The Influence of Pre-Chamber Parameters on the Performance of a Two-Stroke Marine Dual-Fuel Low-Speed Engine
Abstract
:1. Introduction
2. CFD Modeling and Validation
2.1. Test Bench
2.2. CFD Model and Validation
3. Simulation Results Analysis
3.1. Effect of PCC Volume on Engine Performance
3.2. Effect of PCC Orifice/Diameter Ratio on an LP-DF Engine
3.2.1. Effect of PCC Orifice Diameter Ratio on Flame Propagation
3.2.2. Effect of PCC Orifice Diameter Ratio on Engine Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Karl, O.; David, R.; Terese, L. Combustion of liquid ammonia and diesel in a compression ignition engine operated in high-pressure dual fuel mode. Fuel 2024, 360, 130269. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. MARPOL Annex VI. Available online: http://www.epa.gov/enforcement/marpol-annex-vi (accessed on 30 November 2015).
- Park, Y.-K.; Kim, B.-S. Catalytic removal of nitrogen oxides (NO, NO2, N2O) from ammonia-fueled combustion exhaust: A review of applicable technologies. Chem. Eng. J. 2023, 461, 141958. [Google Scholar] [CrossRef]
- Niki, Y.; Nitta, Y.; Sekiguchi, H.; Hirata, K. Diesel Fuel Multiple Injection Effects on Emission Characteristics of Diesel Engine Mixed Ammonia Gas Into Intake Air. J. Eng. Gas Turbines Power 2019, 141, 061020. [Google Scholar] [CrossRef]
- Yousefi, A.; Guo, H.; Dev, S.; Liko, B.; Lafrance, S. Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine. Fuel 2022, 314, 122723. [Google Scholar] [CrossRef]
- Li, T.; Zhou, X.; Wang, N.; Wang, X.; Chen, R.; Li, S.; Yi, P. A comparison between low- and high-pressure injection dual-fuel modes of diesel-pilot-ignition ammonia combustion engines. J. Energy Inst. 2022, 102, 362–373. [Google Scholar] [CrossRef]
- Zhou, W.J.; Zhou, S.; Xi, H.Y.; Shreka, M.; Zhang, Z. Numerical study on the effect of fuel rich n-heptane on in-cylinder fuel reforming characteristics in an HCCI engine. Int. J. Chem. Eng. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, S.; Liu, Y.; Li, Y.; Liu, J.; Lai, M.-C.; Deng, B. Numerical investigation the effects of the twin-spark plugs coupled with EGR on the combustion process and emissions characteristics in a lean burn natural gas SI engine. Energy 2020, 206, 118181. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, S.; Zou, J.X.; Majed, S. A numerical study on the pilot injection conditions of a marine 2-stroke lean-burn dual fuel engine. Processes 2020, 8, 1396. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Wu, G. A new skeletal mechanism for diesel-n-butanol blends combustion in engine. Fuel 2020, 264, 116856. [Google Scholar] [CrossRef]
- Lebedevas, S.; Pukalskas, S.; Daukšys, V.; Rimkus, A.; Melaika, M.; Jonika, L. Research on Fuel Efficiency and Emissions of Converted Diesel Engine with Conventional Fuel Injection System for Operation on Natural Gas. Energies 2019, 12, 2413. [Google Scholar] [CrossRef]
- Liu, J.; Yang, F.; Wang, H.; Ouyang, M.; Hao, S. Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing. Appl. Energy 2013, 110, 201–206. [Google Scholar] [CrossRef]
- Raihan, M.S.; Guerry, E.S.; Dwivedi, U.; Srinivasan, K.K.; Krishnan, S.R. Experimental analysis of diesel-ignited methane dual-fuel low-temperature combustion in a single-cylinder diesel engine. J. Energy Eng. 2015, 141, C4014007. [Google Scholar] [CrossRef]
- Wu, Z.; Rutland, C.J.; Han, Z. Numerical evaluation of the effect of methane number on natural gas and diesel dual-fuel combustion. Int. J. Engine Res. 2019, 20, 405–423. [Google Scholar] [CrossRef]
- Kokabi, H.; Najafi, M.; Jazayeri, S.A.; Jahanian, O. Hydrogen and propane implications for reactivity controlled compression ignition combustion engine running on landfill gas and diesel fuel. Int. J. Hydrogen Energy 2021, 46, 31903–31915. [Google Scholar] [CrossRef]
- Kakaee, A.-H.; Rahnama, P.; Paykani, A. Influence of fuel composition on combustion and emissions characteristics of natural gas/diesel RCCI engine. J. Nat. Gas Sci. Eng. 2015, 25, 58–65. [Google Scholar] [CrossRef]
- Duan, X.; Wang, H.K.; Li, Y.; Guo, H.; Liu, J. Numerical simulation the effect of hydrogen addition on the flame propagation and emissions formation in a large-bore lean-burn natural gas SI engine. Energy 2020, 9, 62. [Google Scholar]
- Li, R.; Herreros, J.M.; Tsolakis, A.; Yanget, W. Chemical kinetic study on ignition and flame characteristic of polyoxymethylene di-methyl ether 3 (PODE3). Fuel 2020, 279, 118423. [Google Scholar] [CrossRef]
- Gong, Z.; Feng, L.; Wei, L.; Qu, W.; Li, L. Shock tube and kinetic study on ignition characteristics of lean methane/n-heptane mixtures at low and elevated pressures. Energy 2020, 197, 117242. [Google Scholar] [CrossRef]
- Maghbouli, A.; Saray, R.K.; Shafee, S.; Ghafouri, J. Numerical study of combustion and emission characteristics of dual-fuel engines using 3D-CFD models coupled with chemical kinetics. Fuel 2013, 106, 98–105. [Google Scholar] [CrossRef]
- Zhu, L.; Li, B.; Li, A.; Ji, W.; Qian, Y.; Lu, X.; Huang, Z. Effects of fuel reforming on large-bore low-speed two-stroke dual fuel marine engine combined with EGR and injection strategy. Int. J. Hydrogen Energy 2020, 45, 29505–29517. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, J.; Zhao, Z.; Wang, D.; Huang, Z. Effect of equivalence ratio on combustion and emissions of a dual-fuel natural gas engine ignited with diesel. Appl. Therm. Eng. 2019, 146, 738–751. [Google Scholar] [CrossRef]
- Mavrelos, C.; Theotokatos, G. Numerical investigation of a premixed combustion large marine two-stroke dual fuel engine for optimising engine settings via parametric runs. Energy Convers. Manag. 2018, 160, 48–59. [Google Scholar] [CrossRef]
- Maghbouli, A.; Shafee, S.K.; Saray, R.; Yang, W. A multi-dimensional CFD-chemical kinetics approach in detection and re-duction of knocking combustion in diesel-natural gas dual-fuel engines using local heat release analysis. SAE Int. J. Engines 2013, 6, 777–787. [Google Scholar] [CrossRef]
- Zhou, W.J.; Xi, H.Y.; Zhou, S.; Zhang, Z.; Shreka, M. Numerical study on knock characteristics and mechanism of a heavy duty natural gas/diesel RCCI engine. Int. J. Hydrogen Energy 2022, 47, 37072–37089. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Bore/Stroke | 500/2050 mm |
Engine Speed | 99–124 r/min |
Cylinder Number | 5–8 |
IMEP | 17.1 bar (at R1) |
Engine Output | 5850 kW |
Compression Ratio | 12 |
Number of PCCs | 2 |
Pilot Fuel Injection Timing | −10.5 °CA |
Brake-Specific Pilot Fuel Consumption (BSPC) (GAS Mode at R1) | 1.8 g/kWh |
Brake-Specific Gas Consumption (BSGC) (GAS Mode at R1) | 142.7 g/kWh |
Parameter | Value |
---|---|
Initial cylinder pressure (bar) | 1.46 |
Initial cylinder temperature (K) | 350 |
Initial turbulent kinetic energy (m2/s2) | 21.09 |
Initial turbulence size (m) | 0.0125 |
Cylinder head temperature (K) | 560 |
Piston top (K) | 570 |
Cylinder wall temperature (K) | 356 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Wang, Z.; Zhou, S.; Zhang, M.; Shreka, M. The Influence of Pre-Chamber Parameters on the Performance of a Two-Stroke Marine Dual-Fuel Low-Speed Engine. J. Mar. Sci. Eng. 2024, 12, 1232. https://doi.org/10.3390/jmse12071232
Guo H, Wang Z, Zhou S, Zhang M, Shreka M. The Influence of Pre-Chamber Parameters on the Performance of a Two-Stroke Marine Dual-Fuel Low-Speed Engine. Journal of Marine Science and Engineering. 2024; 12(7):1232. https://doi.org/10.3390/jmse12071232
Chicago/Turabian StyleGuo, Hao, Zhongcheng Wang, Song Zhou, Ming Zhang, and Majed Shreka. 2024. "The Influence of Pre-Chamber Parameters on the Performance of a Two-Stroke Marine Dual-Fuel Low-Speed Engine" Journal of Marine Science and Engineering 12, no. 7: 1232. https://doi.org/10.3390/jmse12071232
APA StyleGuo, H., Wang, Z., Zhou, S., Zhang, M., & Shreka, M. (2024). The Influence of Pre-Chamber Parameters on the Performance of a Two-Stroke Marine Dual-Fuel Low-Speed Engine. Journal of Marine Science and Engineering, 12(7), 1232. https://doi.org/10.3390/jmse12071232