Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field—A Review
Abstract
:1. Introduction
2. Preparation Methods of Hydrogel Coatings
2.1. Surface-Initiated Graft Crosslinking Polymerization
2.1.1. Direct Generation of Reactive Radicals on the Substrate Surface
2.1.2. Introduction of Peroxide Groups on the Substrate Surface
2.1.3. Introduction of Catechol Groups on the Substrate Surface
2.1.4. Introduction of Silane Coupling Agents on the Substrate Surface
2.2. Anchoring the Hydrogel Coating to the Substrate Surface
2.2.1. Click Chemistry for Anchoring Hydrogels to the Substrate Surface
2.2.2. Dopamine Group Functionalized Hydrogels Anchored on the Substrate Surface
2.2.3. Anchoring Hydrogel Layers by Free Radical Polymerization
2.3. LbL Self-Assembly Technique to Coat Crosslinked Hydrogels
3. Hydrogel Coatings in Biomedical Antibacterial Applications
3.1. Bacterial Repellence and Inhibition
3.2. Contact Surface Killing of Bacteria
3.3. Release of Antibacterial Agents
4. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bao, Y.; Li, Z.; Li, Y.; Chen, T.; Cheng, Y.; Xu, M. Recent Advances of Biomedical Materials for Prevention of Post-ESD Esophageal Stricture. Front. Bioeng. Biotechnol. 2021, 9, 792929. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhou, L.; Chiao, M.; Yang, W. Antibacterial hydrogel coating: Strategies in surface chemistry. Adv. Colloid Interface Sci. 2020, 285, 102280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cheng, Z.; Ding, C.; Li, J. Functional biomedical materials derived from proteins in the acquired salivary pellicle. J. Mater. Chem. B 2021, 9, 6507–6520. [Google Scholar] [CrossRef] [PubMed]
- Elbourne, A.; Crawford, R.J.; Ivanova, E.P. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J. Colloid Interface Sci. 2017, 508, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Modaresifar, K.; Azizian, S.; Ganjian, M.; Fratila-Apachitei, L.E.; Zadpoor, A.A. Bactericidal effects of nanopatterns: A systematic review. Acta Biomater. 2019, 83, 29–36. [Google Scholar] [CrossRef]
- Jenkins, J.; Mantell, J.; Neal, C.; Gholinia, A.; Verkade, P.; Nobbs, A.H.; Su, B. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat. Commun. 2020, 11, 1626. [Google Scholar] [CrossRef]
- Linklater, D.P.; Juodkazis, S.; Rubanov, S.; Ivanova, E.P. Comment on “Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli”. ACS Appl. Mater. Interfaces 2017, 9, 29387–29393. [Google Scholar] [CrossRef]
- Bandara, C.D.; Singh, S.; Afara, I.O.; Wolff, A.; Tesfamichael, T.; Ostrikov, K.; Oloyede, A. Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli. ACS Appl. Mater. Interfaces 2017, 9, 6746–6760. [Google Scholar] [CrossRef]
- Hasan, J.; Crawford, R.J.; Ivanova, E.P. Antibacterial surfaces: The quest for a new generation of biomaterials. Trends Biotechnol. 2013, 31, 295–304. [Google Scholar] [CrossRef]
- Takahashi, R.; Shimano, K.; Okazaki, H.; Kurokawa, T.; Nakajima, T.; Nonoyama, T.; King, D.R.; Gong, J.P. Tough Particle-Based Double Network Hydrogels for Functional Solid Surface Coatings. Adv. Mater. Interfaces 2018, 5, 1801018. [Google Scholar] [CrossRef]
- Yao, H.; Wang, J.; Mi, S. Photo Processing for Biomedical Hydrogels Design and Functionality: A Review. Polymers 2017, 10, 11. [Google Scholar] [CrossRef]
- Lee, S.C.; Kwon, I.K.; Park, K. Hydrogels for delivery of bioactive agents: A historical perspective. Adv. Drug Deliv. Rev. 2013, 65, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.T.; Wechsler, M.E.; Peppas, N.A. Advanced biomedical hydrogels: Molecular architecture and its impact on medical applications. Regen. Biomater. 2021, 8, rbab060. [Google Scholar] [CrossRef]
- Muir, V.G.; Burdick, J.A. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem. Rev. 2021, 121, 10908–10949. [Google Scholar] [CrossRef] [PubMed]
- Oliva, N.; Shin, M.; Burdick, J.A. Editorial: Special Issue on Advanced Biomedical Hydrogels. ACS Biomater. Sci. Eng. 2021, 7, 3993–3996. [Google Scholar] [CrossRef] [PubMed]
- Cadamuro, F.; Russo, L.; Nicotra, F. Biomedical Hydrogels Fabricated Using Diels–Alder Crosslinking. Eur. J. Org. Chem. 2021, 2021, 374–382. [Google Scholar] [CrossRef]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Francesko, A.; Petkova, P.; Tzanov, T. Hydrogel Dressings for Advanced Wound Management. Curr. Med. Chem. 2019, 25, 5782–5797. [Google Scholar] [CrossRef]
- Jafari, H.; Ghaffari-Bohlouli, P.; Niknezhad, S.V.; Abedi, A.; Izadifar, Z.; Mohammadinejad, R.; Varma, R.S.; Shavandi, A. Tannic acid: A versatile polyphenol for design of biomedical hydrogels. J. Mater. Chem. B 2022, 10, 5873–5912. [Google Scholar] [CrossRef]
- Taaca, K.L.M.; Prieto, E.I.; Vasquez, M.R. Current Trends in Biomedical Hydrogels: From Traditional Crosslinking to Plasma-Assisted Synthesis. Polymers 2022, 14, 2560. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Yang, L.; Wang, W.; Zhang, J.; Liu, J.; Ren, C.; Wang, S.; Gao, Y.; Huang, P. Thermosensitive micellar hydrogel for enhanced anticancer therapy through redox modulation mediated combinational effects. RSC Adv. 2017, 7, 34755–34762. [Google Scholar] [CrossRef]
- Fu, M.; Liang, Y.; Lv, X.; Li, C.; Yang, Y.Y.; Yuan, P.; Ding, X. Recent advances in hydrogel-based anti-infective coatings. J. Mater. Sci. Technol. 2021, 85, 169–183. [Google Scholar] [CrossRef]
- Prucker, O.; Brandstetter, T.; Rühe, J. Surface-attached hydrogel coatings via C,H-insertion crosslinking for biomedical and bioanalytical applications (Review). Biointerphases 2018, 13, 010801. [Google Scholar] [CrossRef] [PubMed]
- Riga, E.K.; Rühe, J.; Lienkamp, K. Non-Delaminating Polymer Hydrogel Coatings via C,H-Insertion Crosslinking (CHic)-A Case Study of Poly(oxanorbornenes). Macromol. Chem. Phys. 2018, 219, 1800397. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Jin, Y.; Lai, S.; Shi, L.; Fan, W.; Shen, Y. An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking. Chem. Eng. J. 2019, 370, 1228–1238. [Google Scholar] [CrossRef]
- Islam, M.M.; AbuSamra, D.B.; Chivu, A.; Argüeso, P.; Dohlman, C.H.; Patra, H.K.; Chodosh, J.; González-Andrades, M. Optimization of Collagen Chemical Crosslinking to Restore Biocompatibility of Tissue-Engineered Scaffolds. Pharmaceutics 2021, 13, 832. [Google Scholar] [CrossRef] [PubMed]
- Chollet, B.; Li, M.; Martwong, E.; Bresson, B.; Fretigny, C.; Tabeling, P.; Tran, Y. Multiscale Surface-Attached Hydrogel Thin Films with Tailored Architecture. ACS Appl. Mater. Interfaces 2016, 8, 11729–11738. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Cheng, S.; Li, R.; Pan, X.; Zhang, C.; Gu, H.; Xie, A.; Dong, W. Synthesis of cationic hydrogels with tunable physicochemical properties for antibacterial applications. Eur. Polym. J. 2022, 173, 111228. [Google Scholar] [CrossRef]
- Demirkıran, E.; Başyiğit, B.; Altun, G.; Yücetepe, M.; Sağlam, H.; Karaaslan, M. Facile construction of fruit protein based natural hydrogel via intra/inter molecular cross-linking. Food Hydrocoll. 2022, 133, 107899. [Google Scholar] [CrossRef]
- Kojima, C.; Koda, T.; Nariai, T.; Ichihara, J.; Sugiura, K.; Matsumoto, A. Application of Zwitterionic Polymer Hydrogels to Optical Tissue Clearing for 3D Fluorescence Imaging. Macromol. Biosci. 2021, 21, 2100170. [Google Scholar] [CrossRef]
- Stor, D.S.; Andersen, O.S. Bilayer mediated regulation of pore formation by the antimicrobial peptide melittin. Biophys. J. 2022, 121, 217a–218a. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Y.; Hui, A.; Yang, F.; Wang, A. Removal of antibiotics from aqueous solution by using porous adsorbent templated from eco-friendly Pickering aqueous foams. J. Environ. Sci. 2021, 102, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Varani, T.; Abdouss, M.; Azerang, P.; Tahghighi, A. Acetylenic Sulfones and Acetylenic Sulfonamide Analogs: A Novel and Preferable Antimicrobial Drugs Based on Computational Strategies. J. Comput. Biophys. Chem. 2022, 21, 115–122. [Google Scholar] [CrossRef]
- Zhao, S.; Ke, H.; Yang, T.; Peng, Q.; Ge, J.; Yao, L.; Xu, S.; Zhirong, D.; Pan, G. Enhanced Thermal and Antibacterial Properties of Stereo-Complexed Polylactide Fibers Doped With Nano-Silver. Front. Mater. 2022, 9, 775333. [Google Scholar] [CrossRef]
- Ahmad, N.J.; Ansari, M.J. The Use of Zinc Oxide in a Public Healthcare Organization in Riyadh Region. J. Pharm. Res. Int. 2021, 33, 8–12. [Google Scholar] [CrossRef]
- Griffith, L.G.; Naughton, G. Tissue engineering—Current challenges and expanding opportunities. Science 2002, 295, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Spector, M. An interview with Jianwu Dai: Understanding the biological processes underlying regeneration to direct the implementation of biomedical materials. Biomed. Mater. 2020, 15, 030201. [Google Scholar] [CrossRef]
- Beaman, H.T.; Howes, B.; Ganesh, P.; Monroe, M.B.B. Shape memory polymer hydrogels with cell-responsive degradation mechanisms for Crohn’s fistula closure. J. Biomed. Mater. Res. A 2022, 110, 1329–1340. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Robertson, S.F.; Bandyopadhyay, A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 2018, 66, 6–22. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Hong, Z. Unscented Kalman Filter-Based Robust State and Parameter Estimation for Free Radical Polymerization of Styrene with Variable Parameters. Polymers 2022, 14, 973. [Google Scholar] [CrossRef] [PubMed]
- Arango-Santander, S. Bioinspired Topographic Surface Modification of Biomaterials. Materials 2022, 15, 2383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Hu, C.; Yang, L.; Liu, K.; Ge, Y.; Wei, Y.; Wang, J.; Luo, R.; Wang, Y. A conformally adapted all-in-one hydrogel coating: Towards robust hemocompatibility and bactericidal activity. J. Mater. Chem. B 2021, 9, 2697–2708. [Google Scholar] [CrossRef]
- Fu, X.; Liu, X.; Hao, D.; Xiao, W.; Nie, Q.; Meng, J. Nickel-Catcher-Doped Zwitterionic Hydrogel Coating on Nickel–Titanium Alloy Toward Capture and Detection of Nickel Ions. Front. Bioeng. Biotechnol. 2021, 9, 698745. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Yan, C.; Cai, M.; Yang, J.; Wang, X.; Zhou, F.; Liu, W. Continuous Surface Polymerization via Fe(II)-Mediated Redox Reaction for Thick Hydrogel Coatings on Versatile Substrates. Adv. Mater. 2018, 30, 1803371. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Rong, M.; Lin, P.; Bao, M.; Xie, J.; Wang, X.; Huck, W.T.S.; Zhou, F.; Liu, W. Fabrication of 3D Tubular Hydrogel Materials through On-Site Surface Free Radical Polymerization. Chem. Mater. 2018, 30, 6756–6768. [Google Scholar] [CrossRef]
- Wancura, M.; Talanker, M.; Toubbeh, S.; Bryan, A.; Cosgriff-Hernandez, E. Bioactive hydrogel coatings of complex substrates using diffusion-mediated redox initiation. J. Mater. Chem. B 2020, 8, 4289–4298. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.R.; Huang, J.; Chen, M.; Li, Y.; Yuan, M.; Yang, H. Effect of metal ions with reducing properties on hydrogels containing catechol groups. Colloids Surf. Physicochem. Eng. Asp. 2021, 631, 127657. [Google Scholar] [CrossRef]
- Yao, D.; Feng, J.; Wang, J.; Deng, Y.; Wang, C. Synthesis of silicon anode binders with ultra-high content of catechol groups and the effect of molecular weight on battery performance. J. Power Sources 2020, 463, 228188. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Y.; Thappeta, K.R.V.; Subramanian, J.T.L.; Pranantyo, D.; Kang, E.-T.; Duan, H.; Kline, K.; Chan-Park, M.B. In Vivo Anti-Biofilm and Anti-Bacterial Non-Leachable Coating Thermally Polymerized on Cylindrical Catheter. ACS Appl. Mater. Interfaces 2017, 9, 36269–36280. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, P.; Huang, L.; Tan, X.; Zhou, N.; Yang, T.; Qiu, H.; Dai, X.; Michael, S.; Tu, Q.; et al. A tough nitric oxide-eluting hydrogel coating suppresses neointimal hyperplasia on vascular stent. Nat. Commun. 2021, 12, 7079. [Google Scholar] [CrossRef]
- Gevrek, T.N.; Degirmenci, A.; Sanyal, R.; Sanyal, A. Multifunctional and Transformable ‘Clickable’ Hydrogel Coatings on Titanium Surfaces: From Protein Immobilization to Cellular Attachment. Polymers 2020, 12, 1211. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, F.; Lang, S.; Yang, L.; Gao, S.; Wu, D.; Liu, G.; Wang, Y. A Uniform and Robust Bioinspired Zwitterion Coating for Use in Blood-Contacting Catheters with Improved Anti-Inflammatory and Antithrombotic Properties. Macromol. Biosci. 2021, 21, 2100341. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Guo, G.; Wang, Y. Inflammation-directed nanozyme-eluting hydrogel coating promotes vascular tissue repair by restoring reactive oxygen species homeostasis. Chem. Eng. J. 2023, 454, 140556. [Google Scholar] [CrossRef]
- Ran, W.; Zhu, H.; Shen, X.; Zhang, Y. Rheological properties of asphalt mortar with silane coupling agent modified oil sludge pyrolysis residue. Constr. Build. Mater. 2022, 329, 127057. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, W. Toward interface optimization of transparent wood with wood color and texture by silane coupling agent. J. Mater. Sci. 2022, 57, 5825–5838. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Chen, K.; Wang, F.; Feng, C.; Xu, L.; Zhang, D. 3D printed chitosan-gelatine hydrogel coating on titanium alloy surface as biological fixation interface of artificial joint prosthesis. Int. J. Biol. Macromol. 2021, 182, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Pawar, K.N.; Nawpute, A.A.; Tambe, S.; Patil, P.; Ubale, Y.; Patil, A. Dextrose Assisted Sol-Gel Synthesis and Evaluation of Structural Parameters of Li0.5Fe2.5O4 Nanoparticles for Microwave Device Application. Adv. Mater. Res. 2022, 1169, 27–33. [Google Scholar] [CrossRef]
- Li, J.-W. Biosafety of a 3D-printed intraocular lens made of a poly(acrylamide-co-sodium acrylate) hydrogel in vitro and in vivo. Int. J. Ophthalmol. 2020, 13, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Efremov, D.V.; Gerasimova, A.A. Production of Fe–Cr–Co-Based Magnets by Selective Laser Sintering. Steel Transl. 2021, 51, 688–692. [Google Scholar] [CrossRef]
- Deng, Y.; Shavandi, A.; Okoro, O.V.; Nie, L. Alginate modification via click chemistry for biomedical applications. Carbohydr. Polym. 2021, 270, 118360. [Google Scholar] [CrossRef]
- Librando, I.L.; Mahmoud, A.G.; Carabineiro, S.A.C.; Guedes da Silva, M.F.C.; Maldonado-Hódar, F.J.; Geraldes, C.F.G.C.; Pombeiro, A.J.L. Heterogeneous Gold Nanoparticle-Based Catalysts for the Synthesis of Click-Derived Triazoles via the Azide-Alkyne Cycloaddition Reaction. Catalysts 2021, 12, 45. [Google Scholar] [CrossRef]
- Jaisingh, A.; Kapur, G.S.; Nebhani, L. Tuning Melt Strength and Processability of Polyolefins by Addition of a Functionalized Additive Designed via the TEMPO-Driven Thiol-ene Reaction. Ind. Eng. Chem. Res. 2021, 60, 10155–10166. [Google Scholar] [CrossRef]
- Soares, M.I.L.; Cardoso, A.L.; Pinho e Melo, T.M.V.D. Diels–Alder Cycloaddition Reactions in Sustainable Media. Molecules 2022, 27, 1304. [Google Scholar] [CrossRef] [PubMed]
- Magennis, E.P.; Hook, A.L.; Williams, P.; Alexander, M.R. Making Silicone Rubber Highly Resistant to Bacterial Attachment Using Thiol-ene Grafting. ACS Appl. Mater. Interfaces 2016, 8, 30780–30787. [Google Scholar] [CrossRef]
- Leng, J.; He, Y.; Yuan, Z.; Tao, B.; Li, K.; Lin, C.; Xu, K.; Chen, M.; Dai, L.; Li, X.; et al. Enzymatically-degradable hydrogel coatings on titanium for bacterial infection inhibition and enhanced soft tissue compatibility via a self-adaptive strategy. Bioact. Mater. 2021, 6, 4670–4685. [Google Scholar] [CrossRef]
- He, Y.; Leng, J.; Li, K.; Xu, K.; Lin, C.; Yuan, Z.; Zhang, R.; Wang, D.; Tao, B.; Huang, T.J.; et al. A multifunctional hydrogel coating to direct fibroblast activation and infected wound healing via simultaneously controllable photobiomodulation and photodynamic therapies. Biomaterials 2021, 278, 121164. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Pan, L.; Liu, C.; Liu, W.; Li, Y.; Cheng, X.; Jian, X. Enhancing Tissue Adhesion and Osteoblastic Differentiation of MC3T3-E1 Cells on Poly(aryl ether ketone) by Chemically Anchored Hydroxyapatite Nanocomposite Hydrogel Coating. Macromol. Biosci. 2021, 21, 2100078. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, C.; Liu, C.; Li, Y.; Pan, L.; Wang, J.; Jian, X. Surface chemical modification of poly(phthalazinone ether nitrile ketone) through rhBMP-2 and antimicrobial peptide conjugation for enhanced osteogenic and antibacterial activities in vitro and in vivo. Chem. Eng. J. 2021, 424, 130321. [Google Scholar] [CrossRef]
- Khoffi, F.; Khalsi, Y.; Chevrier, J.; Kerdjoudj, H.; Tazibt, A.; Heim, F. Surface modification of polymer textile biomaterials by N2 supercritical jet: Preliminary mechanical and biological performance assessment. J. Mech. Behav. Biomed. Mater. 2020, 107, 103772. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Zhang, L.; Wang, W.; Zhang, J.; He, F.; Yang, J. Design and fabrication of carbon fibers with needle-like nano-HA coating to reinforce granular nano-HA composites. Mater. Sci. Eng. C 2017, 77, 765–771. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, S.; Zhao, Y.; Tao, W.; Yu, X.; Zhi, M. Review of layer-by-layer self-assembly technology for fire protection of flexible polyurethane foam. J. Mater. Sci. 2021, 56, 9605–9643. [Google Scholar] [CrossRef]
- Zhu, D.; Guo, D.; Zhang, L.; Tan, L.; Pang, H.; Ma, H.; Zhai, M. Non-enzymatic xanthine sensor of heteropolyacids doped ferrocene and reduced graphene oxide via one-step electrodeposition combined with layer-by-layer self-assembly technology. Sens. Actuators B Chem. 2019, 281, 893–904. [Google Scholar] [CrossRef]
- Cai, W.; Wu, J.; Xi, C.; Ashe, A.J.; Meyerhoff, M.E. Carboxyl-ebselen-based layer-by-layer films as potential antithrombotic and antimicrobial coatings. Biomaterials 2011, 32, 7774–7784. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zha, G.; Du, H.; Gao, L.; Li, X.; Shen, Z.; Zhu, W. Facile fabrication of ultrathin antibacterial hydrogel films via layer-by-layer “click” chemistry. Polym. Chem. 2014, 5, 6489–6494. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, Y.; Pan, Y.; Wang, Y.; Jiang, L.; Lin, H.; Cheng, Y.; Xu, C.; Lin, D.; Cheng, H. Assessments of ionic release and biocompatibility of Co-Cr and CP-Ti produced by three different manufacturing techniques. Mater. Today Commun. 2022, 30, 103100. [Google Scholar] [CrossRef]
- Hu, F.; Lu, H.; Xu, G.; Lv, L.; Chen, L.; Shao, Z. Carbon quantum dots improve the mechanical behavior of polyvinyl alcohol/polyethylene glycol hydrogel. J. Appl. Polym. Sci. 2022, 139, e52805. [Google Scholar] [CrossRef]
- Zhang, M.-K.; Ling, X.-H.; Zhang, X.-H.; Han, G.-Z. A novel alginate/PVA hydrogel -supported Fe3O4 particles for efficient heterogeneous Fenton degradation of organic dyes. Colloids Surf. Physicochem. Eng. Asp. 2022, 652, 129830. [Google Scholar] [CrossRef]
- Patrick, D.K.; Karasawa, A.; Sonoyama, N. Sodium Polyacrylate Hydrogel Electrolyte Hybridized with Layered Double Hydroxide for Solid-State NiCo/Zinc Battery. J. Electrochem. Soc. 2022, 169, 040559. [Google Scholar] [CrossRef]
- Nakano, H.; Kakinoki, S.; Iwasaki, Y. Long-lasting hydrophilic surface generated on poly(dimethyl siloxane) with photoreactive zwitterionic polymers. Colloids Surf. B Biointerfaces 2021, 205, 111900. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; Chatterjee, K. Injectable and self-healing double network polysaccharide hydrogel as a minimally-invasive delivery platform. Carbohydr. Polym. 2022, 291, 119585. [Google Scholar] [CrossRef]
- Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S.L.; Mutton, R.; Clare, A.S.; Wang, S.; Liu, Y.; Zhao, Q.; D’Souza, F.; et al. Poly(ethylene glycol)-Containing Hydrogel Surfaces for Antifouling Applications in Marine and Freshwater Environments. Biomacromolecules 2008, 9, 2775–2783. [Google Scholar] [CrossRef] [PubMed]
- Johnbosco, C.; Zschoche, S.; Nitschke, M.; Hahn, D.; Werner, C.; Maitz, M.F. Bioresponsive starPEG-heparin hydrogel coatings on vascular stents for enhanced hemocompatibility. Mater. Sci. Eng. C 2021, 128, 112268. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, M.; Cai, Y.; Jiang, B.; Zhang, Y.; Yuan, B.; Zhou, F.; Cao, C. Muscle-inspired MXene/PVA hydrogel with high toughness and photothermal therapy for promoting bacteria-infected wound healing. Biomater. Sci. 2022, 10, 1068–1082. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Li, M.; Liu, J.; Song, L.; Tang, K. Near-infrared responsive quaternized chitosan-coated MoS2/poly(vinyl alcohol) hydrogel with improved mechanical and rapid antibacterial properties. Eur. Polym. J. 2022, 180, 111593. [Google Scholar] [CrossRef]
- Vinshtok, Y.; Cassuto, D.; Belenky, I. Pneumatic Delivery of Hyaluronan for Skin Remodeling: A Comparative Review. J. Drugs Dermatol. 2020, 19, 170–175. [Google Scholar] [CrossRef]
- Herrero, A.; Gonot Gaschard, M.; Bouyabrine, H.; Perrey, J.; Picot, M.-C.; Guillon, F.; Fabre, J.-M.; Souche, R.; Navarro, F. Étude comparative des prothèses biologiques versus synthétiques dans le traitement des éventrations abdominales classées grade II/III du Ventral Hernia Working Group. J. Chir. Viscérale 2022, 159, 102–111. [Google Scholar] [CrossRef]
- Kalaba, S.; Gerhard, E.; Winder, J.S.; Pauli, E.M.; Haluck, R.S.; Yang, J. Design strategies and applications of biomaterials and devices for Hernia repair. Bioact. Mater. 2016, 1, 2–17. [Google Scholar] [CrossRef]
- Guillaume, O.; Pérez-Tanoira, R.; Fortelny, R.; Redl, H.; Moriarty, T.F.; Richards, R.G.; Eglin, D.; Petter Puchner, A. Infections associated with mesh repairs of abdominal wall hernias: Are antimicrobial biomaterials the longed-for solution? Biomaterials 2018, 167, 15–31. [Google Scholar] [CrossRef]
- Bilsel, Y.; Abci, I. The search for ideal hernia repair; mesh materials and types. Int. J. Surg. 2012, 10, 317–321. [Google Scholar] [CrossRef]
- Schreinemacher, M.H.F.; van Barneveld, K.W.Y.; Dikmans, R.E.G.; Gijbels, M.J.J.; Greve, J.-W.M.; Bouvy, N.D. Coated meshes for hernia repair provide comparable intraperitoneal adhesion prevention. Surg. Endosc. 2013, 27, 4202–4209. [Google Scholar] [CrossRef]
- Wolf, M.T.; Carruthers, C.A.; Dearth, C.L.; Crapo, P.M.; Huber, A.; Burnsed, O.A.; Londono, R.; Johnson, S.A.; Daly, K.A.; Stahl, E.C.; et al. Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response: Polypropylene Surgical Mesh Coated With ECM. J. Biomed. Mater. Res. A 2014, 102, 234–246. [Google Scholar] [CrossRef]
- Serafim, A.; Cecoltan, S.; Olăreț, E.; Dragusin, D.-M.; Vasile, E.; Popescu, V.; Manolescu Mastalier, B.S.; Iovu, H.; Stancu, I.-C. Bioinspired Hydrogel Coating Based on Methacryloyl Gelatin Bioactivates Polypropylene Meshes for Abdominal Wall Repair. Polymers 2020, 12, 1677. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Shen, B.; Chen, L.; Feng, J. Ultra-high strength poly(N-(2-hydroxyethyl)acrylamide)/chitosan hydrogel with “repelling and killing” bacteria property. Carbohydr. Polym. 2019, 225, 115160. [Google Scholar] [CrossRef]
- Li, R.; He, S.; Yin, K.; Zhang, B.; Yi, Y.; Zhang, M.; Pei, N.; Huang, L. Effects of N-terminal modifications on the stability of antimicrobial peptide SAMP-A4 analogues against protease degradation. J. Pept. Sci. 2021, 27, e3352. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; He, G.; Ning, X.; Chen, X.; Fan, L.; Yang, M.; Yin, Y.; Cai, W. Preparation and properties of O-chitosan quaternary ammonium salt/polyvinyl alcohol/graphene oxide dual self-healing hydrogel. Carbohydr. Polym. 2022, 287, 119318. [Google Scholar] [CrossRef] [PubMed]
- Gevrek, T.N.; Yu, K.; Kizhakkedathu, J.N.; Sanyal, A. Thiol-Reactive Polymers for Titanium Interfaces: Fabrication of Antimicrobial Coatings. ACS Appl. Polym. Mater. 2019, 1, 1308–1316. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, H.; Lu, J.; Huang, S.; Zhu, H.; Li, L. Theoretical and Experimental Optimization of the Graft Density of Functionalized Anti-Biofouling Surfaces by Cationic Brushes. Membranes 2020, 10, 431. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Luan, S.; Shi, H.; Xu, X.; Zhang, J.; Yuan, S.; Yang, Y.; Yin, J. Hierarchical Polymer Brushes with Dominant Antibacterial Mechanisms Switching from Bactericidal to Bacteria Repellent. Biomacromolecules 2016, 17, 1696–1704. [Google Scholar] [CrossRef]
- Deng, Z.; Li, M.; Hu, Y.; He, Y.; Tao, B.; Yuan, Z.; Wang, R.; Chen, M.; Luo, Z.; Cai, K. Injectable biomimetic hydrogels encapsulating Gold/metal–organic frameworks nanocomposites for enhanced antibacterial and wound healing activity under visible light actuation. Chem. Eng. J. 2021, 420, 129668. [Google Scholar] [CrossRef]
- Qi, X.; Gan, J.; Zhao, Z.; Li, N.; Chen, Y.; Jin, T. Chitosan Sponge/Cu–WO3−x Composite for Photodynamic Therapy of Wound Infection. Langmuir 2023, 39, 2631–2640. [Google Scholar] [CrossRef]
- Hoque, J.; Haldar, J. Direct Synthesis of Dextran-based Antibacterial Hydrogels for Extended Release of Biocides and Eradication of Topical Biofilms. ACS Appl. Mater. Interfaces 2021, 9, 15975–15985. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Xu, F.; Wei, W.; Yang, C.; Wang, D.; Shi, X. Electrochemical synthesis of chitosan/silver nanoparticles multilayer hydrogel coating with pH-dependent controlled release capability and antibacterial property. Colloids Surf. B Biointerfaces 2021, 202, 111711. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Zhang, H.; Liu, H.; Wang, S.; Li, J.; Zhou, Q.; Chen, X.; Ren, X.; Jing, Y.; Deng, Y.; et al. Rational Design of Multifunctional CuS Nanoparticle-PEG Composite Soft Hydrogel-Coated 3D Hard Polycaprolactone Scaffolds for Efficient Bone Regeneration. Adv. Funct. Mater. 2022, 32, 2202470. [Google Scholar] [CrossRef]
- Chandna, S.; Paul, S.; Kaur, R.; Gogde, K.; Bhaumik, J. Photodynamic Lignin Hydrogels: A Versatile Self-Healing Platform for Sustained Release of Photosensitizer Nanoconjugates. ACS Appl. Polym. Mater. 2022, 4, 8962–8976. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Wang, D.; Peng, F.; Zhao, X.; Liang, C.; Li, H.; Wang, H. Thermosensitive -hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. Mater. Sci. Eng. C 2021, 122, 111878. [Google Scholar] [CrossRef]
- Xiao, H. Preparation and Biocompatibility of REDOX Responsive C-HA-Cys-Allicin Hydrogel Coatings; Southwest Jiaotong University: Chengdu, China, 2021. [Google Scholar]
- Andrade del Olmo, J.; Alonso, J.M.; Sáez-Martínez, V.; Benito-Cid, S.; Pérez-González, R.; Vilas-Vilela, J.L.; Pérez-Álvarez, L. Hyaluronic acid-based hydrogel coatings on Ti6Al4V implantable biomaterial with multifunctional antibacterial activity. Carbohydr. Polym. 2023, 301, 120366. [Google Scholar] [CrossRef] [PubMed]
Hydrogel Type | Raw Material | Advantages | Disadvantages |
---|---|---|---|
Natural hydrogel | Collagen (protein) | Low antigenicity, Low inflammatory response, Excellent biological properties | High cost, high possibility of thrombosis, low mechanical strength, and difficult modification |
Gelatin (protein) | Low cost, Low immunogenicity, Biodegradable and biocompatible, | Poor stability at high temperature | |
Silk fibroin (protein) | Excellent mechanical properties, Low immunogenicity, Blood clots less likely to form | Difficult source and slow gelling | |
Glycosaminoglycan—Hyaluronic acid and Chondroitin sulfate (polysaccharide) | Mimics extracellular matrix components, Biodegradable, Binding cytokines | Degrades rapidly in vivo and requires crosslinking to stabilize | |
Chitosan (polysaccharide) | Antibacterial, Low cost, Biocompatibility and biodegradability | Poor mechanical performance | |
Synthetic hydrogel | Polyethylene glycol (PEG) | Biodegradable, non-immunogenic | Lack of adhesive support |
Polyglutamic acid (PGA) | Biodegradable by hydrolysis, Thermoplastic, Mechanical properties are adjustable | Physical crosslinking is weak, hydrolytic products can induce inflammatory reaction and degrade rapidly | |
Polylactic acid (PLA) and copolymer | Biodegradable by hydrolysis, Good mechanical properties It is soluble in organic solvents | Hydrolyzed byproducts can cause an inflammatory response |
First Author | Publication Year | Main Components of Hydrogel Coating | Loaded Substance | Coating Preparation Method | Coating Adhesion Principle | Crosslinking Agent | Function |
---|---|---|---|---|---|---|---|
Zhang [42] | 2021 | Acrylamide Acrylic acid | Ag nanoparticles/Antibiotics/Antimicrobial peptides | Photografted surfaces induce free radical polymerization | Dehydrogenation of benzophenone forms active free radicals on the main chain of the polyvinyl chloride polymer and induces monomer polymerization | UV crosslinking | Antithrombotic, antibacterial, effectively reduces platelet adhesion |
Fu [43] | 2021 | HEMA, DMAPS, MMA | CS2 | Ultraviolet photografting | Free radical polymerization | PEGDMA | Antibacterial and captures Ni+ through chelation of CS2 |
Wancura [46] | 2020 | PEGDA, APS, Functional gelatin | Protein | Redox mediated crosslinking technique | S2O82− and Fe2+ undergo redox reaction to form SO42− and free radicals and trigger free radical cross-linking | Multi-layer structure with different functional characteristics can be generated and the thickness can be controlled to enhance the cell adhesion function | |
Zhou [49] | 2017 | Polyethylene glycol dimethacrylate (PEGDMA) | Atom transfer radical polymerization (ATRP) | BiBB | Has good anti-biofilm and antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA) | ||
Chen [50] | 2021 | GelGA, GelMA | Organic selenium | Apply and then light cure | Withstands balloon dilation, inhibits smooth muscle cell hyperproliferation, prevents thrombosis, and promotes NO production | ||
Tugce [51] | 2020 | FuMaMAPEGMEMA | Biotin-benzyltetrazine | Rotating coating method (involving click chemistry) | Dopamine methyl acrylamide is anchored to the surface of titanium by catechol group, and methacrylate group is bonded to it by covalent bond | DMPA | Multifunctional hydrogels promote cell adhesion and proliferation |
Liu [52] | 2021 | Poly (2-methylacryloxyethyl phosphate choline—dopamine methacrylate) (pMPCDA) copolymer | Mussel shell excitation chemical method | Michael addition between catechol and amino group, Schiff base addition and other reaction mechanisms | Anti-inflammatory and antithrombotic | ||
Wu [56] | 2021 | Chitosan, gelatin | Ag+ | 3D printing technology | Silane coupling | Sodium Citrate | Promotes cell adhesion and bone growth |
First Author | Publication Year | Main Components of Hydrogel Coating | Loaded Substance | Coating Preparation Method | Coating Adhesion Principle | Crosslinking Agent | Function |
---|---|---|---|---|---|---|---|
Leng Jin [65] | 2021 | GelMA, HAMA | UV crosslinking | ZnO layer anchored by catechol group on titanium surface | Photo-crosslinking | Reduce the toxicity of Zn2+, improve soft tissue compatibility and antibacterial ability | |
He Ye [66] | 2021 | GelMA | Photosensitizer Ce6-loaded polydopamine nanoparticles | After application, UV lamp crosslinking is performed | Anchored to the titanium surface by catecholic groups | Photo-crosslinking | Antibacterial, promotes cell adhesion and proliferation |
Liu [67] | 2021 | Type A gelatin, AA, AAc-NHS ester, methacrylate anhydride monomer | Nano hydroxyapatite | Spin-coating method | Chemical bond anchoring | Ultraviolet light crosslinking | Promotes osteoblast differentiation and cell adhesion, and promotes wound healing |
First Author | Publication Year | Main Components of Hydrogel Coating | Coating Preparation Method | Coating Adhesion Principle | Crosslinking Agent | Function |
---|---|---|---|---|---|---|
Cai [73] | 2012 | e-PEI, Alg | Alternate deposition method | Two-step annealing stabilizes the film onto the surface of the material | EDC | Antithrombotic, antibacterial |
Wang [74] | 2014 | POEGDMAM, POEGMS | LbL thiol–ene “click” reactions | POEGDMAM first reacted with the thiols on the surface to form a single layer of polymer. Subsequently, POEGMS reacted with the immobilized ene groups on the polymer surface to give the second layer. Repeated deposition of the polymers gave the corresponding multilayer films. | Antibacterial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, T.; Shi, Q.; Chen, M.; Yu, W.; Yang, T. Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field—A Review. J. Funct. Biomater. 2023, 14, 243. https://doi.org/10.3390/jfb14050243
Peng T, Shi Q, Chen M, Yu W, Yang T. Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field—A Review. Journal of Functional Biomaterials. 2023; 14(5):243. https://doi.org/10.3390/jfb14050243
Chicago/Turabian StylePeng, Tai, Qi Shi, Manlong Chen, Wenyi Yu, and Tingting Yang. 2023. "Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field—A Review" Journal of Functional Biomaterials 14, no. 5: 243. https://doi.org/10.3390/jfb14050243
APA StylePeng, T., Shi, Q., Chen, M., Yu, W., & Yang, T. (2023). Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field—A Review. Journal of Functional Biomaterials, 14(5), 243. https://doi.org/10.3390/jfb14050243