Cardiac Alternans Occurs through the Synergy of Voltage- and Calcium-Dependent Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Model
2.1.1. Calcium Release Site (CRU)
2.1.2. Ryanodine Receptor Type-2 Model
2.1.3. L-Type Ca2+ Channel Model
2.1.4. Na+ Channel Model
2.1.5. K+ Channel Models
2.1.6. Sarcoplasmic Reticulum Ion Pumps
2.1.7. Calcium Buffers
2.1.8. Membrane Potential
2.2. Numerical Methods
3. Results
3.1. Dynamics of Calcium during a Twitch-Relaxation Cycle
3.2. Mechanisms of Alternans
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Spark Termination
Appendix A.2. Dynamics of Calcium Sparks and Calcium Leak
Appendix B. Model Equations and Parameters
Appendix B.1. Calcium Release Site (CRU)
Appendix B.2. Ryanodine Receptor Type-2 Model
Appendix B.3. L-Type Ca2+ Channel Model
Appendix B.4. Na+ Channel Model
Appendix B.5. K+ Channel Models
Appendix B.6. Sarcolemmal Pumps/Exchangers
Appendix B.7. Background Currents
Appendix B.8. Sarcoplasmic Reticulum Ion Pumps
Appendix B.9. Sarcoplasmic Reticulum Ion Pumps
Appendix B.10. Membrane Potential
Appendix B.11. Parameters
) |
Variables | Value | Unit |
---|---|---|
mNa | 0.0015d0 | Unitless |
hNa | 0.9849d0 | Unitless |
jNa | 0.9849d0 | Unitless |
aKss | 0.0021d0 | Unitless |
inKss | 1.d0 | Unitless |
aKtof | 0.0021d0 | Unitless |
inKtof | 1.d0 | Unitless |
aKtos | 2.9871d-04 | Unitless |
inKtos | 0.9994d0 | Unitless |
[Ca2+]myo | 0.08769 | µM |
[Ca2+]nsr | 1.00737d3 | µM |
[Na+]i | 1.02d4 | µM |
[K+]i | 1.4372d5 | µM |
Variables | Value | Unit |
---|---|---|
Faraday constant (F) | 9.6485d4 | C/mol |
Universal gas constant (R) | 8.314d3 | mJ/(mol.K) |
Temperature (T) | 310 | K |
[Na]o | 1.4d5 | µM |
[Ca]o | 1.8d3 | µM |
[K]o | 5.4d3 | µM |
Cell volume (Vcell) | 25.0 | pL |
Myoplasmic volume (Vmyo) | 12.5 | pL |
Network SR volume () | 0.762d0 | pL |
Junctional SR volume () | 1.25d-1 | pL |
Subspace volume () | 1.55d-2 | pL |
Concentration [SERCA] Kd,myo Kd,sr | 300 900 2150 | µM µM µM |
RyR release rate () | 56.4279 | 1/s |
Percent nj-RyR | 0.5 | Unitless |
Transfer rate from subspace to bulk myoplasm () | 300 | 1/s |
Refill rate from nSR to jSR () | 2.4 | 1/s |
NCX maximum current density () Kd,ncxNa Kd,ncxCa | 520 8750 1380 | µA/µF |
PMCA maximum current density () Kd,pmca | 0.12 0.5 | µA/µF |
Na/K maximum current density () | 0.88 | µA/µF |
Variables | Value | Unit |
---|---|---|
General buffer in myoplasm Kd | 1.23d2 0.96 | µM µM |
General buffer in jSR (e.g., Calsequestrin) Kd | 1.4d4 6.38d2 | µM µM |
High-affinity Troponin C | 1.40d2 2.37 3.2d-2 | µM 1/(µM.s) 1/s |
Calmodulin | 2.4d1 3.0d1 7.14d1 | µM 1/(µM.s) 1/s |
SL buffer | 250 115 1000 | µM 1/(µM.s) 1/s |
SR buffer | 47 115 100 | µM 1/(µM.s) 1/s |
References
- Traube, L. Ein Fall von Pulsus Bigeminus nebst Bemerkungen uber die Leberschwellungen bei Klappenfehlern and uber acute Leberatrophie. Berl. Klin Wochenschr. 1872, 9, 185–188. [Google Scholar]
- Smith, J.M.; Clancy, E.A.; Valeri, C.R.; Ruskin, J.N.; Cohen, R.J. Electrical alternans and cardiac electrical instability. Circulation 1988, 77, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Lewis, T. Notes upon alternation of the heart. Q. J. Med. 1911, 4, 141–144. [Google Scholar]
- Surawicz, B.; Fisch, C. Cardiac alternans: Diverse mechanisms and clinical manifestations. J. Am. Coll. Cardiol. 1992, 20, 483–499. [Google Scholar] [CrossRef] [Green Version]
- Edwards, P.; Cohen, G.I. Both diastolic and systolic function alternate in pulsus alternans: A case report and review. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2003, 16, 695–697. [Google Scholar] [CrossRef]
- Diaz, M.E.; Eisner, D.A.; O’Neill, S.C. Depressed ryanodine receptor activity increases variability and duration of the systolic Ca2+ transient in rat ventricular myocytes. Circ. Res. 2002, 91, 585–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orchard, C.H.; McCall, E.; Kirby, M.S.; Boyett, M.R. Mechanical alternans during acidosis in ferret heart muscle. Circ. Res. 1991, 68, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, J.N.; Karma, A.; Shiferaw, Y.; Chen, P.-S.; Garfinkel, A.; Qu, Z. From pulsus to pulseless: The saga of cardiac alternans. Circ. Res. 2006, 98, 1244–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, J.J.; McHarg, J.L.; Gilmour, R.F., Jr. Ionic mechanism of electrical alternans. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H516–H530. [Google Scholar] [CrossRef]
- Koller, M.L.; Riccio, M.L.; Gilmour, R.F., Jr. Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am. J. Physiol. 1998, 275, H1635–H1642. [Google Scholar] [CrossRef]
- Nolasco, J.B.; Dahlen, R.W. A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 1968, 25, 191–196. [Google Scholar] [CrossRef]
- Riccio, M.L.; Koller, M.L.; Gilmour, R.F., Jr. Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circ. Res. 1999, 84, 955–963. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.A.; Fenton, F.H.; Evans, S.J.; Hastings, H.M.; Karma, A. Mechanisms for discordant alternans. J. Cardiovasc. Electrophysiol. 2001, 12, 196–206. [Google Scholar] [CrossRef]
- Lab, M.J.; Lee, J.A. Changes in intracellular calcium during mechanical alternans in isolated ferret ventricular muscle. Circ. Res. 1990, 66, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Kihara, Y.; Morgan, J.P. Abnormal Cai2+ handling is the primary cause of mechanical alternans: Study in ferret ventricular muscles. Am. J. Physiol. 1991, 261, H1746–H1755. [Google Scholar] [CrossRef]
- Diaz, M.E.; O’Neill, S.C.; Eisner, D.A. Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans. Circ. Res. 2004, 94, 650–656. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.H.; Sato, D.; Garfinkel, A.; Qu, Z.; Weiss, J.N. Intracellular Ca alternans: Coordinated regulation by sarcoplasmic reticulum release, uptake, and leak. Biophys. J. 2008, 95, 3100–3110. [Google Scholar] [CrossRef] [Green Version]
- Chudin, E.; Goldhaber, J.; Garfinkel, A.; Weiss, J.; Kogan, B. Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia. Biophys. J. 1999, 77, 2930–2941. [Google Scholar] [CrossRef] [Green Version]
- Sato, D.; Bers, D.M.; Shiferaw, Y. Formation of spatially discordant alternans due to fluctuations and diffusion of calcium. PLoS ONE 2013, 8, e85365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruvot, E.J.; Katra, R.P.; Rosenbaum, D.S.; Laurita, K.R. Role of calcium cycling versus restitution in the mechanism of repolarization alternans. Circ. Res. 2004, 94, 1083–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Laurita, K.R.; Pruvot, E.J.; Rosenbaum, D.S. Molecular correlates of repolarization alternans in cardiac myocytes. J. Mol. Cell. Cardiol. 2005, 39, 419–428. [Google Scholar] [CrossRef]
- Gaeta, S.A.; Christini, D.J. Non-linear dynamics of cardiac alternans: Subcellular to tissue-level mechanisms of arrhythmia. Front. Physiol. 2012, 3, 157. [Google Scholar] [CrossRef] [Green Version]
- Tao, T.; O’Neill, S.C.; Diaz, M.E.; Li, Y.T.; Eisner, D.A.; Zhang, H. Alternans of cardiac calcium cycling in a cluster of ryanodine receptors: A simulation study. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H598–H609. [Google Scholar] [CrossRef] [Green Version]
- Groenendaal, W.; Ortega, F.A.; Krogh-Madsen, T.; Christini, D.J. Voltage and calcium dynamics both underlie cellular alternans in cardiac myocytes. Biophys. J. 2014, 106, 2222–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, P.N.; Christini, D.J. Characterizing the contribution of voltage- and calcium-dependent coupling to action potential stability: Implications for repolarization alternans. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H2109–H2118. [Google Scholar] [CrossRef] [PubMed]
- Chikando, A.C. A Computational Study of Excitation-Contraction Coupling: Mechanisms of Sarcoplasmic Reticulum Calcium Leak and the Role of Mitochondria in Myoplasmic Calcium Regulation; George Mason University: Fairfax, VA, USA, 2008; p. 187. [Google Scholar]
- Williams, G.S.B.; Chikando, A.C.; Tuan, H.-T.M.; Sobie, E.A.; Lederer, W.J.; Jafri, M.S. Dynamics of Calcium Sparks and Calcium Leak in the Heart. Biophys. J. 2011, 101, 1287–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, E.; Lauterbach, M.A.; Kohl, T.; Westphal, V.; Williams, G.S.B.; Steinbrecher, J.H.; Streich, J.-H.; Korff, B.; Tuan, H.-T.M.; Hagen, B.; et al. Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ. Res. 2012, 111, 402–414. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Fan, J.S.; Clark, J.W.; Palade, P.T. A model of the L-type Ca2+ channel in rat ventricular myocytes: Ion selectivity and inactivation mechanisms. J. Physiol. 2000, 529 Pt 1, 139–158. [Google Scholar] [CrossRef]
- Wagner, J.; Keizer, J. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 1994, 67, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Jurado, L.A.; Chockalingam, P.S.; Jarrett, H.W. Apocalmodulin. Physiol. Rev. 2009, 79, 661–682. [Google Scholar] [CrossRef]
- Halling, D.B.; Aracena-Parks, P.; Hamilton, S.L. Regulation of voltage-gated Ca2+ channels by calmodulin. Sci. STKE Signal. Transduct. Knowl. Environ. 2005, 2005, re15. [Google Scholar] [CrossRef]
- Van Petegem, F.; Chatelain, F.C.; Minor, D.L., Jr. Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain-Ca2+/calmodulin complex. Nat. Struct. Mol. Biol 2005, 12, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Pitt, G.S.; Zühlke, R.D.; Hudmon, A.; Schulman, H.; Reuter, H.; Tsien, R.W. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J. Biol. Chem. 2001, 276, 30794–30802. [Google Scholar] [CrossRef] [Green Version]
- Tadross, M.R.; Dick, I.E.; Yue, D.T. Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 2008, 133, 1228–1240. [Google Scholar] [CrossRef] [Green Version]
- Qin, N.; Olcese, R.; Bransby, M.; Lin, T.; Birnbaumer, L. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc. Natl. Acad. Sci. USA 1999, 96, 2435–2438. [Google Scholar] [CrossRef] [Green Version]
- Brette, F.; Leroy, J.; Le Guennec, J.Y.; Salle, L. Ca2+ currents in cardiac myocytes: Old story, new insights. Prog. Biophys. Mol. Biol. 2006, 91, 1–82. [Google Scholar] [CrossRef] [Green Version]
- Scriven, D.R.; Dan, P.; Moore, E.D. Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys. J. 2000, 79, 2682–2691. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.M.; Lee, K.S.; Powellt, T. Sodium current in single rat heart muscle cells. J. Physiol. 1981, 318, 479–500. [Google Scholar] [CrossRef] [Green Version]
- Pandit, S.V.; Clark, R.B.; Giles, W.R.; Demir, S.S. A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 2001, 81, 3029–3051. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.H.; Rudy, Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 1994, 74, 1071–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, C.-H.; Rudy, Y. A Model of the Ventricular Cardiac Action Potential. Depolarization, repolarization, and their interaction. Circ. Res. 1991, 68, 1501–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gettes, L.S.; Reuter, H. Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J. Physiol. 1974, 240, 703–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulbricht, W. Sodium channel inactivation: Molecular determinants and modulation. Physiol. Rev. 2005, 85, 1271–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brette, F.; Orchard, C.H. No apparent requirement for neuronal sodium channels in excitation-contraction coupling in rat ventricular myocytes. Circ. Res. 2006, 98, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Colatsky, T.J. Voltage clamp measurements of sodium channel properties in rabbit cardiac Purkinje fibres. J. Physiol. 1980, 305, 215–234. [Google Scholar] [CrossRef] [Green Version]
- Benndorf, K.; Boldt, W.; Nilius, B. Sodium current in single myocardial mouse cells. Pflug. Arch. Eur. J. Physiol. 1985, 404, 190–196. [Google Scholar] [CrossRef]
- Drouhard, J.P.; Roberge, F.A. Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. Comput. Biomed. Res. Int. J. 1987, 20, 333–350. [Google Scholar] [CrossRef]
- Bondarenko, V.E.; Szigeti, G.P.; Bett, G.C.L.; Kim, S.-J.; Rasmusson, R.L. Computer model of action potential of mouse ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H1378–H1403. [Google Scholar] [CrossRef]
- Tada, M.; Yamada, M.; Kadoma, M.; Inui, M.; Ohmori, F. Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phospholamban. Mol. Cell. Biochem. 1982, 46, 73–95. [Google Scholar] [CrossRef]
- Tran, K.; Smith, N.P.; Loiselle, D.S.; Crampin, E.J. A Thermodynamic Model of the Cardiac Sarcoplasmic/Endoplasmic Ca2+ (SERCA) Pump. Biophys. J. 2009, 96, 2029–2042. [Google Scholar] [CrossRef] [Green Version]
- Jafri, M.S.; Hoang-Trong, M.T.; Williams, G.S.B. Method and System for Utilizing Markov Chain Monte Carlo Simulations. U.S. Patent US9009095B1, 14 April 2015. [Google Scholar]
- Rice, J.J.; Jafri, M.S.; Winslow, R.L. Modeling gain and gradedness of Ca2+ release in the functional unit of the cardiac diadic space. Biophys. J. 1999, 77, 1871–1884. [Google Scholar] [CrossRef] [Green Version]
- Groff, J.R.; Smith, G.D. Ryanodine receptor allosteric coupling and the dynamics of calcium sparks. Biophys. J. 2008, 95, 135–154. [Google Scholar] [CrossRef] [Green Version]
- Afshar, Y.; Schmid, F.; Pishevar, A.; Worley, S. Exploiting seeding of random number generators for efficient domain decomposition parallelization of dissipative particle dynamics. Comput. Phys. Commun. 2013, 184, 1119–1128. [Google Scholar] [CrossRef]
- Smith, G.D. Modeling the stochastic gating of ion channels. In Computational Cell Biology; Springer: New York, NY USA, 2002; pp. 285–319. [Google Scholar]
- Groff, J.R.; DeRemigio, H.; Smith, G.D. Markov chain models of ion channels and Ca2+ release sites. In Stochastic Methods in Neuroscience; Laing, C., Lord, G.J., Eds.; Oxford University Press: New York, NY, USA, 2009; pp. 29–64. [Google Scholar]
- Sobie, E.A.; Dilly, K.W.; dos Santos Cruz, J.; Lederer, W.J.; Jafri, M.S. Termination of Cardiac Ca2+ Sparks: An Investigative Mathematical Model of Calcium-Induced Calcium Release. Biophys. J. 2002, 83, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Bers, D.M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Bers, D.M. Calcium Fluxes Involved in Control of Cardiac Myocyte Contraction. Circ. Res. 2000, 87, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Delbridge, L.M.; Satoh, H.; Yuan, W.; Bassani, J.W.; Qi, M.; Ginsburg, K.S.; Samarel, A.M.; Bers, D.M. Cardiac myocyte volume, Ca2+ fluxes, and sarcoplasmic reticulum loading in pressure-overload hypertrophy. Am. J. Physiol. 1997, 272, H2425–H2435. [Google Scholar] [CrossRef]
- Restrepo, J.G.; Weiss, J.N.; Karma, A. Calsequestrin-mediated mechanism for cellular calcium transient alternans. Biophys. J. 2008, 95, 3767–3789. [Google Scholar] [CrossRef] [Green Version]
- Altamirano, J.; Bers, D.M. Voltage dependence of cardiac excitation-contraction coupling: Unitary Ca2+ current amplitude and open channel probability. Circ. Res. 2007, 101, 590–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altamirano, J.; Bers, D.M. Effect of intracellular Ca2+ and action potential duration on L-type Ca2+ channel inactivation and recovery from inactivation in rabbit cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H563–H573. [Google Scholar] [CrossRef]
- Pastore, J.M.; Girouard, S.D.; Laurita, K.R.; Akar, F.G.; Rosenbaum, D.S. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 1999, 99, 1385–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubenstein, D.S.; Lipsius, S.L. Premature beats elicit a phase reversal of mechanoelectrical alternans in cat ventricular myocytes. A possible mechanism for reentrant arrhythmias. Circulation 1995, 91, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Aistrup, G.L.; Kelly, J.E.; Kapur, S.; Kowalczyk, M.; Sysman-Wolpin, I.; Kadish, A.H.; Wasserstrom, J.A. Pacing-induced heterogeneities in intracellular Ca2+ signaling, cardiac alternans, and ventricular arrhythmias in intact rat heart. Circ. Res. 2006, 99, e65–e73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nivala, M.; Qu, Z. Calcium alternans in a couplon network model of ventricular myocytes: Role of sarcoplasmic reticulum load. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H341–H352. [Google Scholar] [CrossRef] [Green Version]
- Szlovák, J.; Tomek, J.; Zhou, X.; Tóth, N.; Veress, R.; Horváth, B.; Szentandrássy, N.; Levijoki, J.; Papp, J.G.; Herring, N.; et al. Blockade of sodium-calcium exchanger via ORM-10962 attenuates cardiac alternans. J. Mol. Cell. Cardiol. 2021, 153, 111–122. [Google Scholar] [CrossRef]
- Fukaya, H.; Plummer, B.N.; Piktel, J.S.; Wan, X.; Rosenbaum, D.S.; Laurita, K.R.; Wilson, L.D. Arrhythmogenic cardiac alternans in heart failure is suppressed by late sodium current blockade by ranolazine. Heart Rhythm. Off. J. Heart Rhythm. Soc. 2019, 16, 281–289. [Google Scholar] [CrossRef]
- Rayner-Hartley, E.; Sedlak, T. Ranolazine: A Contemporary Review. J. Am. Heart Assoc. 2016, 5, e003196. [Google Scholar] [CrossRef] [Green Version]
- Kshatri, A.S.; Gonzalez-Hernandez, A.; Giraldez, T. Physiological Roles and Therapeutic Potential of Ca2+ Activated Potassium Channels in the Nervous System. Front. Mol. Neurosci. 2018, 11, 258. [Google Scholar] [CrossRef]
- Bronk, P.; Kim, T.Y.; Polina, I.; Hamilton, S.; Terentyeva, R.; Roder, K.; Koren, G.; Terentyev, D.; Choi, B.R. Impact of I(SK) Voltage and Ca(2+)/Mg(2+)-Dependent Rectification on Cardiac Repolarization. Biophys. J. 2020, 119, 690–704. [Google Scholar] [CrossRef]
- Ledford, H.A.; Park, S.; Muir, D.; Woltz, R.L.; Ren, L.; Nguyen, P.T.; Sirish, P.; Wang, W.; Sihn, C.-R.; George, A.L., Jr.; et al. Different arrhythmia-associated calmodulin mutations have distinct effects on cardiac SK channel regulation. J. Gen. Physiol. 2020, 152, e202012667. [Google Scholar] [CrossRef]
- Gui, L.; Bao, Z.; Jia, Y.; Qin, X.; Cheng, Z.; Zhu, J.; Chen, Q.-H. Ventricular tachyarrhythmias in rats with acute myocardial infarction involves activation of small-conductance Ca2+-activated K+ channels. Am. J. Physiol.-Heart Circ. Physiol. 2013, 304, H118–H130. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, M.; Bers, D.M.; Chiamvimonvat, N.; Sato, D. Dynamical effects of calcium-sensitive potassium currents on voltage and calcium alternans. J. Physiol. 2017, 595, 2285–2297. [Google Scholar] [CrossRef]
- Kanaporis, G.; Blatter, L.A. Ca2+-activated chloride channel activity during Ca2+ alternans in ventricular myocytes. Channels 2016, 10, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Saucerman, J.J.; Bers, D.M. Calmodulin binding proteins provide domains of local Ca2+ signaling in cardiac myocytes. J. Mol. Cell. Cardiol. 2012, 52, 312–316. [Google Scholar] [CrossRef] [Green Version]
- Lai, M.; Brun, D.; Edelstein, S.J.; Le Novère, N. Modulation of Calmodulin Lobes by Different Targets: An Allosteric Model with Hemiconcerted Conformational Transitions. PLoS Comput. Biol. 2015, 11, e1004063. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Vogel, H. Structural basis for the regulation of L-type voltage-gated calcium channels: Interactions between the N-terminal cytoplasmic domain and Ca2+-calmodulin. Front. Mol. Neurosci. 2012, 5, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limpitikul, W.B.; Greenstein, J.L.; Yue, D.T.; Dick, I.E.; Winslow, R.L. A bilobal model of Ca2+-dependent inactivation to probe the physiology of L-type Ca2+ channels. J. Gen. Physiol. 2018, 150, 1688–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, M.D.; Hamre, J., 3rd; Klimov, D.K.; Jafri, M.S. Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations. Biophys. J. 2021, 120, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Kügler, P.; Bulelzai, M.A.K.; Erhardt, A.H. Period doubling cascades of limit cycles in cardiac action potential models as precursors to chaotic early Afterdepolarizations. BMC Syst. Biol. 2017, 11, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, J.N.; Garfinkel, A.; Karagueuzian, H.S.; Qu, Z.; Chen, P.-S. Chaos and the Transition to Ventricular Fibrillation. Circulation 1999, 99, 2819–2826. [Google Scholar] [CrossRef] [Green Version]
- Karagueuzian, H.S.; Stepanyan, H.; Mandel, W.J. Bifurcation theory and cardiac arrhythmias. Am. J. Cardiovasc. Dis. 2013, 3, 1–16. [Google Scholar] [PubMed]
- Jafri, M.S.; Rice, J.J.; Winslow, R.L. Cardiac Ca2+ dynamics: The roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys. J. 1998, 74, 1149–1168. [Google Scholar] [CrossRef] [Green Version]
- Baartscheer, A.; Schumacher, C.A.; Belterman, C.N.W.; Coronel, R.; Fiolet, J.W.T. SR calcium handling and calcium after-transients in a rabbit model of heart failure. Cardiovasc. Res. 2003, 58, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Orchard, C.H.; Mustafa, M.R.; White, E. Oscillations and waves of intracellular [Ca2+] in cardiac muscle cells. Chaos Solitons Fractals 1995, 5, 447–458. [Google Scholar] [CrossRef]
- Hoang-Trong, T.M.; Lederer, W.J.; Jafri, M.S. Exploring SR Calcium and Cytosolic Calcium Wave Dynamics using a 3D Stochastic Myocyte Model. Biophys. J. 2014, 106, 320a. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.A.; Ferreira, R.M.S.; Lapas, L.C.; Vainstein, M.H. Anomalous Diffusion: A Basic Mechanism for the Evolution of Inhomogeneous Systems. Front. Phys. 2019, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Guo, L.; Kang, J.; Huo, Y.; Wang, S.; Tan, W. Calcium waves initiating from the anomalous subdiffusive calcium sparks. J. R. Soc. Interface 2014, 11, 20130934. [Google Scholar] [CrossRef]
- Kockskamper, J.; Blatter, L.A. Subcellular Ca2+ alternans represents a novel mechanism for the generation of arrhythmogenic Ca2+ waves in cat atrial myocytes. J. Physiol. 2002, 545, 65–79. [Google Scholar] [CrossRef]
- Aistrup, G.L.; Shiferaw, Y.; Kapur, S.; Kadish, A.H.; Wasserstrom, J.A. Mechanisms underlying the formation and dynamics of subcellular calcium alternans in the intact rat heart. Circ. Res. 2009, 104, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Blatter, L.A.; Kockskamper, J.; Sheehan, K.A.; Zima, A.V.; Huser, J.; Lipsius, S.L. Local calcium gradients during excitation-contraction coupling and alternans in atrial myocytes. J. Physiol. 2002, 546, 19–31. [Google Scholar] [CrossRef]
- Gillespie, D.; Fill, M. Pernicious attrition and inter-RyR2 CICR current control in cardiac muscle. J. Mol. Cell. Cardiol. 2013, 58, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Sobie, E.A.; Guatimosim, S.; Gómez-Viquez, L.; Song, L.-S.; Hartmann, H.; Saleet Jafri, M.; Lederer, W.J. The Ca2+ leak paradox and rogue ryanodine receptors: SR Ca2+ efflux theory and practice. Prog. Biophys. Mol. Biol. 2006, 90, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Brochet, D.X.P.; Xie, W.; Yang, D.; Cheng, H.; Lederer, W.J. Quarky calcium release in the heart. Circ. Res. 2011, 108, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Bers, D.M. Cardiac sarcoplasmic reticulum calcium leak: Basis and roles in cardiac dysfunction. Annu. Rev. Physiol. 2014, 76, 107–127. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Lederer, W.J.J.; Cannell, M.B. Calcium Sparks: Elementary Events Underlying Excitation-Contraction Coupling in Heart Muscle. Science 1993, 262, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Keizer, J.E.; Stern, M.D.; Lederer, W.J.; Cheng, H. A simple numerical model of calcium spark formation and detection in cardiac myocytes. Biophys. J. 1998, 75, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Goldman, D.E. Potential, Impedance, and rectification in membranes. J. Gen. Physiol. 1943, 27, 37–60. [Google Scholar] [CrossRef] [Green Version]
- Pitzer, K.S.; Mayorga, G. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem 1973, 77, 2300–2308. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.S.; Tsien, R.W. High selectivity of calcium channels in single dialysed heart cells of the guinea-pig. J. Physiol. 1984, 354, 253–272. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, M.D.; Augustine, G.J.; Field, R.O. Calmodulin at the channel gate. Nature 1999, 399, 105–107. [Google Scholar] [CrossRef]
- Fallon, J.L.; Baker, M.R.; Xiong, L.; Loy, R.E.; Yang, G.; Dirksen, R.T.; Hamilton, S.L.; Quiocho, F.A. Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca2+* calmodulins. Proc. Natl. Acad. Sci. USA 2009, 106, 5135–5140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, M.X.; Erickson, M.G.; Yue, D.T. Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science 2004, 304, 432–435. [Google Scholar] [CrossRef]
- Hess, P.; Lansman, J.B.; Tsien, R.W. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol. 1986, 88, 293–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgkin, A.L.; Huxley, A.F. A quantiative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 25–71. [Google Scholar] [CrossRef] [PubMed]
- Satoh, H.; Delbridge, L.M.; Blatter, L.A.; Bers, D.M. Surface: Volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: Species-dependence and developmental effects. Biophys. J. 1996, 70, 1494–1504. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang-Trong, M.T.; Ullah, A.; Lederer, W.J.; Jafri, M.S. Cardiac Alternans Occurs through the Synergy of Voltage- and Calcium-Dependent Mechanisms. Membranes 2021, 11, 794. https://doi.org/10.3390/membranes11100794
Hoang-Trong MT, Ullah A, Lederer WJ, Jafri MS. Cardiac Alternans Occurs through the Synergy of Voltage- and Calcium-Dependent Mechanisms. Membranes. 2021; 11(10):794. https://doi.org/10.3390/membranes11100794
Chicago/Turabian StyleHoang-Trong, Minh Tuan, Aman Ullah, William Jonathan Lederer, and Mohsin Saleet Jafri. 2021. "Cardiac Alternans Occurs through the Synergy of Voltage- and Calcium-Dependent Mechanisms" Membranes 11, no. 10: 794. https://doi.org/10.3390/membranes11100794
APA StyleHoang-Trong, M. T., Ullah, A., Lederer, W. J., & Jafri, M. S. (2021). Cardiac Alternans Occurs through the Synergy of Voltage- and Calcium-Dependent Mechanisms. Membranes, 11(10), 794. https://doi.org/10.3390/membranes11100794