Collarless Polished Tapered Stems of Identical Shape Provide Differing Outcomes for Stainless Steel and Cobalt Chrome: A Biomechanical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implant Preparation
2.2. An Experimental Device
2.3. Stem and Tantalum Ball Insertion
2.4. Loading Method and Loading Period
2.5. Measurement of Stem Subsidence
2.6. Measurement of Compressive Force at the Bone–Cement Interface
2.7. Measurement of Cement Thickness
2.8. Statistical Analysis
3. Results
3.1. Surface Roughness of the Stem before the Experiment
3.2. The Amount of Stem Subsidence (Figure 5)
3.3. Compressive Force at the Bone–Cement Interface
3.4. Movement of Tantalum Balls
3.5. Cement Thickness
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Collis, D.K.; Mohler, C.G. Comparison of clinical outcomes in total hip arthroplasty using rough and polished cemented stems with essentially the same geometry. J. Bone Jt. Surg. Am. 2002, 84, 586–592. [Google Scholar] [CrossRef]
- Della Valle, A.G.; Zoppi, A.; Peterson, M.G.E.; Salvati, E.A. A Rough Surface Finish Adversely Affects the Survivorship of a Cemented Femoral Stem. Clin. Orthop. Relat. Res. 2005, 436, 158–163. [Google Scholar] [CrossRef]
- Hamadouche, M.; Baqué, F.; Lefevre, N.; Kerboull, M. Minimum 10-year survival of Kerboull cemented stems according to surface finish. Clin. Orthop. Relat. Res. 2008, 466, 332–339. [Google Scholar] [CrossRef]
- Howie, D.; Middleton, R.G.; Costi, K. Loosening of matt and polished cemented femoral stems. J. Bone Jt. Surg. Br. 1998, 80, 573–576. [Google Scholar] [CrossRef]
- Carli, A.V.; Negus, J.J.; Haddad, F.S. Periprosthetic femoral fractures and trying to avoid them what is the contribution of femoral component design to the increased risk of periprosthetic femoral fracture? Bone Jt. J. 2017, 99-B (Suppl. A1), 50–59. [Google Scholar] [CrossRef]
- Raut, S.; Parker, M.J. Medium to long term follow up of a consecutive series of 604 Exeter Trauma Stem Hemiarthroplasties (ETS) for the treatment of displaced intracapsular femoral neck fractures. Injury 2016, 47, 721–724. [Google Scholar] [CrossRef]
- Mellner, C.; Mohammed, J.; Larsson, M.; Esberg, S.; Szymanski, M.; Hellström, N.; Chang, C.; Berg, H.E.; Sköldenberg, O.; Knutsson, B.; et al. Increased risk for postoperative periprosthetic fracture in hip fracture patients with the Exeter stem than the anatomic SP2 Lubinus stem. Eur. J. Trauma Emerg. Surg. 2021, 47, 803–809. [Google Scholar] [CrossRef]
- Scott, T.; Salvatore, A.; Woo, P.; Lee, Y.-Y.; Salvati, E.A.; Della Valle, A.G. Polished, Collarless, Tapered, Cemented Stems for Primary Hip Arthroplasty May Exhibit High Rate of Periprosthetic Fracture at Short-Term Follow-Up. J. Arthroplast. 2018, 33, 1120–1125. [Google Scholar] [CrossRef]
- Palan, J.; Smith, M.C.; Gregg, P.; Mellon, S.; Kulkarni, A.; Tucker, K.; Blom, A.W.; Murray, D.W.; Pandit, H. The influence of cemented femoral stem choice on the incidence of revision for periprosthetic fracture after primary total hip arthroplasty: An analysis of national joint registry data. Bone Jt. J. 2016, 98-B, 1347–1354. [Google Scholar] [CrossRef]
- Lamb, J.; Jain, S.; King, S.; West, R.; Pandit, H. Risk Factors for Revision of Polished Taper-Slip Cemented Stems for Periprosthetic Femoral Fracture After Primary Total Hip Replacement: A Registry-Based Cohort Study from the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man. J. Bone Jt. Surg. 2020, 102, 1600–1608. [Google Scholar] [CrossRef]
- Tsuda, R. Differences in mechanical behavior between Cobalt-chrome alloy and Stainless-steel alloy in polished tapered femoral stems fixed with bone cement. J. Kanazawa Med. Univ. 2016, 41, 1–9. (In Japanese) [Google Scholar]
- Keeling, P.; Howell, J.R.; Kassam, A.-A.M.; Sathu, A.; Timperley, A.J.; Hubble, M.J.; Wilson, M.J.; Whitehouse, S.L. Long-Term Survival of the Cemented Exeter Universal Stem in Patients 50 Years and Younger: An Update on 130 Hips. J. Arthroplast. 2020, 35, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://nagumo-ss.com/works/ (accessed on 20 March 2023). (In Japanese).
- Kaneuji, A.; Yamada, K.; Hirosaki, K.; Takano, M.; Matsumoto, T. Stem subsidence of polished and rough double-taper stems: In vitro mechanical effects on the cement-bone interface. Acta Orthop. 2009, 80, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, E.; Kaneuji, A.; Tsuda, R.; Numata, Y.; Ichiseki, T.; Fukui, K.; Kawahara, N. The influence of cement thickness on stem subsidence and cement creep in a collarless polished tapered stem: When are thick cement mantles detrimental? Bone Jt. Res. 2017, 6, 351–357. [Google Scholar] [CrossRef]
- Numata, Y.; Kaneuji, A.; Kerboull, L.; Takahashi, E.; Ichiseki, T.; Fukui, K.; Tsujioka, J.; Kawahara, N. Biomechanical behaviour of a French femoral component with thin cement mantle: The “French paradox” may not be a paradox after all. Bone Jt. Res. 2018, 7, 485–493. [Google Scholar] [CrossRef]
- Lee, A.J.C.; Ling, R.S.M.; Gheduzzi, S.; Simon, J.-P.; Renfro, R.J. Factors affecting the mechanical and viscoelastic properties of acrylic bone cement. J. Mater. Sci. Mater. Med. 2002, 13, 723–733. [Google Scholar] [CrossRef]
- Bergmann, G.; Graichen, F.; Rohlmann, A. Hip joint loading during walking and running, measured in two patients. J. Biomech. 1993, 26, 969–990. [Google Scholar] [CrossRef]
- Takegami, Y.; Seki, T.; Osawa, Y.; Imagama, S. Comparison of periprosthetic femoral fracture torque and strain pattern of three types of femoral components in experimental model. Bone Jt. Res. 2022, 11, 270–277. [Google Scholar] [CrossRef]
- Hirata, M.; Oe, K.; Kaneuji, A.; Uozu, R.; Shintani, K.; Saito, T. Relationship between the surface roughness of material and bone cement: An increased “polished” stem may result in the excessive taper-slip. Materials 2021, 14, 3702. [Google Scholar] [CrossRef]
- Grammatopoulos, G.; Pandit, H.; Kambouroglou, G.; Deakin, M.; Gundle, R.; McLardy-Smith, P.; Taylor, A.; Murray, D. A unique peri-prosthetic fracture pattern in well fixed femoral stems with polished, tapered, collarless design of total hip replacement. Injury 2011, 42, 1271–1276. [Google Scholar] [CrossRef]
- Morishima, T.; Ginsel, B.L.; Choy, G.G.; Wilson, L.J.; Whitehouse, S.L.; Crawford, R.W. Periprosthetic fracture torque for short versus standard cemented hip stems: An experimental in vitro study. J. Arthroplast. 2014, 29, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Brodén, C.; Mukka, S.; Muren, O.; Eisler, T.; Boden, H.; Stark, A.; Sköldenberg, O. High risk of early periprosthetic fractures after primary hip arthroplasty in elderly patients using a cemented, tapered, polished stem. Acta Orthop. 2015, 86, 169–174. [Google Scholar] [CrossRef]
- Baryeh, K.; Mendis, J.; Sochart, D.H. Temporal Subsidence Patterns of Cemented Polished Taper-Slip Stems: A Systematic Review. EFORT Open Rev. 2021, 6, 331–342. [Google Scholar] [CrossRef]
- Korsnes, L.; Gottvall, A.; Buttazzoni, C.; Mints, M. Undersizing the Exeter stem in hip hemiarthroplasty increases the risk of periprosthetic fracture. HIP Int. 2019, 30, 469–473. [Google Scholar] [CrossRef] [PubMed]
SUS Group | CoCr Group | ||||||
---|---|---|---|---|---|---|---|
No.1 | No.2 | No.3 | No.1 | No.2 | No.3 | ||
Front | proximal | 50.67 (22.19) | 35.00 (9.64) | 49.33 (22.12) | 54.00 (1.00) | 38.67 (0.58) | 46.33 (1.15) |
middle | 41.33 (3.21) | 40.00 (3.61) | 43.00 (3.46) | 48.33 (3.06) | 49.00 (5.29) | 46.33 (4.04) | |
distal | 58.67 (10.40) | 66.33 (6.03) | 54.33 (10.26) | 54.33 (8.50) | 55.33 (14.01) | 57.33 (8.14) | |
Back | proximal | 47.00 (1.73) | 32.00 (2.65) | 43.67 (2.31) | 60.00 (7.21) | 51.33 (6.43) | 42.33 (1.52) |
middle | 57.33 (10.12) | 37.00 (1.00) | 59.00 (10.39) | 56.33 (3.21) | 53.00 (5.57) | 42.00 (5.29) | |
distal | 67.00 (8.89) | 45.67 (9.02) | 65.67 (9.45) | 64.33 (10.50) | 68.33 (7.64) | 58.67 (1.53) |
SUS1 | SUS2 | SUS3 | CoCr1 | CoCr2 | CoCr3 | p Value | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Position of Ball | Medial | Lateral | Anterior | Medial | Lateral | Anterior | Medial | Lateral | Anterior | Medial | Lateral | Anterior | Medial | Lateral | Anterior | Medial | Lateral | Anterior | |
Number of balls | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | |
Stem subsidence (mm) | 0.36527 | 0.14203 | 0.26417 | 0.49105 | 0.54482 | 0.39862 | |||||||||||||
Horizontal/Vertical movement of ball (A) | 0.0926 | 0.7883 | 0.5541 | 0.0811 | 0.3944 | 0.2513 | 0.0244 | 0.6087 | 0.1162 | 0.1077 | 2.0332 | 0.1863 | 0.1667 | 0.3774 | 0.1130 | 0.0515 | 5.5714 | 0.3562 | |
Vertical movement of ball/ Stem subsidence (B) | 0.4435 | 0.4184 | 0.2378 | 1.0420 | 0.5622 | 0.7456 | 0.1552 | 0.0871 | 0.1313 | 0.3971 | 0.0697 | 0.1445 | 0.0661 | 0.0973 | 0.0631 | 0.2433 | 0.0176 | 0.0609 | |
Mean ± SD (A) | 0.3235 (0.2751) | 0.9959 (1.8237) | 0.863 | ||||||||||||||||
Mean ± SD (B) | 0.4248 (0.3184) | 0.1288 (0.1199) | 0.008 |
SUS Group | CoCr Group | |||||||
---|---|---|---|---|---|---|---|---|
Medial | Lateral | Anterior | Posterior | Medial | Lateral | Anterior | Posterior | |
No.1 | 2.23 (0.334) | 1.95 (0.250) | 1.73 (0.179) | 1.38 (0.083) | 2.28 (0.130) | 2.1 (0.187) | 1.63 (0.148) | 1.33 (0.083) |
No.2 | 1.98 (0.192) | 2.03 (0.148) | 1.5 (0.071) | 1.28 (0.083) | 2.38 (0.083) | 2.23 (0.109) | 1.53 (0.109) | 1.6 (0.071) |
No.3 | 2.38 (0.130) | 2.28 (0.130) | 1.55 (0.112) | 1.50 (0.122) | 2.10 (0.158) | 2.13 (0.311) | 1.53 (0.148) | 1.30 (0.071) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaneuji, A.; Chen, M.; Takahashi, E.; Takano, N.; Fukui, M.; Soma, D.; Tachi, Y.; Orita, Y.; Ichiseki, T.; Kawahara, N. Collarless Polished Tapered Stems of Identical Shape Provide Differing Outcomes for Stainless Steel and Cobalt Chrome: A Biomechanical Study. J. Funct. Biomater. 2023, 14, 262. https://doi.org/10.3390/jfb14050262
Kaneuji A, Chen M, Takahashi E, Takano N, Fukui M, Soma D, Tachi Y, Orita Y, Ichiseki T, Kawahara N. Collarless Polished Tapered Stems of Identical Shape Provide Differing Outcomes for Stainless Steel and Cobalt Chrome: A Biomechanical Study. Journal of Functional Biomaterials. 2023; 14(5):262. https://doi.org/10.3390/jfb14050262
Chicago/Turabian StyleKaneuji, Ayumi, Mingliang Chen, Eiji Takahashi, Noriyuki Takano, Makoto Fukui, Daisuke Soma, Yoshiyuki Tachi, Yugo Orita, Toru Ichiseki, and Norio Kawahara. 2023. "Collarless Polished Tapered Stems of Identical Shape Provide Differing Outcomes for Stainless Steel and Cobalt Chrome: A Biomechanical Study" Journal of Functional Biomaterials 14, no. 5: 262. https://doi.org/10.3390/jfb14050262
APA StyleKaneuji, A., Chen, M., Takahashi, E., Takano, N., Fukui, M., Soma, D., Tachi, Y., Orita, Y., Ichiseki, T., & Kawahara, N. (2023). Collarless Polished Tapered Stems of Identical Shape Provide Differing Outcomes for Stainless Steel and Cobalt Chrome: A Biomechanical Study. Journal of Functional Biomaterials, 14(5), 262. https://doi.org/10.3390/jfb14050262