Biostimulants Improve Plant Growth and Bioactive Compounds of Young Olive Trees under Abiotic Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Biostimulants Treatments and Experimental Design
- (1)
- Control (C) plants only treated with water, no biostimulant applied.
- (2)
- Trichoderma based product (TR), “Trianum-P” by Koppert Biological Systems (Koppert Italy, Bussolengo, VR—Italy), with active ingredient Trichoderma harzianum Rifai strain T-22 (also known as KRL-AG2*). The product was applied to the root system by irrigation at the dose of 6.67 g/L of water.
- (3)
- Micro-Algae-based product (MA), “AgriAlgae® Biologico Originale” by AgriAlgae® (Madrid, Spain), a biological biostimulant. The product was applied to the root system by irrigation at the dose of 6.67 g/L of water.
- (4)
- Seaweed based product (P), “Seaweed Mix®” by L. Gobbi Srl (Campo Ligure, Genoa, Italy), made of Ascophyllum nodosum and Laminaria digitate extract. The product was applied to the root system by irrigation at the dose of 4 mL/L of water.
- (5)
- Glycine betaine based product (B), “BIO-HELP” by Biolchim SPA (Bologna, Italy), a bio-promoter of resistance to environmental stress. The product was applied to the root system by irrigation at the dose of 10 g/L of water.
- (6)
- Kaolin (K), “Manisol” by Manica S.p.A (Rovereto, Italy). The product was applied as foliar spray at the dose of 40 g/L of water.
- (7)
- A water emulsifiable organic concentrate of di-1-p-menthene (C20H34) (V), “Vapor Gard®” by BIOGARD® (Bergamo, Italy), a terpenic polymer also known as pinolene. The product was applied as foliar sppray at the dose of 10 mL/L of water.
2.2. Determination of Vegetative and Eco-Physiological Parameters of Leaves
2.3. Chemicals Analyses and Ultrasound-Assisted Extraction of Polyphenolic Compounds
2.4. UHPLC-HRMS Analysis of Polyphenolic Compounds
2.5. Antioxidant Activity: ABTS Assay
2.6. Antioxidant Activity: DPPH Assay
2.7. Antioxidant Activity: FRAP Assay
2.8. Total Polyphenol Content: FOLIN Test
2.9. Statistical Analysis
3. Results and Discussion
3.1. Vegetative and Eco-Physiological Parameters
3.2. Polyphenolic Compounds Analysis by UHPLC-Q-Orbitrap HRMS
3.3. Antioxidant Activity of Polyphenolics Extracts
3.4. Correlation between Total Phenolic Contents and Each Antioxidant Assays
3.5. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mechri, B.; Tekaya, M.; Attia, F.; Hammami, M.; Chehab, H. Drought Stress Improved the Capacity of Rhizophagus irregularis for Inducing the Accumulation of Oleuropein and Mannitol in Olive (Olea europaea) Roots. Plant Physiol. Biochem. 2020, 156, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Petridis, A.; Therios, I.; Samouris, G.; Koundouras, S.; Giannakoula, A. Effect of Water Deficit on Leaf Phenolic Composition, Gas Exchange, Oxidative Damage and Antioxidant Activity of Four Greek Olive (Olea europaea L.) Cultivars. Plant Physiol. Biochem. 2012, 60, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Regni, L.; Del Buono, D.; Miras-Moreno, B.; Senizza, B.; Lucini, L.; Trevisan, M.; Morelli Venturi, D.; Costantino, F.; Proietti, P. Biostimulant Effects of an Aqueous Extract of Duckweed (Lemna minor L.) on Physiological and Biochemical Traits in the Olive Tree. Agriculture 2021, 11, 1299. [Google Scholar] [CrossRef]
- Prajapat, P.; Singh, D.; Tripathi, S.; Patel, K.; Abbas, H.; Patel, A. Effect of Water Stress on Antioxidative Enzymes and Glycine Betaine Content in Drought Tolerant and Drought Susceptible Cotton (Gossypium hirsutum L.) Genotypes. Indian J. Biochem. Biophys. 2018, 55, 198–204. [Google Scholar]
- Brito, C.; Dinis, L.-T.; Moutinho-Pereira, J.; Correia, C. Kaolin, an Emerging Tool to Alleviate the Effects of Abiotic Stresses on Crop Performance. Sci. Hortic. 2019, 250, 310–316. [Google Scholar] [CrossRef]
- Cirillo, A.; Conti, S.; Graziani, G.; El-Nakhel, C.; Rouphael, Y.; Ritieni, A.; Di Vaio, C. Mitigation of High-Temperature Damage by Application of Kaolin and Pinolene on Young Olive Trees (Olea europaea L.): A Preliminary Experiment to Assess Biometric, Eco-Physiological and Nutraceutical Parameters. Agronomy 2021, 11, 1884. [Google Scholar] [CrossRef]
- Brillante, L.; Belfiore, N.; Gaiotti, F.; Lovat, L.; Sansone, L.; Poni, S.; Tomasi, D. Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought. PLoS ONE 2016, 11, e0156631. [Google Scholar] [CrossRef]
- Tosin, R.; Pôças, I.; Cunha, M. Spectral and Thermal Data as a Proxy for Leaf Protective Energy Dissipation under Kaolin Application in Grapevine Cultivars. Open Agric. 2019, 4, 294–304. [Google Scholar] [CrossRef]
- Palliotti, A.; Poni, S.; Berrios, J.G.; Bernizzoni, F. Vine Performance and Grape Composition as Affected by Early-Season Source Limitation Induced with Anti-Transpirants in Two Red Vitis vinifera L. Cultivars: Crop Regulation and Antitranspirants. Aust. J. Grape Wine Res. 2010, 16, 426–433. [Google Scholar] [CrossRef]
- Palliotti, A.; Panara, F.; Famiani, F.; Sabbatini, P.; Howell, G.S.; Silvestroni, O.; Poni, S. Postveraison Application of Antitranspirant Di-1-p-Menthene to Control Sugar Accumulation in Sangiovese Grapevines. Am. J. Enol. Vitic. 2013, 64, 378–385. [Google Scholar] [CrossRef] [Green Version]
- Di Vaio, C.; Villano, C.; Lisanti, M.T.; Marallo, N.; Cirillo, A.; Di Lorenzo, R.; Pisciotta, A. Application of Anti-Transpirant to Control Sugar Accumulation in Grape Berries and Alcohol Degree in Wines Obtained from Thinned and Unthinned Vines of Cv. Falanghina (Vitis vinifera L.). Agronomy 2020, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Di Vaio, C.; Marallo, N.; Lorenzo, R.D.; Pisciotta, A. Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of Cv. Aglianico (Vitis vinifera L.) Grown in South Italy. Agronomy 2019, 9, 244. [Google Scholar] [CrossRef] [Green Version]
- Graziani, G.; Ritieni, A.; Cirillo, A.; Cice, D.; Di Vaio, C. Effects of Biostimulants on Annurca Fruit Quality and Potential Nutraceutical Compounds at Harvest and during Storage. Plants 2020, 9, 775. [Google Scholar] [CrossRef]
- Kusvuran, S. Microalgae (Chlorella vulgaris Beijerinck) Alleviates Drought Stress of Broccoli Plants by Improving Nutrient Uptake, Secondary Metabolites, and Antioxidative Defense System. Hortic. Plant J. 2021, 7, 221–231. [Google Scholar] [CrossRef]
- Rudresh, D.L.; Shivaprakash, M.K.; Prasad, R.D. Effect of Combined Application of Rhizobium, Phosphate Solubilizing Bacterium and Trichoderma spp. on Growth, Nutrient Uptake and Yield of Chickpea (Cicer aritenium L.). Appl. Soil Ecol. 2005, 28, 139–146. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Alfaro-Cuevas, R.; López-Bucio, J. Trichoderma spp. Improve Growth of Arabidopsis Seedlings Under Salt Stress Through Enhanced Root Development, Osmolite Production, and Na+ Elimination Through Root Exudates. MPMI 2014, 27, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Hashem, A.; Abd_Allah, E.F.; Alqarawi, A.A.; Al Huqail, A.A.; Egamberdieva, D. Alleviation of Abiotic Salt Stress in Ochradenus Baccatus (Del.) by Trichoderma Hamatum (Bonord.) Bainier. J. Plant Interact. 2014, 9, 857–868. [Google Scholar] [CrossRef]
- Dini, I.; Graziani, G.; Fedele, F.L.; Sicari, A.; Vinale, F.; Castaldo, L.; Ritieni, A. Effects of Trichoderma Biostimulation on the Phenolic Profile of Extra-Virgin Olive Oil and Olive Oil By-Products. Antioxidants 2020, 9, 284. [Google Scholar] [CrossRef] [Green Version]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of Phenolic Compounds of ‘Sikitita’ Olive Leaves by HPLC-DAD-TOF-MS. Comparison with Its Parents ‘Arbequina’ and ‘Picual’ Olive Leaves. LWT-Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of Antioxidant Power: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formisano, L.; Ciriello, M.; El-Nakhel, C.; Poledica, M.; Starace, G.; Graziani, G.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Pearl Grey Shading Net Boosts the Accumulation of Total Carotenoids and Phenolic Compounds That Accentuate the Antioxidant Activity of Processing Tomato. Antioxidants 2021, 10, 1999. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 978-0-12-182200-2. [Google Scholar]
- Newman, J.E. Symposium: Responses of Field Crops to Environmental Factors Summary Statements. Agron. J. 1963, 55, 31. [Google Scholar] [CrossRef]
- Boutraa, T.; Akhkha, A.; Al-Shoaibi, A.A.; Alhejeli, A.M. Effect of Water Stress on Growth and Water Use Efficiency (WUE) of Some Wheat Cultivars (Triticum durum) Grown in Saudi Arabia. J. Taibah Univ. Sci. 2010, 3, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, A.; Murata, N. The Role of Glycine Betaine in the Protection of Plants from Stress: Clues from Transgenic Plants: Role of Betaine in Stress Tolerance. Plant Cell Environ. 2002, 25, 163–171. [Google Scholar] [CrossRef]
- Alia; Hayashi, H.; Sakamoto, A.; Murata, N. Enhancement of the Tolerance of Arabidopsis to High Temperatures by Genetic Engineering of the Synthesis of Glycinebetaine. Plant J. 1998, 16, 155–161. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Diaz-Zorita, M.; Fernandez-Canigia, M.V.; Grosso, G.A. Applications of Foliar Fertilizers Containing Glycinebetaine Improve Wheat Yields. J. Agron. Crop. Sci. 2001, 186, 209–215. [Google Scholar] [CrossRef]
- Mukherjee, A.; Patel, J.S. Seaweed Extract: Biostimulator of Plant Defense and Plant Productivity. Int. J. Environ. Sci. Technol. 2020, 17, 553–558. [Google Scholar] [CrossRef]
- Mansori, M.; Chernane, H.; Latique, S.; Benaliat, A.; Hsissou, D.; El Kaoua, M. Seaweed Extract Effect on Water Deficit and Antioxidative Mechanisms in Bean Plants (Phaseolus Vulgaris L.). J. Appl. Phycol. 2015, 27, 1689–1698. [Google Scholar] [CrossRef]
- Krajnc, A.U.; Ivanuš, A.; Kristl, J.; Šušek, A. Seaweed Extract Elicits the Metabolic Responses in Leaves and Enhances Growth of Pelargonium Cuttings. Eur. J. Hortic. Sci. 2012, 77, 170–181. [Google Scholar]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. A Novel Type of Seaweed Extract as a Natural Alternative to the Use of Iron Chelates in Strawberry Production. Sci. Hortic. 2010, 125, 263–269. [Google Scholar] [CrossRef]
- Whapham, C.A.; Blunden, G.; Jenkins, T.; Hankins, S.D. Significance of Betaines in the Increased Chlorophyll Content of Plants Treated with Seaweed Extract. J. Appl. Phycol. 1993, 5, 231–234. [Google Scholar] [CrossRef]
- Blunden, G.; Jenkins, T.; Liu, Y.-W. Enhanced Leaf Chlorophyll Levels in Plants Treated with Seaweed Extract. J. Appl. Phycol. 1996, 8, 535–543. [Google Scholar] [CrossRef]
- Shukla, N.; Awasthi, R.P.; Rawat, L.; Kumar, J. Seed Biopriming with Drought Tolerant Isolates of Trichoderma Harzianum Promote Growth and Drought Tolerance in Triticum Aestivum: Trichoderma Mediated Drought Responses in Bioprimed Wheat Plants. Ann. Appl. Biol. 2015, 166, 171–182. [Google Scholar] [CrossRef]
- Elansary, H.O.; Skalicka-Woźniak, K.; King, I.W. Enhancing Stress Growth Traits as Well as Phytochemical and Antioxidant Contents of Spiraea and Pittosporum under Seaweed Extract Treatments. Plant Physiol. Biochem. 2016, 105, 310–320. [Google Scholar] [CrossRef]
- Zegaoui, Z.; Planchais, S.; Cabassa, C.; Djebbar, R.; Belbachir, O.A.; Carol, P. Variation in Relative Water Content, Proline Accumulation and Stress Gene Expression in Two Cowpea Landraces under Drought. J. Plant Physiol. 2017, 218, 26–34. [Google Scholar] [CrossRef]
- Hu, L.; Hu, T.; Zhang, X.; Pang, H.; Fu, J. Exogenous Glycine Betaine Ameliorates the Adverse Effect of Salt Stress on Perennial Ryegrass. J. Am. Soc. Hortic. Sci. 2012, 137, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.C.; Pinto, D.C.G.A.; Figueiredo, C.; Santos, C.; Silva, A.M.S. Phenolic and Lipophilic Metabolite Adjustments in Olea europaea (Olive) Trees during Drought Stress and Recovery. Phytochemistry 2021, 185, 112695. [Google Scholar] [CrossRef]
- Dinis, L.-T.; Bernardo, S.; Conde, A.; Pimentel, D.; Ferreira, H.; Félix, L.; Gerós, H.; Correia, C.M.; Moutinho-Pereira, J. Kaolin Exogenous Application Boosts Antioxidant Capacity and Phenolic Content in Berries and Leaves of Grapevine under Summer Stress. J. Plant Physiol. 2016, 191, 45–53. [Google Scholar] [CrossRef]
- Denaxa, N.-K.; Roussos, P.A.; Damvakaris, T.; Stournaras, V. Comparative Effects of Exogenous Glycine Betaine, Kaolin Clay Particles and Ambiol on Photosynthesis, Leaf Sclerophylly Indexes and Heat Load of Olive Cv. Chondrolia Chalkidikis under Drought. Sci. Hortic. 2012, 137, 87–94. [Google Scholar] [CrossRef]
- Cetinkaya, H.; Koc, M.; Kulak, M. Monitoring of Mineral and Polyphenol Content in Olive Leaves under Drought Conditions: Application Chemometric Techniques. Ind. Crop. Prod. 2016, 88, 78–84. [Google Scholar] [CrossRef]
- Rouphael, Y.; Carillo, P.; Colla, G.; Fiorentino, N.; Sabatino, L.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cirillo, V.; Shabani, E.; et al. Appraisal of Combined Applications of Trichoderma Virens and a Biopolymer-Based Biostimulant on Lettuce Agronomical, Physiological, and Qualitative Properties under Variable N Regimes. Agronomy 2020, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.P.; Sharma, R.; Neelkanthe, S.S. Climate change: Combating drought with antitranspirants and super absorbent. Plant Archive 2017, 17, 1146–1156. [Google Scholar]
- Del Amor, F.M.; Cuadra-Crespo, P.; Walker, D.J.; Cámara, J.M.; Madrid, R. Effect of Foliar Application of Antitranspirant on Photosynthesis and Water Relations of Pepper Plants under Different Levels of CO2 and Water Stress. J. Plant Physiol. 2010, 167, 1232–1238. [Google Scholar] [CrossRef]
- Hurtado, A.Q.; Yunque, D.A.; Tibubos, K.; Critchley, A.T. Use of Acadian Marine Plant Extract Powder from Ascophyllum nodosum in Tissue Culture of Kappaphycus Varieties. J. Appl. Phycol. 2009, 21, 633–639. [Google Scholar] [CrossRef]
- Lola-Luz, T.; Hennequart, F.; Gaffney, M. Enhancement of Phenolic and Flavonoid Compounds in Cabbage (Brassica oleraceae) Following Application of Commercial Seaweed Extracts of the Brown Seaweed, (Ascophyllum nodosum). Agric. Food Sci. 2013, 22, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar Applications of a Legume-Derived Protein Hydrolysate Elicit Dose-Dependent Increases of Growth, Leaf Mineral Composition, Yield and Fruit Quality in Two Greenhouse Tomato Cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.; Bonini, P.; Colla, G. Plant- and Seaweed-Based Extracts Increase Yield but Differentially Modulate Nutritional Quality of Greenhouse Spinach through Biostimulant Action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Brahmi, F.; Mechri, B.; Dabbou, S.; Dhibi, M.; Hammami, M. The Efficacy of Phenolics Compounds with Different Polarities as Antioxidants from Olive Leaves Depending on Seasonal Variations. Ind. Crop. Prod. 2012, 38, 146–152. [Google Scholar] [CrossRef]
- Vinson, J.A.; Hao, Y.; Su, X.; Zubik, L. Phenol Antioxidant Quantity and Quality in Foods: Vegetables. J. Agric. Food Chem. 1998, 46, 3630–3634. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Pellati, F.; Benvenuti, S.; Magro, L.; Melegari, M.; Soragni, F. Analysis of Phenolic Compounds and Radical Scavenging Activity of Echinacea spp. J. Pharm. Biomed. Anal. 2004, 35, 289–301. [Google Scholar] [CrossRef]
- Mohtar, L.G.; Messina, G.A.; Bertolino, F.A.; Pereira, S.V.; Raba, J.; Nazareno, M.A. Comparative Study of Different Methodologies for the Determination the Antioxidant Activity of Venezuelan Propolis. Microchem. J. 2020, 158, 105244. [Google Scholar] [CrossRef]
Treatments | Leaf Dry Matter (g) | Increase Leaves Number | Leaf Area (cm2) |
---|---|---|---|
100% | |||
C | 16.97 ± 0.61 a | 83.70 ± 7.01 abc | 770.29 ± 25.56 a |
TR | 18.37 ± 0.78 a | 88.70 ± 5.29 abc | 729.59 ± 19.18 a |
M | 18.06 ± 0.58 a | 86.70 ± 8.03 abc | 758.90 ± 27.87 a |
P | 17.20 ± 0.97 a | 82.80 ± 6.93 abc | 704.16 ± 25.26 a |
B | 16.38 ± 0.53 a | 102.00 ± 8.17 a | 736.15 ± 25.96 a |
K | 17.93 ± 0.71 a | 77.50 ± 7.26 bc | 759.66 ± 41.60 a |
V | 18.57 ± 0.81 a | 94.50 ± 4.81 ab | 723.25 ± 28.17 a |
50% | |||
C | 10.20 ± 0.53 bcd | 49.40 ± 5.47 ef | 361.81 ± 16.27 ef |
TR | 8.74 ± 0.63 d | 39.70 ± 5.48 ef | 330.14 ± 11.49 f |
M | 9.87 ± 0.69 cd | 49.20 ± 10.68 ef | 454.09 ± 30.06 cd |
P | 11.61 ± 0.85 bc | 45.20 ± 4.88 ef | 522.28 ± 26.05 bc |
B | 10.77 ± 0.53 bcd | 70.90 ± 3.76 cd | 562.84 ± 34.43 b |
K | 12.08 ± 0.52 b | 30.40 ± 5.46 f | 437.72 ± 19.46 cde |
V | 12.32 ± 0.69 b | 54.20 ± 10.76 de | 515.79 ± 34.02 cde |
Significance | |||
W | *** | *** | *** |
T | ns | * | ns |
W × T | *** | *** | *** |
Time 1 | Time 2 | |||
---|---|---|---|---|
Treatments | 100% | 50% | 100% | 50% |
Stomatal conductance (mol m−2 s−1) | ||||
C | 0.534 ± 0.01 bc | 0.165 ± 0.00 efgh | 0.148 ± 0.02 efgh | 0.064 ± 0.00 fgh |
TR | 0.538 ± 0.04 bc | 0.120 ± 0.02 efgh | 0.253 ± 0.04 def | 0.036 ± 0.01 gh |
M | 0.233 ± 0.00 def | 0.686 ± 0.10 b | 0.616 ± 0.12 b | 0.257 ± 0.02 de |
P | 0.276 ± 0.02 def | 0.118 ± 0.01 efgh | 0.389 ± 0.19 cd | 0.030 ± 0.01 h |
B | 0.875 ± 0.01 a | 0.539 ± 0.04 bc | 0.557 ± 0.06 b | 0.271 ± 0.03 de |
K | 0.193 ± 0.03 efgh | 0.231 ± 0.01 def | 0.054 ± 0.00 fgh | 0.057 ± 0.00 fgh |
V | 0.195 ± 0.05 efgh | 0.211 ± 0.03 efg | 0.149 ± 0.00 efgh | 0.221 ± 0.03 def |
SPAD | ||||
C | 75.57 ± 1.20 ghij | 76.29 ± 0.77 fghi | 73.06 ± 1.27 j | 76.50 ± 0.74 fghi |
TR | 74.39 ± 1.35 hij | 75.23 ± 0.82 ghij | 74.20 ± 1.52 hij | 77.05 ± 1.13 efghi |
M | 80.88 ± 0.83 bc | 76.82 ± 0.99 efghi | 78.93 ± 0.72 cdef | 80.00 ± 0.95 bcde |
P | 78.23 ± 1.00 cdefg | 77.83 ± 0.81 cdefg | 75.68 ± 0.85 fghij | 79.79 ± 1.02 bcde |
B | 80.52 ± 1.08 bcd | 82.63 ± 0.73 ab | 80.54 ± 0.85 bcd | 78.87 ± 0.75 cdef |
K | 76.08 ± 1.05 fghij | 74.41 ± 1.17 hij | 78.03 ± 0.65 cdefg | 84.42 ± 0.64 a |
V | 78.00 ± 0.85 cdefg | 74.04 ± 0.89 ij | 77.45 ± 1.20 defgh | 76.93 ± 0.73 efghi |
RWC% | ||||
C | 79.87 ± 2.60 ab | 75.14 ± 4.20 abcd | 60.87 ± 3.46 fgh | 55.24 ± 1.71 ghi |
TR | 79.90 ± 1.92 ab | 76.33 ± 3.22 abc | 65.56 ± 1.64 def | 68.56 ± 6.69 cdef |
M | 81.09 ± 1.45 a | 73.82 ± 2.49 abcd | 63.11 ± 4.32 efg | 50.95 ± 1.06 i |
P | 75.67 ± 3.81 abcd | 78.15 ± 3.18 abc | 62.45 ± 1.82 fgh | 73.32 ± 4.32 abcd |
B | 74.51 ± 2.83 abcd | 80.56 ± 3.20 ab | 72.96 ± 1.71 abcde | 61.22 ± 2.18 fgh |
K | 74.87 ± 0.72 abcd | 77.82 ± 1.11 abc | 67.82 ± 2.48 cdef | 55.54 ± 0.92 ghi |
V | 74.25 ± 4.94 abcd | 83.66 ± 1.69 a | 70.06 ± 4.08 bcdef | 52.55 ± 4.62 hi |
Stomatal conductance (mol m−2 s−1) | SPAD | RWC (%) | ||
W | ns | ns | ns | |
T | *** | *** | ns | |
S | ns | ns | *** | |
W × T × S | *** | *** | *** |
Polyphenols | C | TR | M | P | |||||
---|---|---|---|---|---|---|---|---|---|
100% | 50% | 100% | 50% | 100% | 50% | 100% | 50% | ||
hydroxytirosol glucoside | 2183.11 e | 1017.86 g | 4978.55 d | 1905.95 ef | 1959.59 ef | 1601.89 efg | 5630.96 c | 1664.50 efg | |
vanillic acid | 5.78 bcde | 3.85 g | 7.01 b | 5.41 cdef | 6.03 bcd | 4.89 defg | 6.53 bc | 4.26 fg | |
coumaric acid | 4.82 b | 2.24 ef | 3.14 cd | 3.39 c | 2.49 def | 2.56 def | 4.86 b | 2.04 f | |
ferulic acid | 3.91 c | 1.43 fgh | 4.84 b | 1.82 efg | 2.28 e | 1.42 fgh | 4.15 c | 1.31 gh | |
luteolin rutinoside | 7.37 de | 8.62 bc | 8.05 cd | 9.01 bc | 7.33 de | 9.16 b | 7.23 de | 7.57 de | |
verbascoside | 156.91 e | 118.14 f | 504.48 b | 715.50 a | 403.05 d | 472.92 c | 28.96 g | 25.11 g | |
oleuropein | 629.34 gh | 750.22 fg | 966.74 d | 1274.20 c | 1058.80 d | 813.96 ef | 912.37 de | 579.43 h | |
ligstroside | 54.01 g | 58.26 g | 77.32 f | 108.24 cd | 67.40 fg | 91.11 e | 113.72 c | 102.90 cde | |
pinoresinol | 0.39 hi | 0.34 i | 0.54 ef | 0.52 ef | 0.71 d | 0.80 c | 0.44 gh | 0.33 i | |
luteolin | 205.00 cde | 157.81 h | 163.89 gh | 175.82 fg | 199.02 cde | 195.64 de | 201.15 cde | 211.23 cd | |
oleuropein aglycone | 54.67 h | 38.27 i | 67.72 g | 95.61 e | 82.34 f | 83.22 f | 23.06 l | 27.80 l | |
secologanoside | 15.08 f | 23.88 de | 45.76 b | 58.54 a | 20.16 def | 21.27 def | 17.37 ef | 15.61 f | |
Total polyphenols | 3322.40 de | 2180.93 f | 6828.03 b | 4354.01 c | 3809.17 cd | 3298.83 de | 6950.79 b | 2642.09 ef | |
Polyphenols | K | B | V | Significance | |||||
100% | 50% | 100% | 50% | 100% | 50% | T | W | W × T | |
hydroxytirosol glucoside | 8215.27 b | 8915.23 a | 1540.62 efg | 1562.68 efg | 980.91 g | 1251.98 fg | *** | ns | *** |
vanillic acid | 9.06 a | 5.30 def | 8.68 a | 6.42 bc | 4.59 efg | 3.67 g | *** | *** | *** |
coumaric acid | 5.70 a | 3.51 c | 2.08 f | 2.05 f | 3.51 c | 2.91 cde | ** | *** | *** |
ferulic acid | 7.19 a | 1.79 efgh | 1.29 gh | 1.19 h | 1.98 ef | 3.06 d | * | *** | *** |
luteolin rutinoside | 10.19 a | 10.40 a | 6.92 e | 8.66 bc | 7.25 de | 8.97 bc | *** | *** | *** |
verbascoside | 381.39 d | 472.28 c | 23.28 g | 31.35 g | 31.51 g | 35.97 g | *** | ns | *** |
oleuropein | 1868.74 a | 1657.18 b | 912.29 de | 1006.04 d | 575.93 h | 955.20 de | *** | ns | *** |
ligstroside | 266.16 a | 241.43 b | 103.29 cde | 94.61 de | 67.79 fg | 96.12 de | *** | ns | *** |
pinoresinol | 0.57 e | 0.64 d | 1.19 b | 1.43 a | 0.46 fg | 0.54 e | *** | ns | *** |
luteolin | 217.60 c | 258.80 b | 315.03 a | 324.19 a | 191.02 ef | 176.11 fg | *** | ns | *** |
oleuropein aglycone | 230.89 b | 242.61 a | 106.02 d | 122.09 c | 45.91 hi | 49.40 h | *** | ns | *** |
secologanoside | 34.06 c | 39.67 bc | 13.83 f | 14.12 f | 13.36 f | 25.23 d | *** | ns | *** |
Total polyphenols | 11246.82 a | 11848.83 a | 3034.54 de | 3174.82 de | 1924.22 f | 2609.15 ef | *** | ns | *** |
DPPH | ABTS | FRAP | FOLIN | |
---|---|---|---|---|
100% | (mmol trolox/kg) | (mg/kg dw) | ||
C | 26.12 ± 0.44 defg | 87.59 ± 1.18 c | 95.74 ± 1.99 de | 2620.16 ± 33.57 fg |
M | 27.47 ± 0.54 cde | 86.47 ± 2.21 c | 118.48 ± 0.23 c | 3744.19 ± 581.40 e |
P | 29.17 ± 0.41 c | 105.33 ± 0.98 b | 138.01 ± 3.45 b | 9538.76 ± 637.77 b |
TR | 28.76 ± 0.15 cd | 70.54 ± 4.09 de | 131.14 ± 2.23 bc | 8337.21 ± 58.14 c |
B | 24.24 ± 0.44 gh | 62.87 ± 2.19 ef | 103.00 ± 5.16 d | 3608.53 ± 134.27 e |
V | 26.32 ± 0.16 defg | 64.33 ± 7.53 ef | 96.84 ± 3.39 de | 2484.50 ± 67.13 fg |
K | 36.43 ± 0.21 a | 130.59 ± 4.60 a | 166.62 ± 0.77 a | 18,375.97 ± 378.28 a |
50% | ||||
C | 23.22 ± 0.96 h | 80.20 ± 2.44 cd | 79.42 ± 1.87 fg | 2426.36 ± 33.57 g |
M | 24.77 ± 0.59 fgh | 80.11 ± 1.27 cd | 85.04 ± 1.05 efg | 2988.37 ± 209.63 f |
P | 20.65 ± 0.52 i | 56.90 ± 2.42 f | 82.46 ± 1.56 efg | 2600.78 ± 33.57 fg |
TR | 25.98 ± 0.70 efg | 74.83 ± 0.78 d | 83.70 ± 0.86 def | 5275.19 ± 412.48 d |
B | 22.59 ± 0.47 hi | 62.61 ± 1.82 ef | 80.95 ± 3.14 g | 3511.63 ± 253.42 e |
V | 27.01 ± 0.56 cdef | 78.82 ± 6.90 cd | 101.84 ± 2.22 d | 2620.16 ± 33.57 fg |
K | 33.57 ± 0.44 b | 106.40 ± 1.04 b | 138.64 ± 29.63 b | 18,686.05 ± 100.70 a |
W | ** | * | *** | ** |
T | *** | *** | *** | *** |
W × T | *** | *** | *** | *** |
Treatments | Composition | Application Procedure | Effects |
---|---|---|---|
Trichoderma (TR) | 1% w/w Trichoderma harzianum, strain T-22 spores (1 × 109 spores/g) and 99% w/w inert ingredients | Drench application—6.67 g/L of water | Improves RWC values and total polyphenols content |
Micro-Algae (M) | Free L-amino acids (4.1% w/w), total nitrogen (7% w/w), organic nitrogeno (5.6% w/w), nitric nitrogen (5.6% w/w), P2O5 (0.5% w/w), K2O (6.7% w/w) | Drench application—6.67 g/L of water | Improves SPAD values and stomatal conductance |
Seaweed mix (P) | Organic carbon C (6%), mannitol 9 g/L | Drench application—4 ml/L of water | Improves SPAD and RWC values |
Glycine betaine (B) | Glycine betaine, trehalose, plant extracts containing zeatin. | Drench application—10 g/L of water | Improves vegetative activity and eco-physiological parameters in the leaves |
Kaolin (K) | Copper (Cu) totale 5% | Foliar application—40 g/L of water | Improves the polyphenol content and antioxidant activity in the leaves |
Pinolene (V) | di-1-p-menthene (96%), coformulants, inert emulsifiers (4%) | Foliar application—10 mL/L of water | Improves vegetative activity and RWC values |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graziani, G.; Cirillo, A.; Giannini, P.; Conti, S.; El-Nakhel, C.; Rouphael, Y.; Ritieni, A.; Di Vaio, C. Biostimulants Improve Plant Growth and Bioactive Compounds of Young Olive Trees under Abiotic Stress Conditions. Agriculture 2022, 12, 227. https://doi.org/10.3390/agriculture12020227
Graziani G, Cirillo A, Giannini P, Conti S, El-Nakhel C, Rouphael Y, Ritieni A, Di Vaio C. Biostimulants Improve Plant Growth and Bioactive Compounds of Young Olive Trees under Abiotic Stress Conditions. Agriculture. 2022; 12(2):227. https://doi.org/10.3390/agriculture12020227
Chicago/Turabian StyleGraziani, Giulia, Aurora Cirillo, Paola Giannini, Stefano Conti, Christophe El-Nakhel, Youssef Rouphael, Alberto Ritieni, and Claudio Di Vaio. 2022. "Biostimulants Improve Plant Growth and Bioactive Compounds of Young Olive Trees under Abiotic Stress Conditions" Agriculture 12, no. 2: 227. https://doi.org/10.3390/agriculture12020227
APA StyleGraziani, G., Cirillo, A., Giannini, P., Conti, S., El-Nakhel, C., Rouphael, Y., Ritieni, A., & Di Vaio, C. (2022). Biostimulants Improve Plant Growth and Bioactive Compounds of Young Olive Trees under Abiotic Stress Conditions. Agriculture, 12(2), 227. https://doi.org/10.3390/agriculture12020227