; Bazinet, L. Hybrid bipolar membrane electrodialysis/ultrafiltration technology assisted by a pulsed electric field for casein production. Green Chem. 2016, 18, 307–314. [Google Scholar] [CrossRef]
- Dai, R.; Li, Z.; Wang, T.; Ma, J.; Wang, Z. Techniques for understanding mechanisms underlying membrane fouling. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 81–102. [Google Scholar] [CrossRef]
- Oshchepkov, M.; Golovesov, V.; Ryabova, A.; Tkachenko, S.; Redchuk, A.; Rönkkömäki, H.; Rudakova, G.; Pervov, A.; Popov, K. Visualization of a novel fluorescent-tagged bisphosphonate behavior during reverse osmosis desalination of water with high sulfate content. Sep. Purif. Technol. 2021, 255, 117382. [Google Scholar] [CrossRef]
- Oshchepkov, M.; Golovesov, V.; Ryabova, A.; Redchuk, A.; Tkachenko, S.; Pervov, A.; Popov, K. Gypsum crystallization during reverse osmosis desalination of water with high sulfate content in presence of a novel fluorescent-tagged polyacrylate. Crystals 2020, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Hansma, P.; Drake, B.; Marti, O.; Gould, S.A.; Prater, C.B. The scanning ion-conductance microscope. Science 1989, 243, 641–643. [Google Scholar] [CrossRef]
- Shi, X.; Qing, W.; Marhaba, T.; Zhang, W. Atomic force microscopy-scanning electrochemical microscopy (AFM-SECM) for nanoscale topographical and electrochemical characterization: Principles, applications and perspectives. Electrochim. Acta 2020, 332, 135472. [Google Scholar] [CrossRef]
- Mareev, S.A.; Butylskii, D.Y.; Pismenskaya, N.D.; Larchet, C.; Dammak, L.; Nikonenko, V.V. Geometrical heterogeneity of homogeneous ion-exchange Neosepta membranes. J. Membr. Sci. 2018, 563, 768–776. [Google Scholar] [CrossRef]
- Butylskii, D.Y.; Mareev, S.A.; Nikonenko, V.V.; Pismenskaya, N.D.; Larchet, C.; Dammak, L.; Grande, D.; Apel, P.Y. In situ investigation of electrical inhomogeneity of ion exchange membrane surface using scanning electrochemical microscopy. Petrol. Chem. 2016, 56, 1006–1013. [Google Scholar] [CrossRef]
- Casademont, C.; Araya Farias, M.; Pourcelly, G.; Bazinet, L. Impact of electrodialytic parameters on cation migration kinetics and fouling nature of ion-exchange membranes during treatment of solutions with different magnesium/calcium ratios. J. Membr. Sci. 2008, 325, 570–579. [Google Scholar] [CrossRef]
- Butylskii, D.Y. Study of Surface Morphology of Ion-Exchange Membranes and Its Influence on Their Electrochemical Characteristics. Ph.D. Thesis, Kuban State University, Krasnodar, Russia, 2019. [Google Scholar]
- Park, J.-S.; Chilcott, T.C.; Coster, H.G.L.; Moon, S.-H. Characterization of BSA-fouling of ion-exchange membrane systems using a subtraction technique for lumped data. J. Membr. Sci. 2005, 246, 137–144. [Google Scholar] [CrossRef]
- Kattan Readi, O.M. Membranes in the Biobased Economy: Electrodialysis of Amino Acids for the Production of Biochemical. Ph.D. Thesis, Universiteit Twente, Enschede, The Netherlands, 2013; p. 176. [Google Scholar]
- Persico, M.; Mikhaylin, S.; Doyen, A.; Firdaous, L.; Hammami, R.; Chevalier, M.; Flahaut, C.; Dhulster, P.; Bazinet, L. Formation of peptide layers and adsorption mechanisms on a negatively charged cation-exchange membrane. J. Colloid Interface 2017, 508, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Langevin, M.-E.; Bazinet, L. Ion-exchange membrane fouling by peptides: A phenomenon governed by electrostatic interactions. J. Membr. Sci. 2011, 369, 359–366. [Google Scholar] [CrossRef]
- Ayala-Bribiesca, E.; Araya-Farias, M.; Pourcelly, G.; Bazinet, L. Effect of concentrate solution pH and mineral composition of a whey protein diluate solution on membrane fouling formation during conventional electrodialysis. J. Membr. Sci. 2006, 280, 790–801. [Google Scholar] [CrossRef]
- Persico, M.; Mikhaylin, S.; Doyen, A.; Firdaous, L.; Hammami, R.; Bazinet, L. How peptide physicochemical and structural characteristics affect anion-exchange membranes fouling by a tryptic whey protein hydrolysate. J. Membr. Sci. 2016, 520, 914–923. [Google Scholar] [CrossRef]
- Harrigan, W.F.; McCance, M.E. Laboratory Methods in Microbiology; Academic Press: Cambridge, MA, USA, 2014; p. 374. ISBN 9781483274348. [Google Scholar]
- Kozmai, A.; Sarapulova, V.; Sharafan, M.; Melkonian, K.; Rusinova, T.; Kozmai, Y.; Pismenskaya, N.; Dammak, L.; Nikonenko, V. Electrochemical impedance spectroscopy of anion-exchange membrane amx-sb fouled by red wine components. Membranes 2021, 11, 2. [Google Scholar] [CrossRef]
- Persico, M.; Mikhaylin, S.; Doyen, A.; Firdaous, L.; Nikonenko, V.; Pismenskaya, N.; Bazinet, L. Prevention of peptide fouling on ion-exchange membranes during electrodialysis in overlimiting conditions. J. Membr. Sci. 2017, 543, 212–221. [Google Scholar] [CrossRef]
- Lee, H.-J.; Hong, M.-K.; Han, S.-D.; Cho, S.-H.; Moon, S.-H. Fouling of an anion exchange membrane in the electrodialysis desalination process in the presence of organic foulants. Desalination 2009, 238, 60–69. [Google Scholar] [CrossRef]
- Labbé, D.; Bazinet, L. Effect of membrane type on cation migration during green tea electromigration and equivalent mass transported calculation. J. Membr. Sci. 2006, 275, 220–228. [Google Scholar] [CrossRef]
- Labbé, D.; Araya-Farias, M.; Tremblay, A.; Bazinet, L. Electromigration feasibility of green tea catechins. J. Membr. Sci. 2005, 254, 101–109. [Google Scholar] [CrossRef]
- Faucher, M.; Serre, É.; Langevin, M.-È.; Mikhaylin, S.; Lutin, F.; Bazinet, L. Drastic energy consumption reduction and ecoefficiency improvement of cranberry juice deacidification by electrodialysis with bipolar membranes at semi-industrial scale: Reuse of the recovery solution. J. Membr. Sci. 2018, 555, 105–114. [Google Scholar] [CrossRef]
- Perreault, V.; Sarapulova, V.; Tsygurina, K.; Pismenskaya, N.; Bazinet, L. Understanding of adsorption and desorption mechanisms of anthocyanins and proanthocyanidins on heterogeneous and homogeneous cation-exchange membranes. Membranes 2021, 11, 136. [Google Scholar] [CrossRef]
- Evans, P.J.; Bird, M.R.; Rogers, D.; Wright, C.J. Measurement of polyphenol-membrane interaction forces during the ultrafiltration of black tea liquor. Colloids Surf. A Physicochem. Eng. Asp. 2009, 335, 148–153. [Google Scholar] [CrossRef]
- Sholokhova, A.Y.; Eliseeva, T.V.; Voronyuk, I.V. Sorption of vanillin by highly basic anion exchangers under dynamic conditions. Russ. J. Phys. Chem. A 2018, 92, 2048–2052. [Google Scholar] [CrossRef]
- Sosa-Fernandez, P.A.; Miedema, S.J.; Bruning, H.; Leermakers, F.A.M.; Post, J.W.; Rijnaarts, H.H.M. Effects of feed composition on the fouling on cation-exchange membranes desalinating polymer-flooding produced water. J. Colloid Interface Sci. 2021, 584, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yu, S.; Hou, L.A. Impacts of HPAM molecular weights on desalination performance of ion exchange membranes and fouling mechanism. Desalination 2017, 404, 50–58. [Google Scholar] [CrossRef]
- Xia, Q.; Guo, H.; Ye, Y.; Yu, S.; Li, L.; Li, Q.; Zhang, R. Study on the fouling mechanism and cleaning method in the treatment of polymer flooding produced water with ion exchange membranes. RSC Adv. 2018, 8, 29947–29957. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.S. Wine Science: Principles and Applications; Academic Press: Cambridge, MA, USA, 2014; p. 751. ISBN 9780123736468. [Google Scholar]
- Suwal, S.; Roblet, C.; Amiot, J.; Bazinet, L. Presence of free amino acids in protein hydrolysate during electroseparation of peptides: Impact on system efficiency and membrane physicochemical properties. Sep. Purif. Technol. 2015, 147, 227–236. [Google Scholar] [CrossRef]
- Ge, S.; Zhang, Z.; Yan, H.; Irfan, M.; Xu, Y.; Li, W.; Wang, Y. Electrodialytic Desalination of Tobacco Sheet Extract: Membrane Fouling Mechanism and Mitigation Strategies. Membranes 2020, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Shi, S.; Cao, H.; Li, Y.; Van der Bruggen, B. Comparative studies on fouling of homogeneous anion exchange membranes by different structured organics in electrodialysis. J. Environ. Sci. 2019, 77, 218–228. [Google Scholar] [CrossRef]
- Gorzalski, A.S.; Donley, C.; Coronell, O. Elemental composition of membrane foulant layers using EDS, XPS, and RBS. J. Membr. Sci. 2017, 522, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Cheesman, A.W.; Turner, B.L.; Reddy, K.R. Interaction of phosphorus compounds with anion-exchange membranes: Implications for soil analysis. Soil Sci. Soc. Am. J. 2010, 74, 1607–1612. [Google Scholar] [CrossRef] [Green Version]
- Chan, R.; Chen, V. Characterization of protein fouling on membranes: Opportunities and challenges. J. Membr. Sci. 2004, 242, 169–188. [Google Scholar] [CrossRef]
- Labbe, J.P.; Quemerais, A.; Michel, F.; Daufin, G. Fouling of inorganic membranes during whey ultrafiltration: Analytical methodology. J. Membr. Sci. 1990, 51, 293–307. [Google Scholar] [CrossRef]
- Merkel, A.; Fárová, H.; Voropaeva, D.; Yaroslavtsev, A.; Ahrné, L.; Yazdi, S.R. The impact of high effective electrodialytic desalination on acid whey stream at high temperature. Int. Dairy J. 2021, 114, 104921. [Google Scholar] [CrossRef]
- Lee, H.; Im, S.J.; Lee, H.; Kim, C.M.; Jang, A. Comparative analysis of salt cleaning and osmotic backwash on calcium-bridged organic fouling in nanofiltration process. Desalination 2021, 507, 115022. [Google Scholar] [CrossRef]
- Xie, M.; Luo, W.; Gray, S.R. Synchrotron Fourier transform infrared mapping: A novel approach for membrane fouling characterization. Water Res. 2017, 111, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Adusei-Gyamfi, J.; Ouddane, B.; Rietveld, L.; Cornard, J.-P.; Criquet, J. Natural organic matter-cations complexation and its impact on water treatment: A critical review. Water Res. 2019, 160, 130–147. [Google Scholar] [CrossRef] [Green Version]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology: The Chemistry of Wine, Stabilization and Treatments; John Wiley & Sons Ltd.: Chichester, UK, 2006; p. 451. ISBN 100470010371. [Google Scholar]
- Pismenskaya, N.; Sarapulova, V.; Klevtsova, A.; Mikhaylin, S.; Bazinet, L. Adsorption of anthocyanins by cation and anion exchange resins with aromatic and aliphatic polymer matrices. Int. J. Mol. Sci. 2020, 21, 7874. [Google Scholar] [CrossRef] [PubMed]
- Helfferich, F. Ion Exchange; McGraw-Hill: New York, NY, USA, 1962; p. 624. ISBN 0486687848. [Google Scholar]
- Eker, F.; Cao, X.; Nafie, L.; Schweitzer-Stenner, R. Tripeptides adopt stable structures in water. A combined polarized visible Raman, FTIR, and VCD spectroscopy study. J. Am. Chem. Soc. 2002, 124, 14330–14341. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, T.; Parkkila, P.; Koivuniemi, A.; Lahti, J.; Viitala, T.; Kallioinen, M.; Mänttäri, M.; Bunker, A. Characterization of membrane-foulant interactions with novel combination of Raman spectroscopy, surface plasmon resonance and molecular dynamics simulation. Sep. Purif. Technol. 2018, 205, 263–272. [Google Scholar] [CrossRef]
- Chen, W.; Qian, C.; Hong, W.-L.; Cheng, J.-X.; Yu, H.-Q. Evolution of membrane fouling revealed by label-free vibrational spectroscopic imaging. Environ. Sci. Technol. 2017, 51, 9580–9587. [Google Scholar] [CrossRef]
- Chen, W.; Qian, C.; Zhou, K.-G.; Yu, H.-Q. Molecular spectroscopic characterization of membrane fouling: A critical review. Chem 2018, 4, 1492–1509. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Yue, D.; Song, J.; Nie, Y. Adsorption removal of refractory organic matter in bio-treated municipal solid waste landfill leachate by anion exchange resins. Waste Manag. 2018, 81, 61–70. [Google Scholar] [CrossRef]
- Xu, H.; Yan, Z.; Cai, H.; Yu, G.; Yang, L.; Jiang, H. Heterogeneity in metal binding by individual fluorescent components in a eutrophic algae-rich lake. Ecotoxicol. Environ. Saf. 2013, 98, 266–272. [Google Scholar] [CrossRef]
- Shi, L.; Xie, S.; Hu, Z.; Wu, G.; Morrison, L.; Croot, P.; Zhan, X. Nutrient recovery from pig manure digestate using electrodialysis reversal: Membrane fouling and feasibility of long-term operation. J. Membr. Sci. 2019, 573, 560–569. [Google Scholar] [CrossRef]
- Chon, K.; Jeong, N.; Rho, H.; Nam, J.Y.; Jwa, E.; Cho, J. Fouling characteristics of dissolved organic matter in fresh water and seawater compartments of reverse electrodialysis under natural water conditions. Desalination 2020, 496, 114478. [Google Scholar] [CrossRef]
- Guan, Y.F.; Qian, C.; Chen, W.; Huang, B.C.; Wang, Y.J.; Yu, H.Q. Interaction between humic acid and protein in membrane fouling process: A spectroscopic insight. Water Res. 2018, 145, 146–152. [Google Scholar] [CrossRef]
- Tang, J.; Zhuang, L.; Yu, Z.; Liu, X.; Wang, Y.; Wen, P.; Zhou, S. Insight into complexation of Cu(II) to hyperthermophilic compost-derived humic acids by EEM-PARAFAC combined with heterospectral two dimensional correlation analyses. Sci. Total Environ. 2019, 656, 29–38. [Google Scholar] [CrossRef]
- Peiris, R.H.; Ignagni, N.; Budman, H.; Moresoli, C.; Legge, R.L. Characterizing natural colloidal/particulate-protein interactions using fluorescence-based techniques and principal component analysis. Talanta 2012, 99, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Hu, Z.; Simplicio, W.S.; Qiu, S.; Xiao, L.; Harhen, B.; Zhan, X. Antibiotics in nutrient recovery from pig manure via electrodialysis reversal: Sorption and migration associated with membrane fouling. J. Membr. Sci. 2020, 597, 117633. [Google Scholar] [CrossRef]
- Ray, S.K.; Truong, H.B.; Arshad, Z.; Shin, H.S.; Hur, J. Recent advances in the characterization and the treatment methods of effluent organic matter. Membr. Water Treat. 2020, 11, 257–274. [Google Scholar] [CrossRef]
- Park, J.-S.; Lee, H.-J.; Choi, S.-J.; Geckeler, K.E.; Cho, J.; Moon, S.-H. Fouling mitigation of anion exchange membrane by zeta potential control. J. Colloid Interface Sci. 2003, 259, 293–300. [Google Scholar] [CrossRef]
- Kim, D.H.; Moon, S.-H.; Cho, J. Investigation of the adsorption and transport of natural organic matter (NOM) in ion-exchange membranes. Desalination 2003, 151, 11–20. [Google Scholar] [CrossRef]
- Lee, H.-J.; Moon, S.-H. Enhancement of electrodialysis performances using pulsing electric fields during extended period operation. J. Colloid Interface Sci. 2005, 287, 597–603. [Google Scholar] [CrossRef]
- Persico, M.; Daigle, G.; Kadel, S.; Perreault, V.; Pellerin, G.; Thibodeau, J.; Bazinet, L. Predictive models for determination of peptide fouling based on the physicochemical characteristics of filtration membranes. Sep. Purif. Technol. 2020, 240, 116602. [Google Scholar] [CrossRef]
- Yamato, N.; Kimura, K.; Miyoshi, T.; Watanabe, Y. Difference in membrane fouling in membrane bioreactors (MBRs) caused by membrane polymer materials. J. Membr. Sci. 2006, 280, 911–919. [Google Scholar] [CrossRef]
- Madrigal Carballo, S.; Rodriguez, G.; Vega Baudrit, J.; Krueger, C.G. MALDI-TOF mass spectrometry of oligomeric food polyphenols. Int. Food Res. J. 2013, 20, 2023–2034. Available online: http://hdl.handle.net/20.500.12337/3329 (accessed on 13 October 2021).
- Alecu, A.; Albu, C.; Litescu, S.C.; Eremia, S.A.; Radu, G.L. Phenolic and anthocyanin profile of Valea Calugareasca red wines by HPLC-PDA-MS and MALDI-TOF analysis. Food Anal. Methods 2016, 9, 300–310. [Google Scholar] [CrossRef]
- Chan, R.; Chen, V.; Bucknall, M.P. Quantitative analysis of membrane fouling by protein mixtures using MALDI-MS. Biotechnol. Bioeng. 2004, 85, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.; Semião, A.C.; Habimana, O.; Heffernan, R.; Safari, A.; Casey, E. Nanofiltration and reverse osmosis surface topographical heterogeneities: Do they matter for initial bacterial adhesion? J. Membr. Sci. 2015, 486, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Vaselbehagh, M.; Karkhanechi, H.; Takagi, R.; Matsuyama, H. Biofouling phenomena on anion exchange membranes under the reverse electrodialysis process. J. Membr. Sci. 2017, 530, 232–239. [Google Scholar] [CrossRef]
- Surman, S.B.; Walker, J.T.; Goddard, D.T.; Morton, L.H.G.; Keevil, C.W.; Weaver, W.; Skinner, A.; Hanson, K.; Caldwell, D.; Kurtz, J. Comparison of microscope techniques for the examination of biofilms. J. Microbiol. Methods 1996, 25, 57–70. [Google Scholar] [CrossRef]
- Luo, H.; Xu, P.; Jenkins, P.E.; Ren, Z. Ionic composition and transport mechanisms in microbial desalination cells. J. Membr. Sci. 2012, 409–410, 16–23. [Google Scholar] [CrossRef]
- Luo, H.; Xu, P.; Ren, Z. Long-term performance and characterization of microbial desalination cells in treating domestic wastewater. Bioresour. Technol. 2012, 120, 187–193. [Google Scholar] [CrossRef]
- Křivčík, J.; Neděla, D.; Válek, R. Ion-exchange membrane reinforcing. Desalin. Water Treat. 2015, 56, 3214–3219. [Google Scholar] [CrossRef]
- Lencki, R.W.; Riedl, K. Effect of fractal flocculation behavior on fouling layer resistance during apple juice microfiltration. Food Res. Int. 1999, 32, 279–288. [Google Scholar] [CrossRef]
- Lu, X.; Peng, Y.; Ge, L.; Lin, R.; Zhu, Z.; Liu, S. Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation. J. Membr. Sci. 2016, 505, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Nagaraj, V.; Skillman, L.; Li, D.; Xie, Z.; Ho, G. Culturable bacteria from a full-scale desalination plant: Identification methods, bacterial diversity and selection of models based on membrane-biofilm community. Desalination 2019, 457, 103–114. [Google Scholar] [CrossRef]
- Zhi, W.; Ge, Z.; He, Z.; Zhang, H. Methods for understanding microbial community structures and functions in microbial fuel cells: A review. Bioresour. Technol. 2014, 171, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Vanysacker, L.; Declerck, P.; Bilad, M.R.; Vankelecom, I.F.J. Biofouling on microfiltration membranes in MBRs: Role of membrane type and microbial community. J. Membr. Sci. 2014, 453, 394–401. [Google Scholar] [CrossRef]
- Gao, D.; Fu, Y.; Ren, N. Tracing biofouling to the structure of the microbial community and its metabolic products: A study of the three-stage MBR process. Water Res. 2013, 47, 6680–6690. [Google Scholar] [CrossRef]
- Wu, B.; Yi, S.; Fane, A.G. Microbial behaviors involved in cake fouling in membrane bioreactors under different solids retention times. Bioresour. Technol. 2011, 102, 2511–2516. [Google Scholar] [CrossRef] [PubMed]
- Kocherginskaya, S.A.; Cann, I.K.; Mackie, R.I. Denaturing Gradient Gel Electrophoresis; Springer: Dordrecht, The Netherlands, 2005; p. 119. ISBN 9781402037900. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhadury, P. Methods of Assessment of Microbial Diversity in Natural Environments; Elsevier Inc.: Amsterdam, The Netherlands, 2018; p. 14. [Google Scholar] [CrossRef]
- Chen, C.H.; Fu, Y.; Gao, D.W. Membrane biofouling process correlated to the microbial community succession in an A/O MBR. Bioresour. Technol. 2015, 197, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Kniggendorf, A.K.; Nogueira, R.; Kelb, C.; Schadzek, P.; Meinhardt-Wollweber, M.; Ngezahayo, A.; Roth, B. Confocal Raman microscopy and fluorescent in situ hybridization—A complementary approach for biofilm analysis. Chemosphere 2016, 161, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Karygianni, L.; Follo, M.; Hellwig, E.; Burghardt, D.; Wolkewitz, M.; Anderson, A.; Al-Ahmad, A. Microscope-based imaging platform for large-scale analysis of oral biofilms. Appl. Environ. Microbiol. 2012, 78, 8703–8711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, J.R.; Swerhone, G.D.W.; Leppard, G.G.; Araki, T.; Zhang, X.; West, M.M.; Hitchcock, A.P. Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl. Environ. Microbiol. 2003, 69, 5543–5554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Sweity, A.; Ying, W.; Ali-Shtayeh, M.S.; Yang, F.; Bick, A.; Oron, G.; Herzberg, M. Relation between EPS adherence, viscoelastic properties, and MBR operation: Biofouling study with QCM-D. Water Res. 2011, 45, 6430–6440. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, H.; Qu, F.; Zhang, H.; Rong, H.; Yu, H.; Van der Bruggen, B. Application of membrane distillation to anaerobic digestion effluent treatment: Identifying culprits of membrane fouling and scaling. Sci. Total Environ. 2019, 688, 880–889. [Google Scholar] [CrossRef]
- Johnson, D.J.; Galliano, F.; Deowan, S.A.; Hoinkis, J.; Figoli, A.; Hilal, N. Adhesion forces between humic acid functionalised colloidal probes and polymer membranes to assess fouling potential. J. Membr. Sci. 2015, 484, 35–46. [Google Scholar] [CrossRef]
- Johnson, D.; Hilal, N. Characterisation and quantification of membrane surface properties using atomic force microscopy: A comprehensive review. Desalination 2015, 356, 149–164. [Google Scholar] [CrossRef]
- Krisilova, E.V.; Eliseeva, T.V.; Oros, G.Y. Estimation of effect of amino acid’s sorption on surface state of ion-exchange membranes using atomic-force microscopy data. Prot. Met. Phys. Chem. Surf. 2011, 47, 39–42. [Google Scholar] [CrossRef]
- Donald, A.M. The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat. Mater. 2003, 2, 511–516. [Google Scholar] [CrossRef]
- Reichert, U.; Linden, T.; Belfort, G.; Kula, M.-R.; Thömmes, J. Visualising protein adsorption to ion-exchange membranes by confocal microscopy. J. Membr. Sci. 2002, 199, 161–166. [Google Scholar] [CrossRef]
- Vaselbehagh, M.; Karkhanechi, H.; Takagi, R.; Matsuyama, H. Effect of polydopamine coating and direct electric current application on anti-biofouling properties of anion exchange membranes in electrodialysis. J. Membr. Sci. 2016, 515, 98–108. [Google Scholar] [CrossRef]
- Herzberg, M.; Pandit, S.; Mauter, M.S.; Oren, Y. Bacterial biofilm formation on ion exchange membranes. J. Membr. Sci. 2020, 596, 117564. [Google Scholar] [CrossRef]
- Bauer, A.; Wagner, M.; Saravia, F.; Bartl, S.; Hilgenfeldt, V.; Horn, H. In-situ monitoring and quantification of fouling development in membrane distillation by means of optical coherence tomography. J. Membr. Sci. 2019, 577, 145–152. [Google Scholar] [CrossRef]
- Liu, X.; Chen, G.; Tu, G.; Li, Z.; Deng, B.; Li, W. Membrane fouling by clay suspensions during NF-like forward osmosis: Characterization via optical coherence tomography. J. Membr. Sci. 2020, 602, 117965. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Wang, Y.N.; Chong, T.H.; Tang, C.Y.; Fane, A.G. Analyzing the evolution of membrane fouling via a novel method based on 3D optical coherence tomography imaging. Environ. Sci. Technol. 2016, 50, 6930–6939. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, L.; Jeong, S.; Leiknes, T. Time-resolved monitoring of biofouling development on a flat sheet membrane using optical coherence tomography. Sci. Rep. 2017, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinh, T.A.; Li, W.; Han, Q.; Liu, X.; Fane, A.G.; Chew, J.W. Analyzing external and internal membrane fouling by oil emulsions via 3D optical coherence tomography. J. Membr. Sci. 2018, 548, 632–640. [Google Scholar] [CrossRef]
- Merino-Garcia, I.; Kotoka, F.; Portugal, C.A.M.; Crespo, J.G.; Velizarov, S. Characterization of poly(Acrylic) acid-modified heterogenous anion exchange membranes with improved monovalent permselectivity for RED. Membranes 2020, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, S.; Cao, H.; Xu, B.; Zhao, Z.; Cao, R.; Chang, J.; Duan, F.; Wen, H. Anion exchange nanocomposite membranes modified with graphene oxide and polydopamine: Interfacial structure and antifouling applications. ACS Appl. Nano Mater. 2020, 3, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Pintossi, D.; Saakes, M.; Borneman, Z.; Nijmeijer, K. Electrochemical impedance spectroscopy of a reverse electrodialysis stack: A new approach to monitoring fouling and cleaning. J. Power Sources 2019, 444, 227302. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, H.; Wang, J.; Wen, H.; Li, J. Characterization of fouling and concentration polarization in ion exchange membrane by in-situ electrochemical impedance spectroscopy. J. Membr. Sci. 2020, 594, 117443. [Google Scholar] [CrossRef]
- Femmer, R.; Martí-Calatayud, M.C.; Wessling, M. Mechanistic modeling of the dielectric impedance of layered membrane architectures. J. Membr. Sci. 2016, 520, 29–36. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, L.; Yu, S.; Yang, H.; Hu, J.; Liu, G.; Tang, Y. Analysis of anion exchange membrane fouling mechanism caused by anion polyacrylamide in electrodialysis. Desalination 2014, 346, 46–53. [Google Scholar] [CrossRef]
- Cai, M.; Xie, C.; Zhong, H.; Tian, B.; Yang, K. Identification of anthocyanins and their fouling mechanisms during non-thermal nanofiltration of blueberry aqueous extracts. Membranes 2021, 11, 200. [Google Scholar] [CrossRef]
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef] [Green Version]
- Drelich, J.W.; Boinovich, L.; Chibowski, E.; Volpe, C.D.; Hołysz, L.; Marmur, A.; Siboni, S. Contact angles: History of over 200 years of open questions. Surf. Innov. 2019, 8, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Mikhaylin, S.; Nikonenko, V.; Pismenskaya, N.; Pourcelly, G.; Choi, S.; Kwon, H.J.; Han, J.; Bazinet, L. How physico-chemical and surface properties of cation-exchange membrane affect membrane scaling and electroconvective vortices: Influence on performance of electrodialysis with pulsed electric field. Desalination 2016, 393, 102–114. [Google Scholar] [CrossRef]
- Garcia-Vasquez, W.; Dammak, L.; Larchet, C.; Nikonenko, V.; Pismenskaya, N.; Grande, D. Evolution of anion-exchange membrane properties in a full scale electrodialysis stack. J. Membr. Sci. 2013, 446, 255–265. [Google Scholar] [CrossRef]
- Zhang, W.; Wahlgren, M.; Sivik, B. Membrane characterization by the contact angle technique: II. Characterization of UF-membranes and comparison between the captive bubble and sessile drop as methods to obtain water contact angles. Desalination 1989, 72, 263–273. [Google Scholar] [CrossRef]
- Fouco, A.; Zwijnenberg, H.; Galier, S.; Balmann, H.R.; De Luca, G. Structural properties of cation exchange membranes: Characterization, electrolyte effects and solute transfer. J. Membr. Sci. 2016, 520, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Saito, T.; Hickner, M.A. Zeta potential of ion-conductive membranes by streaming current measurements. Langmuir 2011, 27, 4721–4727. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, T. An experimental investigation of streaming potentials through homogeneous ion-exchange membranes. Desalination 2006, 190, 256–266. [Google Scholar] [CrossRef]
- Li, D. Microfluidic methods for measuring zeta potential. Interface Sci. Technol. 2004, 2, 617–640. [Google Scholar] [CrossRef]
- Lee, H.-J.; Choi, J.-H.; Cho, J.; Moon, S.-H. Characterization of anion exchange membranes fouled with humate during electrodialysis. J. Membr. Sci. 2002, 203, 115–126. [Google Scholar] [CrossRef]
- Sabbatovskii, K.G.; Vilenskii, A.I.; Sobolev, V.D. Electrosurface properties of poly(ethylene terephthalate) films irradiated by heavy ions and track membranes based on these films. Colloid J. 2016, 78, 573–575. [Google Scholar] [CrossRef]
- Sedkaoui, Y.; Szymczyk, A.; Lounici, H.; Arous, O. A new lateral method for characterizing the electrical conductivity of ion-exchange membranes. J. Membr. Sci. 2016, 507, 34–42. [Google Scholar] [CrossRef]
- Nebavskaya, K.A.; Sarapulova, V.V.; Sabbatovskiy, K.G.; Sobolev, V.D.; Pismenskaya, N.D.; Sistat, P.; Cretin, M.; Nikonenko, V.V. Impact of ion exchange membrane surface charge and hydrophobicity on electroconvection at underlimiting and overlimiting currents. J. Membr. Sci. 2017, 523, 36–44. [Google Scholar] [CrossRef]
- Franck-Lacaze, L.; Sistat, P.; Huguet, P. Determination of the pKa of poly (4-vinylpyridine)-based weak anion exchange membranes for the investigation of the side proton leakage. J. Membr. Sci. 2009, 326, 650–658. [Google Scholar] [CrossRef]
- Ramírez, P.; Alcaraz, A.; Mafé, S.; Pellicer, J. Donnan equilibrium of ionic drugs in pH-dependent fixed charge membranes: Theoretical modeling. J. Colloid Interface Sci. 2002, 253, 171–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarapulova, V.; Nevakshenova, E.; Pismenskaya, N.; Dammak, L.; Nikonenko, V. Unusual concentration dependence of ion-exchange membrane conductivity in ampholyte-containing solutions: Effect of ampholyte nature. J. Membr. Sci. 2015, 479, 28–38. [Google Scholar] [CrossRef]
- Belashova, E.D.; Pismenskaya, N.D.; Nikonenko, V.V.; Sistat, P.; Pourcelly, G. Current-voltage characteristic of anion-exchange membrane in monosodium phosphate solution. Modelling and experiment. J. Membr. Sci. 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Pismenskaya, N.; Sarapulova, V.; Nevakshenova, E.; Kononenko, N.; Fomenko, M.; Nikonenko, V. Concentration dependences of diffusion permeability of anion-exchange membranes in sodium hydrogen carbonate, monosodium phosphate and potassium hydrogen tartrate solutions. Membranes 2019, 9, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Wang, J.; Huang, W.; Tan, X.; Dong, H.; Goodman, B.A.; Du, H.; Lei, F.; Diao, K. Adsorption of phenolic compounds from water by a novel ethylenediamine rosin-based resin: Interaction models and adsorption mechanisms. Chemosphere 2019, 214, 821–829. [Google Scholar] [CrossRef]
- Kammerer, J.; Boschet, J.; Kammerer, D.R.; Carle, R. Enrichment and fractionation of major apple flavonoids, phenolic acids and dihydrochalcones using anion exchange resins. LWT—Food Sci. Technol. 2011, 44, 1079–1087. [Google Scholar] [CrossRef]
- Hashim, H.; Wan Ahmad, W.Y.; Zubairi, S.I.; Maskat, M.Y. Effect of pH on adsorption of organic acids and phenolic compounds by amberlite ira 67 resin. J. Teknol. 2018, 81, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Lasanta, C.; Caro, I.; Pérez, L. The influence of cation exchange treatment on the final characteristics of red wines. Food Chem. 2013, 138, 1072–1078. [Google Scholar] [CrossRef]
- Caetano, M.; Valderrama, C.; Farran, A.; Cortina, J.L. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins. J. Colloid Interf. Sci. 2009, 338, 402–409. [Google Scholar] [CrossRef]
- Ibeas, V.; Correia, A.C.; Jordão, A.M. Wine tartrate stabilization by different levels of cation exchange resin treatments: Impact on chemical composition, phenolic profile and organoleptic properties of red wines. Food Res. Int. 2015, 69, 364–372. [Google Scholar] [CrossRef]
- Geise, G.M.; Freeman, B.D.; Paul, D.R. Comparison of the Permeation of MgCl2 versus NaCl in Highly Charged Sulfonated Polymer Membranes; American Chemical Society: Washington, DC, USA, 2011; pp. 239–245. ISBN 9780841226180. [Google Scholar]
- Geise, G.M.; Paul, D.R.; Freeman, B.D. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 2014, 39, 1–42. [Google Scholar] [CrossRef]
- Cassady, H.J.; Cimino, E.C.; Kumar, M.; Hickner, M.A. Specific ion effects on the permselectivity of sulfonated poly(ether sulfone) cation exchange membranes. J. Membr. Sci. 2016, 508, 146. [Google Scholar] [CrossRef]
- Kammerer, J.; Schweizer, C.; Carle, R.; Kammerer, D.R. Recovery and fractionation of major apple and grape polyphenols from model solutions and crude plant extracts using ion exchange and adsorbent resins: Recovery and fractionation of polyphenols. Int. J. Food Sci. Technol. 2011, 46, 1755–1767. [Google Scholar] [CrossRef]
- Shuang, C.; Wang, J.; Li, H.; Li, A.; Zhou, Q. Effect of the chemical structure of anion exchange resin on the adsorption of humic acid: Behavior and mechanism. J. Colloid Interface Sci. 2015, 437, 163–169. [Google Scholar] [CrossRef]
- Ebadi, A.; Soltan, J.S.; Khudiev, M.A. What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 2009, 15, 65–73. [Google Scholar] [CrossRef]
- Kammerer, D.R.; Kammerer, J.; Carle, R. Resin adsorption and ion exchange to recover and fractionate polyphenols. In Polyphenols in Plants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 219–230. [Google Scholar] [CrossRef]
- Persico, M.; Dhulster, P.; Bazinet, L. Redundancy analysis for determination of the main physicochemical characteristics of filtration membranes explaining their fouling by peptides. J. Membr. Sci. 2018, 563, 708–717. [Google Scholar] [CrossRef]
- Smith, B.C. Infrared Spectral Interpretation: A Systematic Approach; CRC Press: Boca Raton, FL, USA, 1998; p. 304. ISBN 9780849324635. [Google Scholar]
- Su, Z.; Cocinero, E.J.; Stanca-Kaposta, E.C.; Davis, B.G.; Simons, J.P. Carbohydrate-aromatic interactions: A computational and IR spectroscopic investigation of the complex, methyl α-l-fucopyranoside-toluene, isolated in the gas phase. Chem. Phys. Lett. 2009, 471, 17–21. [Google Scholar] [CrossRef]
- Jialin, L.; Yazhen, W.; Changying, Y.; Guangdou, L.; Hong, S. Membrane catalytic deprotonation effects. J. Membr. Sci. 1998, 147, 247–256. [Google Scholar] [CrossRef]
- Das, S.; Kumar, P.; Dutta, K.; Kundu, P.P. Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell. Appl. Energy 2014, 113, 169–177. [Google Scholar] [CrossRef]
- Audinos, R. Fouling of ion-selective membranes during electrodialysis of grape must. J. Membr. Sci. 1989, 41, 115–126. [Google Scholar] [CrossRef]
- Araya-Farias, M.; Bazinet, L. Effect of calcium and carbonate concentrations on anionic membrane fouling during electrodialysis. J. Colloid Interface Sci. 2006, 296, 242–247. [Google Scholar] [CrossRef]
- Bazinet, L.; Araya-Farias, M. Effect of calcium and carbonate concentrations on cationic membrane fouling during electrodialysis. J. Colloid Interface Sci. 2005, 281, 188–196. [Google Scholar] [CrossRef]
- Andersen, O.M.; Markham, K.R. Flavonoids: Chemistry, Biochemistry and Applications; CRC Press: Boca Raton, FL, USA, 2005; p. 1256. ISBN 9780849320217. [Google Scholar]
- Luo, T.; Abdu, S.; Wessling, M. Selectivity of ion exchange membranes: A review. J. Membr. Sci. 2018, 555, 429–454. [Google Scholar] [CrossRef]
- Barragán, V.M.; Villaluenga, J.P.G.; Godino, M.P.; Izquierdo-Gil, M.A.; Ruiz-Bauzá, C.; Seoane, B. Swelling and electro-osmotic properties of cation-exchange membranes with different structures in methanol–water media. J. Power Sources 2008, 185, 822–827. [Google Scholar] [CrossRef]
- Vasil’eva, V.I.; Goleva, E.A.; Selemenev, V.F. Features of the sorption of phenylalanine by profiled ion-exchange membranes. Russ. J. Phys. Chem. A 2016, 90, 2035–2043. [Google Scholar] [CrossRef]
- Vasil’eva, V.; Goleva, E.; Pismenskaya, N.; Kozmai, A.; Nikonenko, V. Effect of surface profiling of a cation-exchange membrane on the phenylalanine and NaCl separation performances in diffusion dialysis. Sep. Purif. Technol. 2019, 210, 48–59. [Google Scholar] [CrossRef]
- Garcia-Vasquez, W.; Dammak, L.; Larchet, C.; Nikonenko, V.; Grande, D. Effects of acid–base cleaning procedure on structure and properties of anion-exchange membranes used in electrodialysis. J. Membr. Sci. 2016, 507, 12–23. [Google Scholar] [CrossRef]
- Chaabane, L.; Bulvestre, G.; Larchet, C.; Nikonenko, V.; Deslouis, C.; Takenouti, H. The influence of absorbed methanol on the swelling and conductivity properties of cation-exchange membranes: Evaluation of nanostructure parameters. J. Membr. Sci. 2008, 323, 167–175. [Google Scholar] [CrossRef]
Phenolic Compaunds | CMX-Sb | AMX-Sb |
---|---|---|
Quercetin | 68.1 ± 9.6 | 40.4 ± 9.1 |
Quercetin-3-glucoside | 10.9 ± 2.0 | 2.4 ± 0.9 |
Quercetin-3-galactoside | 1.9 ± 1.1 | 3.3 ± 0.3 |
Quercetin-3-rhamnoside | ----- | 7.2 ±0.8 |
Kaempferol | 2.0 ± 1.8 | 10.0 ± 0.8 |
Kaempferol-3-glucoside | 2.6 ± 0.6 | ----- |
Myricetin-3-glucoside | 2.3 ± 1.4 | ----- |
Isorhamnetin | 176.8 ± 8.6 | 37.8 ± 8.9 |
4-hydroxylbenzoic acid | 8.5 ± 3.3 | 44.3 ± 21.1 |
Protocatechic acid | 28.0 ± 4.4 | 26.8 ± 2.8 |
Vanillic acid | 9.1 ± 3.9 | 18.8 ± 5.5 |
Piceid | 3.7 ± 2.9 | 1.4 ± 0.6 |
Resveratrol | 5.5 ± 0.8 | 22.4 ± 4.7 |
σ or Spectral Region (cm−1) | Characteristic Bands in Pristine IEMs | Indications of CH-π and π–π Interactions or Hydrogen Bonds in IEMs after ED Industrial Tartrate Stabilization of Wine | |
---|---|---|---|
AMX-Sb | 1200–1250 region Intense peak at 1240 | N-C Stretching vibrations bands of functional sites [31,157,188] | Enlargement and intensification of bands by accumulation of phenolic acids [31] Appearance of –COOH band at 1168 cm−1 and C=O band at 1710 cm−1 [69] |
Doubled band at 1610 and 1625 | N-H of functional sites [69,157] | ||
1450, 1475, 1480, and 1510 | Aromatic C=C stretching bands in aromatic ring of polystyrene (PS) [31] | Enlargement and intensification by accumulation of aromatic rings of phenolic compounds [41] Appearance of bands of the aromatic ring breathing modes and bands resulting from stretching and contracting of the C=C bonds in the range 1450–1615 cm−1 [157,189] | |
Attached peaks at 2852, 2915 and 2967 | Stretching vibrations bands of aliphatic –CH and –CH2– bonds in functionalized PS [16,18] | Enlargement and intensification of bands by accumulation of phenolic compounds in polymer matrix Blue-shift of bands to higher σ by 10 to 20 cm−1 under CH-π interactions [187] | |
3010 | Stretching vibrations of aromatic –CH– [190] | ||
3400 | Stretching vibrations band of –OH bonds [16] | Enlargement of the band by the appearance of a hydrogen-bonded region 3050–3350 cm−1 added to the non-hydrogen bonded band [16] Red-shift of the band to lower σ by 30 cm−1 under hydrogen bonds between linked water in polymer matrix and O of phenolic compounds [32,191] | |
CMX-Sb | 1041 | Stretching vibrations bands of S-O in –SO3− sites [185] | Inhibition of –SO3− functional sites by accumulation of colloidal particles of polyphenols or physical detachment of the sites from the polymer matrix by disruption of the sulfur-carbon bonds [32] |
1166 | Stretching vibrations bands of SO3-H [192] | ||
1186 | Stretching vibrations bands of SO3-Na groups [159] | ||
1485 and attached peaks at 1590 and 1650 | Stretching bands of aromatic C=C bonds in aromatics rings of PS [16] | Intensification of bands by accumulation of phenolic compounds rich in aromatic rings and Peaks located at 1485 and 1590 cm−1 in new CMX are blue-shifted to higher wavenumbers by ~20 cm−1 under π-π and CH-π interactions [32,187] | |
3400 | Stretching vibrations band of –OH bonds [16,17] | Enlargement of the band by the appearance of a hydrogen-bonded region 3100–3300 cm−1 added to the non-hydrogen bonded band Red-shift of the band to lower σ by ~50 cm−1 under hydrogen bonds between linked water in polymer matrix and O of phenolic compounds [32] |
Technique | Application | Device Complexity | Interpretation Complexity | Use Frequency |
---|---|---|---|---|
I: Identification V: Visualisation Q: Quantification | H: High M: Middle L: Low | |||
2D fluorescence/Fourier transform infrared correlation spectroscopy | V, I | H | H | L |
31P nuclear magnetic resonance spectroscopy | I | H | M | L |
Atomic force microscopy (AFM) | H | L | M | |
Classical optical microscopy | V | L | M | H |
Combined with energy dispersive X-ray spectrometry (EDS) | I | H | H | L |
Confocal laser scanning microscopy (CLSM) | V | H | M | L |
Contact angle | Q | M | L | H |
Fluorescence excitation-emission matrix (EEM) | Q, I | H | H | L |
Fluorescence spectroscopy | I | H | M | L |
Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) | I | H | H | L |
High-liquid performance chromatography (HPLC) | Q | M | L | M |
High-resolution optical microscopy | V | M | M | M |
Inductively coupled plasma optical emission spectrometry | I | M | H | L |
Mass spectrometry (MS) coupled | I | H | M | L |
Molybdate colorimetry inductively coupled plasma optical emission | I | M | M | L |
Optical coherence tomography (OCT) | I | H | M | L |
Optical microscopy combined with a color scale for pH indication | V | L | L | L |
Raman spectroscopy | I | H | M | M |
Reflectance–Fourier-transform infrared (ATR–FTIR) | I | M | M | H |
Rutherford backscattering spectroscopy (RBS) | I | H | H | L |
Scanning electrochemical microscopy (SECM) | V | M | L | M |
Scanning electron microscopy (SEM) | V | H | L | H |
Scanning ion conductance microscopy (SICM) | V | H | L | L |
Size-exclusion (SEC) | I | M | L | M |
Smear-prints | V | M | M | L |
Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) | I | M | M | L |
Standard contact porosimetry method | Q | L | M | L |
Surface plasmon resonance (SPR) | I | H | H | L |
Surface-enhanced Raman spectroscopy (SERS) | V, I | H | H | L |
Synchrotron Fourier transform infrared mapping | V, I | H | H | L |
Tip-enhanced Raman spectroscopy (TERS) | V, I | H | H | L |
Total nitrogen content analysis Dumas method | Q | M | M | L |
Total nitrogen content analysis LECO nitrogen quantification | Q | M | M | L |
Ultra-high-liquid performance chromatography (UPLC) | Q | M | L | L |
X-ray absorption fine structure (EXAFS) | I | H | M | L |
X-ray diffraction (XRD) | I | H | L | L |
X-ray photoelectron spectroscopy (XPS) | V, I | H | M | M |
Zeta (the electrokinetic) potential | Q | H | M | L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dammak, L.; Fouilloux, J.; Bdiri, M.; Larchet, C.; Renard, E.; Baklouti, L.; Sarapulova, V.; Kozmai, A.; Pismenskaya, N. A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions. Membranes 2021, 11, 789. https://doi.org/10.3390/membranes11100789
Dammak L, Fouilloux J, Bdiri M, Larchet C, Renard E, Baklouti L, Sarapulova V, Kozmai A, Pismenskaya N. A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions. Membranes. 2021; 11(10):789. https://doi.org/10.3390/membranes11100789
Chicago/Turabian StyleDammak, Lasâad, Julie Fouilloux, Myriam Bdiri, Christian Larchet, Estelle Renard, Lassaad Baklouti, Veronika Sarapulova, Anton Kozmai, and Natalia Pismenskaya. 2021. "A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions" Membranes 11, no. 10: 789. https://doi.org/10.3390/membranes11100789
APA StyleDammak, L., Fouilloux, J., Bdiri, M., Larchet, C., Renard, E., Baklouti, L., Sarapulova, V., Kozmai, A., & Pismenskaya, N. (2021). A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions. Membranes, 11(10), 789. https://doi.org/10.3390/membranes11100789