Analysis of the Effect of Thickness on the Performance of Polymeric Heart Valves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry and Mesh Generation
2.2. FSI Approach
2.3. Boundary Conditions
2.4. Material Properties and Thickness of PHVs
3. Results
3.1. Valve Performance Parameters
3.2. Valve Dynamics
4. Discussion
Material | Elastic Modulus (E) | Thickness | Test Standard | Results | References |
---|---|---|---|---|---|
POSS−PCU | E = 26.2 MPa | 0.10 mm | In vitro hydrodynamic assessment: ISO 5840−3 | EOA = 3.34 cm2, RF = 4.68% | [18] |
E = 23.0 MPa | 0.15 mm | EOA = 3.13 cm2, RF = 10.77% | |||
E = 15.9 MPa | 0.20 mm | EOA = 2.69 cm2, RF = 12.34% (10 cycles) | |||
xSIBS | E = 2.8 MPa | Various thicknesses (0.15–0.25 mm) | In vitro hydrodynamic assessment: ISO 5840−3 | EOA = 1.8 ± 0.04 cm2, RF = 7.5 ± 1.0% (400 million cycles) | [7] |
EOA = 1.7 cm2, RF = 16.7% (10 cycles) | [8] | ||||
PEGDA−ISF | E = 4.54 ± 0.43 MPa | 0.4 mm | In vitro hydrodynamic assessment: ISO 5840−3 | EOA = 2.30 cm2, RF = 14.5% (10 cycles) | [21] |
LLDPE−HA * | E > 76.49 ± 1.86 MPa | 0.08 mm | In vitro hydrodynamic assessment: a pulsatile flow driving the PHV, 1 s is one cycle. | EOA= 2.08 ± 0.04 cm2, RF= 11.23 ± 0.55 (60 cycles) | [22] |
PU | E = 3.67 MPa | 0.15 mm | In vitro hydrodynamic assessment: a pulsatile flow driving the PHV, 1 s is one cycle. | GOA = 3.90 cm2 (24 cycles) | [50] |
E = 8 MPa | 0.16 mm | FSI: Pressure difference (600 bpm) (inlet) | GOA = 2.83 cm2 (3 cycles) | [25] | |
Bionate thermoplastic polycarbonate urethane | E = 23.93 MPa | 0.127 mm | FSI: low rate that was equal to 4.5 L/min of CO (inlet) and a mean arterial pressure of 100 mmHg (outlet) | GOA = 3.31 cm2, RF = 5.64% (4 cycles) | [23] |
SEPS | E = 3.2 MPa | 0.20 mm | FSI: flow rate (inlet) and zero pressure (outlet) | GOA = 2.24 cm2 (0.4 s) | [24] |
Two leaflets with a thickness of 0.36 mm and one leaflet of 0.39 mm | FSI: pressure difference corresponded to a flow rate of 4 L/min | GOA = 1.81 cm2 (2 cycles) | [48] |
Limitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dvir, D.; Bourguignon, T.; Otto, C.M.; Hahn, R.T.; Rosenhek, R.; Webb, J.G.; Treede, H.; Sarano, M.E.; Feldman, T.; Wijeysundera, H.; et al. Standardized Definition of Structural Valve Degeneration for Surgical and Transcatheter Bioprosthetic Aortic Valves. Circulation 2018, 137, 388–399. [Google Scholar] [CrossRef]
- Iung, B.; Rodés-Cabau, J. The optimal management of anti-thrombotic therapy after valve replacement: Certainties and uncertainties. Eur. Hear. J. 2014, 35, 2942–2949. [Google Scholar] [CrossRef]
- Li, R.L.; Russ, J.; Paschalides, C.; Ferrari, G.; Waisman, H.; Kysar, J.W.; Kalfa, D. Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing. Biomaterials 2019, 225, 119493. [Google Scholar] [CrossRef]
- Rezvova, M.A.; Klyshnikov, K.Y.; Gritskevich, A.A.; Ovcharenko, E.A. Polymeric Heart Valves Will Displace Mechanical and Tissue Heart Valves: A New Era for the Medical Devices. Int. J. Mol. Sci. 2023, 24, 3963. [Google Scholar] [CrossRef]
- Ghanbari, H.; Viatge, H.; Kidane, A.G.; Burriesci, G.; Tavakoli, M.; Seifalian, A.M. Polymeric heart valves: New materials, emerging hopes. Trends Biotechnol. 2009, 27, 359–367. [Google Scholar] [CrossRef]
- Nazir, R. Collagen–hyaluronic acid based interpenetrating polymer networks as tissue engineered heart valve. Mater. Sci. Technol. 2016, 32, 871–882. [Google Scholar] [CrossRef]
- Rotman, O.M.; Kovarovic, B.; Bianchi, M.; Slepian, M.J.; Bluestein, D. In Vitro Durability and Stability Testing of a Novel Polymeric Transcatheter Aortic Valve. ASAIO J. 2020, 66, 190–198. [Google Scholar] [CrossRef]
- Rotman, O.M.; Kovarovic, B.; Chiu, W.-C.; Bianchi, M.; Marom, G.; Slepian, M.J.; Bluestein, D. Novel Polymeric Valve for Transcatheter Aortic Valve Replacement Applications: In Vitro Hemodynamic Study. Ann. Biomed. Eng. 2019, 47, 113–125. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Zeng, H.; Liu, D.; Ji, Z.; Xu, X.; Jia, X.; Jiang, P.; Fan, Z.; Wang, X.; et al. Biomechanically Compatible Hydrogel Bioprosthetic Valves. Chem. Mater. 2022, 34, 6129–6141. [Google Scholar] [CrossRef]
- Yahya, E.B.; Amirul, A.A.; H.P.S., A.K.; Olaiya, N.G.; Iqbal, M.O.; Jummaat, F.; A.K., A.S.; Adnan, A.S. Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine. Polymers 2021, 13, 1612. [Google Scholar] [CrossRef]
- Wang, Q.; McGoron, A.J.; Bianco, R.; Kato, Y.; Pinchuk, L.; Schoephoerster, R.T. In-vivo assessment of a novel polymer (SIBS) trileaflet heart valve. J. Hear. Valve Dis. 2010, 19, 499–505. [Google Scholar]
- Kütting, M.; Roggenkamp, J.; Urban, U.; Schmitz-Rode, T.; Steinseifer, U. Polyurethane heart valves: Past, present and future. Expert Rev. Med Devices 2011, 8, 227–233. [Google Scholar] [CrossRef]
- Udayakumar, G.P.; Muthusamy, S.; Selvaganesh, B.; Sivarajasekar, N.; Rambabu, K.; Banat, F.; Sivamani, S.; Sivakumar, N.; Hosseini-Bandegharaei, A.; Show, P.L. Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. J. Environ. Chem. Eng. 2021, 9, 105322. [Google Scholar] [CrossRef]
- Mohammadi, H. Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 718–722. [Google Scholar] [CrossRef]
- Ovcharenko, E.A.; Seifalian, A.; Rezvova, M.A.; Klyshnikov, K.Y.; Glushkova, T.V.; Akenteva, T.N.; Antonova, L.V.; Velikanova, E.A.; Chernonosova, V.S.; Shevelev, G.Y.; et al. A New Nanocomposite Copolymer Based On Functionalised Graphene Oxide for Development of Heart Valves. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Rozeik, M.M.; Wheatley, D.J.; Gourlay, T. Investigating the Suitability of Carbon Nanotube Reinforced Polymer in Transcatheter Valve Applications. Cardiovasc. Eng. Technol. 2017, 8, 357–367. [Google Scholar] [CrossRef]
- Rezvova, M.A.; Nikishau, P.A.; Makarevich, M.I.; Glushkova, T.V.; Klyshnikov, K.Y.; Akentieva, T.N.; Efimova, O.S.; Nikitin, A.P.; Malysheva, V.Y.; Matveeva, V.G.; et al. Biomaterials Based on Carbon Nanotube Nanocomposites of Poly(styrene-b-isobutylene-b-styrene): The Effect of Nanotube Content on the Mechanical Properties, Biocompatibility and Hemocompatibility. Nanomaterials 2022, 12, 733. [Google Scholar] [CrossRef]
- Rahmani, B.; Tzamtzis, S.; Ghanbari, H.; Burriesci, G.; Seifalian, A.M. Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. J. Biomech. 2012, 45, 1205–1211. [Google Scholar] [CrossRef]
- Thornton, M.A.; Howard, I.C.; Patterson, E.A. Three-dimensional stress analysis of polypropylene leaflets for prosthetic heart valves. Med Eng. Phys. 1997, 19, 588–597. [Google Scholar] [CrossRef]
- Bernacca, G.M.; O’connor, B.; Williams, D.F.; Wheatley, D.J. Hydrodynamic function of polyurethane prosthetic heart valves: Influences of Young’s modulus and leaflet thickness. Biomaterials 2002, 23, 45–50. [Google Scholar] [CrossRef]
- Guo, F.; Liu, C.; Han, R.; Lu, Q.; Bai, Y.; Yang, R.; Niu, D.; Zhang, X. Bio-inspired anisotropic polymeric heart valves exhibiting valve-like mechanical and hemodynamic behavior. Sci. China Mater. 2019, 63, 629–643. [Google Scholar] [CrossRef]
- Heitkemper, M.; Hatoum, H.; Dasi, L.P. In vitro hemodynamic assessment of a novel polymeric transcatheter aortic valve. J. Mech. Behav. Biomed. Mater. 2019, 98, 163–171. [Google Scholar] [CrossRef]
- Gharaie, S.H.; Mosadegh, B.; Morsi, Y. In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions. Cardiovasc. Eng. Technol. 2018, 9, 42–52. [Google Scholar] [CrossRef]
- Ghanbari, J.; Dehparvar, A.; Zakeri, A. Design and Analysis of Prosthetic Heart Valves and Assessing the Effects of Leaflet Design on the Mechanical Attributes of the Valves. Front. Mech. Eng. 2022, 8, 2. [Google Scholar] [CrossRef]
- Wu, W.; Pott, D.; Mazza, B.; Sironi, T.; Dordoni, E.; Chiastra, C.; Petrini, L.; Pennati, G.; Dubini, G.; Steinseifer, U.; et al. Fluid–Structure Interaction Model of a Percutaneous Aortic Valve: Comparison with an In Vitro Test and Feasibility Study in a Patient-Specific Case. Ann. Biomed. Eng. 2016, 44, 590–603. [Google Scholar] [CrossRef]
- Luraghi, G. Insights from experimental and FSI simulation of a polymeric heart valve. In Proceedings of the ESB-ITA Thematic Conference 2016, Palermo, Italy, 8–9 September 2016. [Google Scholar]
- Thiebes, A.L.; Kelly, N.; Sweeney, C.A.; McGrath, D.J.; Clauser, J.; Kurtenbach, K.; Gesche, V.N.; Chen, W.; Kok, R.J.; Steinseifer, U.; et al. PulmoStent: In Vitro to In Vivo Evaluation of a Tissue Engineered Endobronchial Stent. Ann. Biomed. Eng. 2017, 45, 873–883. [Google Scholar] [CrossRef]
- Toggweiler, S.; Wood, D.A.; Rodés-Cabau, J.; Kapadia, S.; Willson, A.B.; Ye, J.; Cheung, A.; Leipsic, J.; Binder, R.K.; Gurvitch, R.; et al. Transcatheter Valve-In-Valve Implantation for Failed Balloon-Expandable Transcatheter Aortic Valves. JACC Cardiovasc. Interv. 2012, 5, 571–577. [Google Scholar] [CrossRef]
- Roman, M.J.; Devereux, R.B.; Kramer-Fox, R.; O’Loughlin, J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am. J. Cardiol. 1989, 64, 507–512. [Google Scholar] [CrossRef]
- Marom, G.; Haj-Ali, R.; Raanani, E.; Schäfers, H.-J.; Rosenfeld, M. A fluid–structure interaction model of the aortic valve with coaptation and compliant aortic root. Med Biol. Eng. Comput. 2012, 50, 173–182. [Google Scholar] [CrossRef]
- Sturla, F.; Votta, E.; Stevanella, M.; Conti, C.A.; Redaelli, A. Impact of modeling fluid–structure interaction in the computational analysis of aortic root biomechanics. Med Eng. Phys. 2013, 35, 1721–1730. [Google Scholar] [CrossRef]
- Cao, K.; Sucosky, P. Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets. Int. J. Numer. Methods Biomed. Eng. 2017, 33, e02798. [Google Scholar] [CrossRef]
- Wei, Z.A.; Sonntag, S.J.; Toma, M.; Singh-Gryzbon, S.; Sun, W. Computational Fluid Dynamics Assessment Associated with Transcatheter Heart Valve Prostheses: A Position Paper of the ISO Working Group. Cardiovasc. Eng. Technol. 2018, 9, 289–299. [Google Scholar] [CrossRef]
- Claiborne, T.; Xenos, M.; Sheriff, J.; Chiu, W.-C.; Soares, J.; Alemu, Y.; Gupta, S.; Judex, S.; Slepian, M.J.; Bluestein, D. Toward Optimization of a Novel Trileaflet Polymeric Prosthetic Heart Valve via Device Thrombogenicity Emulation. ASAIO J. 2013, 59, 275–283. [Google Scholar] [CrossRef]
- Gulbulak, U.; Ertas, A.; Baturalp, T.B.; Pavelka, T. The effect of fundamental curves on geometric orifice and coaptation areas of polymeric heart valves. J. Mech. Behav. Biomed. Mater. 2020, 112, 104039. [Google Scholar] [CrossRef]
- LS-DYNA_Manual_Volume_II_R13 LSTC. Material Models; Livermore Software Technology: Canonsburg, PA, USA, 2021.
- Piatti, F.; Sturla, F.; Marom, G.; Sheriff, J.; Claiborne, T.E.; Slepian, M.J.; Redaelli, A.; Bluestein, D. Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid–structure interaction approach. J. Biomech. 2015, 48, 3641–3649. [Google Scholar] [CrossRef]
- Gulbulak, U.; Gecgel, O.; Ertas, A. A deep learning application to approximate the geometric orifice and coaptation areas of the polymeric heart valves under time—Varying transvalvular pressure. J. Mech. Behav. Biomed. Mater. 2021, 117, 104371. [Google Scholar] [CrossRef]
- Claiborne, T.E.; Sheriff, J.; Kuetting, M.; Steinseifer, U.; Slepian, M.J.; Bluestein, D. In Vitro Evaluation of a Novel Hemodynamically Optimized Trileaflet Polymeric Prosthetic Heart Valve. J. Biomech. Eng. 2013, 135, 021021–0210218. [Google Scholar] [CrossRef]
- Ghosh, R.P.; Marom, G.; Rotman, O.M.; Slepian, M.J.; Prabhakar, S.; Horner, M.; Bluestein, D. Comparative Fluid–Structure Interaction Analysis of Polymeric Transcatheter and Surgical Aortic Valves’ Hemodynamics and Structural Mechanics. J. Biomech. Eng. 2018, 140, 121002. [Google Scholar] [CrossRef]
- Dasi, L.P.; Simon, H.A.; Sucosky, P.; Yoganathan, A.P. Fluid Mechanics of Artificial Heart Valves. Clin. Exp. Pharmacol. Physiol. 2009, 36, 225–237. [Google Scholar] [CrossRef]
- Tango, A.M.; Ducci, A.; Burriesci, G. In silico study of the ageing effect upon aortic valves. J. Fluids Struct. 2021, 103, 103258. [Google Scholar] [CrossRef]
- ISO 5840-3:2021; Cardiovascular implants-Cardiac valve prostheses-Part 3:Heart valve substitutes implanted by transcatheter techniques. The International Organization for Standardization: Geneva, Switzerland, 2021.
- Caddell, R.; Raghava, R.; Atkins, A. Pressure dependent yield criteria for polymers. Mater. Sci. Eng. 1974, 13, 113–120. [Google Scholar] [CrossRef]
- Fan, R.; Bayoumi, A.S.; Chen, P.; Hobson, C.M.; Wagner, W.R.; Mayer, J.E., Jr.; Sacks, M.S. Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement. J. Biomech. 2013, 46, 662–669. [Google Scholar] [CrossRef]
- Hsu, M.-C.; Kamensky, D.; Bazilevs, Y.; Sacks, M.S.; Hughes, T.J.R. Fluid–structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation. Comput. Mech. 2014, 54, 1055–1071. [Google Scholar] [CrossRef]
- Hsu, M.-C.; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, M.C.H.; Mineroff, J.; Reali, A.; Bazilevs, Y.; Sacks, M.S. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput. Mech. 2015, 55, 1211–1225. [Google Scholar] [CrossRef]
- Luraghi, G.; Wu, W.; De Gaetano, F.; Matas, J.F.R.; Moggridge, G.D.; Serrani, M.; Stasiak, J.; Costantino, M.L.; Migliavacca, F. Evaluation of an aortic valve prosthesis: Fluid-structure interaction or structural simulation? J. Biomech. 2017, 58, 45–51. [Google Scholar] [CrossRef]
- Johnson, E.L.; Wu, M.C.H.; Xu, F.; Wiese, N.M.; Rajanna, M.R.; Herrema, A.J.; Ganapathysubramanian, B.; Hughes, T.J.R.; Sacks, M.S.; Hsu, M.-C. Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proc. Natl. Acad. Sci. USA 2020, 117, 19007–19016. [Google Scholar] [CrossRef]
- Sigüenza, J.; Pott, D.; Mendez, S.; Sonntag, S.J.; Steinseifer, U.; Nicoud, F.; Kaufmann, T.A.S. Fluid-structure interaction of a pulsatile flow with an aortic valve model: A combined experimental and numerical study. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e2945. [Google Scholar] [CrossRef]
- Xu, F.; Morganti, S.; Zakerzadeh, R.; Kamensky, D.; Auricchio, F.; Reali, A.; Hughes, T.J.R.; Sacks, M.S.; Hsu, M.-C. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e2938. [Google Scholar] [CrossRef]
- Prawel, D.A.; Dean, H.; Forleo, M.; Lewis, N.; Gangwish, J.; Popat, K.C.; Dasi, L.P.; James, S.P. Hemocompatibility and Hemodynamics of Novel Hyaluronan–Polyethylene Materials for Flexible Heart Valve Leaflets. Cardiovasc. Eng. Technol. 2014, 5, 70–81. [Google Scholar] [CrossRef]
- Rahmani, B.; Tzamtzis, S.; Sheridan, R.; Mullen, M.J.; Yap, J.; Seifalian, A.M.; Burriesci, G. In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE). J. Cardiovasc. Transl. Res. 2017, 10, 104–115. [Google Scholar] [CrossRef]
- Khoffi, F.; Heim, F. Mechanical degradation of biological heart valve tissue induced by low diameter crimping: An early assessment. J. Mech. Behav. Biomed. Mater. 2015, 44, 71–75. [Google Scholar] [CrossRef]
H (mm) | h (mm) | |||
---|---|---|---|---|
Structure | 14.3 | 11.3 | ||
Ra (mm) | Rs (mm) | Ls (mm) | L (mm) | |
Fluid | 11.5 | 15.0 | 17.0 | 47.0 |
Carbothane PC−3585A | xSIBS | SIBS−CNTs | |||||||
---|---|---|---|---|---|---|---|---|---|
t (mm) | 0.25 | 0.30 | 0.35 | 0.15 | 0.20 | 0.25 | 0.10 | 0.15 | 0.20 |
(mL) | 6.81 | 10.75 | 12.32 | 12.94 | 12.76 | 14.33 | 10.46 | 13.89 | 10.36 |
(mL) | 80.34 | 76.03 | 67.01 | 68.23 | 61.72 | 55.49 | 61.00 | 52.39 | 21.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Li, Y.; Li, T.; Tian, X.; Xiong, Y.; Chen, Y. Analysis of the Effect of Thickness on the Performance of Polymeric Heart Valves. J. Funct. Biomater. 2023, 14, 309. https://doi.org/10.3390/jfb14060309
Zhou J, Li Y, Li T, Tian X, Xiong Y, Chen Y. Analysis of the Effect of Thickness on the Performance of Polymeric Heart Valves. Journal of Functional Biomaterials. 2023; 14(6):309. https://doi.org/10.3390/jfb14060309
Chicago/Turabian StyleZhou, Jingyuan, Yijing Li, Tao Li, Xiaobao Tian, Yan Xiong, and Yu Chen. 2023. "Analysis of the Effect of Thickness on the Performance of Polymeric Heart Valves" Journal of Functional Biomaterials 14, no. 6: 309. https://doi.org/10.3390/jfb14060309
APA StyleZhou, J., Li, Y., Li, T., Tian, X., Xiong, Y., & Chen, Y. (2023). Analysis of the Effect of Thickness on the Performance of Polymeric Heart Valves. Journal of Functional Biomaterials, 14(6), 309. https://doi.org/10.3390/jfb14060309