Current Status and Spatiotemporal Evolution of Antibiotic Residues in Livestock and Poultry Manure in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Extraction
2.2. Data Extraction and Preprocessing
2.2.1. Data Extraction
2.2.2. Tests and Sensitivity Analyses of the Data
2.3. Geographic Centroid and Trajectory of Migration Calculations
2.3.1. Geographic Centroid Calculations
2.3.2. Trajectory of Migration of the Geographic Centroid
2.4. Standard Deviational Ellipse
2.5. Hotspot Analysis (Getis-Ord Gi*)
2.6. Data Analysis
3. Results
3.1. Overall Status of Antibiotic Residues in Livestock and Poultry Manure
3.2. Spatial Distribution of Antibiotic Residues in Livestock and Poultry Manure
3.3. Temporal Variation of Antibiotic Residues in Livestock and Poultry Manure
3.4. The Variation of Antibiotic Residue Contents among Different Livestock and Poultry Species
4. Discussion
4.1. Analysis of the Causes of Antibiotic Residues in Livestock and Poultry Manure in China
4.2. The Cause of Spatial and Temporal Variation in Antibiotic Residues
4.2.1. The Cause of Spatial Variation
4.2.2. The Cause of Temporal Variation
4.2.3. The Cause of Temporal Variation
4.3. Influence on Environmental Safety and Human Health
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Danner, M.C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, J.Y.; Li, Z.T.; Guo, S.M.; Li, K.J.; Xu, P.S.; Ok, Y.S.; Jones, D.L.; Zou, J.W. Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis. Crit. Rev. Environ. Sci. Technol. 2022, 53, 847–864. [Google Scholar] [CrossRef]
- Liu, Y.W.; Feng, M.M.; Johansen, A.; Cheng, D.M.; Xue, J.M.; Feng, Y.; Fan, S.H.; Li, Z.J. Composting reduces the risks of antibiotic resistance genes in maize seeds posed by gentamicin fermentation waste. Sci. Total Environ. 2023, 870, 161785. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial resistance: A one health perspective. Microbiol. Spectr. 2018, 6, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wei, C.J.; Zhang, W.J.; Liu, Y.W.; Li, Z.J.; Hu, H.Y.; Xue, J.M.; Davis, M. A simple and economic method for simultaneous determination of 11 antibiotics in manure by solid-phase extraction and high-performance liquid chromatography. J. Soils Sediments 2016, 16, 2242–2251. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Y.; Jin, M.; Yuan, Z.; Bond, P.; Guo, J. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Res. 2020, 169, 115229. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. The PRISMA Group, Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Frey, L.; Tanunchai, B.; Glaser, B. Antibiotics residues in pig slurry and manure and its environmental contamination potential. A meta-analysis. Agron. Sustain. Dev. 2022, 42, 31. [Google Scholar] [CrossRef]
- Lu, G.Y.; Chen, Q.; Li, Y.P.; Liu, Y.T.; Zhang, Y.Y.; Zhu, L. Status of antibiotic residues and detection techniques used in Chinese milk: A systematic review based on cross-sectional surveillance data. Food Res. Int. 2021, 147, 110450. [Google Scholar] [CrossRef]
- Lefever, D.W. Measuring geographic concentration by means of the standard deviational ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Martínez, J.L. Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Xie, Y.F.; Wang, J.F.; Christakos, G.; Si, J.L.; Zhao, H.N.; Ding, Y.Q.; Li, J. Influence of planting patterns on fluoroquinolone residues in the soil of an intensive vegetable cultivation area in northern China. Sci. Total Environ. 2013, 458, 63–69. [Google Scholar] [CrossRef]
- Haller, M.Y.; Müller, S.R.; McArdell, C.S.; Alder, A.C.; Suter, M.J.F. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography–mass spectrometry. J. Chromatogr. 2002, 952, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.T.; Wang, Y.P.; Yuan, Y.W.; Xie, Y.J. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci. Total Environ. 2021, 798, 149205. [Google Scholar] [CrossRef]
- Stutz, M.W.; Lawton, G.C. Effects of diet and antimicrobials on growth, feed efficiency, intestinal Clostridium perfringens, and ileal weight of broiler chicks. Poult. Sci. 1984, 63, 2036–2042. [Google Scholar] [CrossRef]
- Rahman, M.; Fliss, I.; Biron, E. Insights in the development and uses of alternatives to antibiotic growth promoters in poultry and swine production. Antibiotics 2022, 11, 766. [Google Scholar] [CrossRef] [PubMed]
- Looft, T.; Allen, H.K.; Cantarel, B.L.; Levine, U.Y.; Bayles, D.O.; Alt, D.P.; Henrissat, B.; Stanton, T.B. Bacteria, phages and pigs: The effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 2014, 8, 1566–1576. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci. 2013, 92, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.P.; Liu, L.Z. The impact of environmental regulations on the reduction of veterinary drugs by meat duck farmers: Based on a survey data from 10 provinces. Res. Agric. Mod. 2022, 43, 616–626, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.; Yu, H.; Zhang, H.; Zhao, Q.; Si, W.; Qin, Y.; Zhang, J. Dietary Epimedium extract supplementation improves intestinal functions and alters gut microbiota in broilers. J. Anim. Sci. Biotechnol. 2023, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Zamojska, D.; Nowak, A.; Nowak, I.; Macierzyńska-Piotrowska, E. Probiotics and postbiotics as substitutes of antibiotics in farm animals: A review. Animals 2021, 11, 3431. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L. China’s livestock industry development: Achievements, experiences and future trends. Issues Agric. Econ. 2018, 8, 60–70. [Google Scholar]
- Xu, Y.N.; Luan, W.X.; Yang, Y.J.; Wang, H. Evolutionary game for the stakeholders in livestock pollution control based on circular economy. J. Clean. Prod. 2021, 282, 125403. [Google Scholar]
- Xiong, B.; Wang, R.M. Structural adjustment and environmental effect of livestock and poultry breeding under policy of prohibiting livestock and poultry production. J. China Agric. Univ. 2022, 27, 291–304, (In Chinese with English Abstract). [Google Scholar]
- Guo, Y.; Li, R.; Sun, X.; Zhang, Z.H.; Zheng, H.C.; Han, L.X.; Cui, Y.N.; Zhang, D.X.; Liu, M.C. In vitro Antibiotic Susceptibility, Virulence Genes Profiles and Integrons of Streptococcus suis Isolates from Pig Herds in Liaoning Province of China. Pak. Vet. J. 2022, 42, 117–121. [Google Scholar]
- Liu, J.J.; Wang, X.; Bi, C.L.; Ali, F.; Saleem, M.U.; Qin, J.H.; Ashfaq, H.; Han, Z.Q.; Abdullah, F. Epidemiological investigation of Staphylococcus aureus Infection in Dairy Cattle in Anhui, China. Pak. Vet. J. 2022, 42, 580–583. [Google Scholar] [CrossRef]
- Schmitt, H.; Stoob, K.; Hamscher, G.; Smit, E.; Seinen, W. Tetracyclines and tetracycline resistance in agricultural soils: Microcosm and field studies. Microb. Ecol. 2006, 51, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.R.; Owens, G.; Kwon, S.I.; So, K.H.; Lee, D.B.; Ok, Y.S. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut. 2011, 214, 163–174. [Google Scholar] [CrossRef]
- Jechalke, S.; Heuer, H.; Siemens, J.; Amelung, W.; Smalla, K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014, 22, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, T.; Porsbring, T.; Arrhenius, A.; Brosche, S.; Johansson, P.; Blanck, H. Single-substance and mixture toxicity of five pharmaceuticals and personal care products to marine periphyton communities. Environ. Toxicol. Chem. 2011, 30, 2030–2040. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the soil environment—Degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Zhao, C.Y.; Qin, J.Y.; Cui, P.; Zhong, Q.L.; Ru, S. Metabolic perturbations of Lolium perenne L. by enrofloxacin: Bioaccumulation and multistage defense system. J. Hazard. Mater. 2022, 427, 127893. [Google Scholar] [CrossRef] [PubMed]
- Opriş, O.; Copaciu, F.; Soran, M.L.; Ristoiu, D.; Niinemets, Ü.; Copolovici, L. Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: Leaf volatiles as a promising new tool to assess toxicity. Ecotoxicol. Environ. Saf. 2013, 87, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Zahid, N.; Ahmed, M.j.; Tahir, M.M.; Maqbool, M.; Shah, S.Z.A.; Hussain, S.J.; Khaliq, A.; Rehmani, M.I.A. Integrated effect of urea and poultry manure on growth, yield and postharvest quality of cucumber (Cucumis sativus L.). Asian J. Agric. Biol. 2021, 1, 1–9. [Google Scholar]
- Bassil, R.J.; Bashour, I.I.; Sleiman, F.T.; Abou-Jawdeh, Y.A. Antibiotic uptake by plants from manure-amended soils. J. Environ. Sci. Health Part B 2013, 48, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Do, K.H.; Byun, J.W.; Lee, W.K. Antimicrobial Resistance, Adhesin and Toxin Genes of Porcine Pathogenic Escherichia coli Following the Ban on Antibiotics as the Growth Promoters in Feed. Pak. Vet. J. 2021, 41, 519–523. [Google Scholar]
- Zarei-Baygi, A.; Smith, A.L. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies. Bioresour. Technol. 2021, 319, 124181. [Google Scholar] [CrossRef] [PubMed]
- Malik, F.; Nawaz, M.; Anjum, A.A.; Firyal, S.; Shahid, M.A.; Irfan, S.; Ahmed, F.; Bhatti, A.A. Molecular Characterization of Antibiotic Resistance in Poultry Gut Origin Enterococci and Horizontal Gene Transfer of Antibiotic Resistance to Staphylococcus aureus. Pak. Vet. J. 2022, 42, 383–389. [Google Scholar]
- Rossolini, G.M.; Arena, F.; Pecile, P.; Pollini, S. Update on the antibiotic resistance crisis. Curr. Opin. Pharmacol. 2014, 18, 56–60. [Google Scholar] [CrossRef]
- Lima, T.; Domingues, S.; Da Silva, G.J. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Vet. Sci. 2020, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M.; Urbán, E.; Stájer, A.; Baráth, Z. Antimicrobial resistance in the context of the sustainable development goals: A brief review. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 71–82. [Google Scholar]
Element | Tetracyclines | Quinolones | Sulfonamides | Macrolides | Pleuromutilins | Others | Total |
---|---|---|---|---|---|---|---|
Provinces | 29 | 26 | 24 | 19 | 16 | 19 | 29 |
Farms | 3402 | 2456 | 2613 | 1701 | 583 | 1658 | 3751 |
Mean a | 18,779.52 | 1689.09 | 1929.71 | 1414.92 | 336.45 | 1457 | 7845.99 |
Standard deviation | 80,722.66 | 21,724.75 | 5551.21 | 8269.28 | 753.80 | 5278.50 | 50,370.85 |
Species | pig, chicken, cattle, sheep | pig, chicken, cattle, sheep | pig, chicken, cattle, sheep | pig, chicken, cattle, sheep | pig, cattle | pig, chicken, cattle | pig, chicken, cattle, sheep |
Time | Center X (°) | Center Y (°) | X Stddist (km) | Y Stddist (km) | Area (104 km2) | Direction (°) |
---|---|---|---|---|---|---|
2003–2007 | 115.45 | 31.77 | 531.87 | 1299.48 | 217.10 | 9.78 |
2008–2012 | 120.54 | 38.06 | 258.65 | 1096.30 | 89.05 | 15.28 |
2013–2017 | 109.87 | 30.34 | 675.38 | 1178.73 | 250.08 | 42.22 |
2018–2021 | 114.11 | 29.66 | 522.79 | 1070.77 | 175.85 | 19.50 |
Time | Feed Medication (%) | Drug Administration by Drinking Water (%) | Parenteral Administration (%) | Other Routes of Administration (%) | ||||
---|---|---|---|---|---|---|---|---|
Dosage (t) | Ratio (%) | Dosage (t) | Ratio (%) | Dosage (t) | Ratio (%) | Dosage (t) | Ratio (%) | |
2018 | 18,525.66 | 62.22 | 5702.44 | 19.15 | 3566.02 | 11.98 | 1979.98 | 6.65 |
2019 | 19,102.79 | 61.81 | 5451.56 | 17.64 | 3492.65 | 11.30 | 2856.66 | 9.24 |
2020 | 13,184.73 | 40.23 | 11,208.27 | 34.20 | 3572.53 | 10.90 | 4810.76 | 14.68 |
Mean | 16,937.73 | 54.75 | 7454.09 | 23.66 | 3543.73 | 11.39 | 3215.80 | 10.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, Q.; Ji, Z.; Andom, O.; Wang, X.; Guo, X.; Li, Z. Current Status and Spatiotemporal Evolution of Antibiotic Residues in Livestock and Poultry Manure in China. Agriculture 2023, 13, 1877. https://doi.org/10.3390/agriculture13101877
Li Y, Li Q, Ji Z, Andom O, Wang X, Guo X, Li Z. Current Status and Spatiotemporal Evolution of Antibiotic Residues in Livestock and Poultry Manure in China. Agriculture. 2023; 13(10):1877. https://doi.org/10.3390/agriculture13101877
Chicago/Turabian StyleLi, Yanli, Qingjie Li, Zhengyu Ji, Okbagaber Andom, Xiaoxing Wang, Xueqi Guo, and Zhaojun Li. 2023. "Current Status and Spatiotemporal Evolution of Antibiotic Residues in Livestock and Poultry Manure in China" Agriculture 13, no. 10: 1877. https://doi.org/10.3390/agriculture13101877
APA StyleLi, Y., Li, Q., Ji, Z., Andom, O., Wang, X., Guo, X., & Li, Z. (2023). Current Status and Spatiotemporal Evolution of Antibiotic Residues in Livestock and Poultry Manure in China. Agriculture, 13(10), 1877. https://doi.org/10.3390/agriculture13101877