GSH-Activatable Metal-Phenolic Networks for Photothermal-Enhanced Chemotherapy and Chemodynamic Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of QC
2.3. Preparation of QCD
2.4. Au Nanoparticles Loading
2.5. Characterizations of DOX, Quercetin, QC, QCD and QCDA
2.6. pH/GSH Response of QC
2.7. pH/GSH Response of QCD
2.8. In Vitro Drug Release Study
2.9. H2O2 Depletion with QC, QCD and QCDA
2.10. Extracellular Chemodynamic Activity of QC, QCD and QCDA
2.11. Photothermal Performance of QCDA
2.12. Cytotoxicity Assays
2.13. Cell Death Level Assay
2.14. Cellular Uptake of QCDA In Vitro
2.15. The Mechanism of Cellular Uptake
2.16. ROS Generation Test In Vitro
3. Results
3.1. Characterization of Quercetin, QC, QCD and QCDA
3.2. EDS Analysis of QCDA
3.3. The Size, Zeta-Potential and Morphology of QC, QCD and QCDA
3.4. pH/GSH Response and H2O2 Decomposition Ability of QC, QCD and QCDA
3.5. The Drug Loading Efficiency and In Vitro Drug Release Study
3.6. The Photothermal Ability of QCDA
3.7. In Vitro Cytotoxicity Assay
3.8. Cellular Uptake
3.9. Intracellular ROS Generation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Song, Q.; Zheng, C.; Zhao, B.; Wu, L.; Feng, Q.; Zhang, Z.; Wang, L. Implantable Bioresponsive Nanoarray Enhances Postsurgical Immunotherapy by Activating Pyroptosis and Remodeling Tumor Microenvironment. Adv. Funct. Mater. 2020, 30, 2005747. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Y.; Li, Y.; Jiang, L.-P.; Bi, S.; Zhu, J.-J. Multifunctional DNA polycatenane nanocarriers for synergistic targeted therapy of multidrug-resistant human leukemia. Adv. Funct. Mater. 2019, 29, 1905659. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, X.; Yang, X.; Jin, B.; Shao, C.; Kang, W.; Tang, R. Nanomaterial-Based Organelles Protect Normal Cells against Chemotherapy-Induced Cytotoxicity. Adv. Mater. 2018, 30, 1801304. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Ye, H.; Shi, Q.; Xie, J.; Yu, X.; Ling, H.; You, S.; He, Z.; Qin, B.; Sun, J. Both-In-One Hybrid Bacteria Suppress the Tumor Metastasis and Relapse via Tandem-Amplifying Reactive Oxygen Species-Immunity Responses. Adv. Healthc. Mater. 2021, 10, 2100950. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Li, H.; Shen, D.; Wang, Z.; Liu, H.; Zhu, D.; Wang, Z.; Li, L.; Popowski, K.D.; Ou, C.; et al. Decoy Exosomes Offer Protection Against Chemotherapy-Induced Toxicity. Adv. Sci. 2022, 9, 2203505. [Google Scholar] [CrossRef]
- Liu, T.; Xiong, C.-F.; Zhang, L.-J.; Jiao, G.-H.; Shi, H.; Feng, J.; Zhang, X.-Z. Boosting Doxorubicin-Induced Mitochondria Apoptosis for the Monodrug-Mediated Combination of Chemotherapy and Chemodynamic Therapy. Adv. Healthc. Mater. 2023, 12, 2202045. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, M.; Zhou, J.; Liu, Y.; Zong, Q.; Yuan, Y. Tumor-Acidity and Bioorthogonal Chemistry-Mediated On-Site Size Transformation Clustered Nanosystem to Overcome Hypoxic Resistance and Enhance Chemoimmunotherapy. ACS Nano 2022, 16, 721–735. [Google Scholar] [CrossRef]
- Fang, C.; Deng, Z.; Cao, G.; Chu, Q.; Wu, Y.; Li, X.; Peng, X.; Han, G. Co-Ferrocene MOF/glucose oxidase as cascade nanozyme for effective tumor therapy. Adv. Funct. Mater. 2020, 30, 1910085. [Google Scholar] [CrossRef]
- Yang, B.; Ding, L.; Yao, H.; Chen, Y.; Shi, J. A Metal-Organic Framework (MOF) Fenton Nanoagent-Enabled Nanocatalytic Cancer Therapy in Synergy with Autophagy Inhibition. Adv. Mater. 2020, 32, 1907152. [Google Scholar] [CrossRef]
- Xu, B.; Cui, Y.; Wang, W.; Li, S.; Lyu, C.; Wang, S.; Bao, W.; Wang, H.; Qin, M.; Liu, Z.; et al. Immunomodulation-Enhanced Nanozyme-Based Tumor Catalytic Therapy. Adv. Mater. 2020, 32, e2003563. [Google Scholar] [CrossRef]
- Wu, S.; Wang, P.; Qin, J.; Pei, Y.; Wang, Y. GSH-Depleted Nanozymes with Dual-Radicals Enzyme Activities for Tumor Synergic Therapy. Adv. Funct. Mater. 2021, 31, 2102160. [Google Scholar] [CrossRef]
- Cheng, Y.; Wen, C.; Sun, Y.-Q.; Yu, H.; Yin, X.-B. Mixed-Metal MOF-Derived Hollow Porous Nanocomposite for Trimodality Imaging Guided Reactive Oxygen Species-Augmented Synergistic Therapy. Adv. Funct. Mater. 2021, 31, 2104378. [Google Scholar] [CrossRef]
- Fu, L.-H.; Wan, Y.; Qi, C.; He, J.; Li, C.; Yang, C.; Xu, H.; Lin, J.; Huang, P. Nanocatalytic Theranostics with Glutathione Depletion and Enhanced Reactive Oxygen Species Generation for Efficient Cancer Therapy. Adv. Mater. 2021, 33, 2006892. [Google Scholar] [CrossRef]
- Sang, X.; Gao, T.; Liu, X.; Shen, Y.; Chang, L.; Fu, S.; Yang, H.; Yang, H.; Mu, W.; Liang, S.; et al. Two-Wave Variable Nanotheranostic Agents for Dual-Mode Imaging-Guided Photo-Induced Triple-Therapy for Cancer. Adv. Sci. 2022, 9, 2201834. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.-N.; Zhao, Z.; Tang, B.Z.; Yoon, J. Organic photosensitizers for antimicrobial phototherapy. Chem. Soc. Rev. 2022, 51, 3324–3340. [Google Scholar] [CrossRef]
- Li, X.; Yong, T.; Wei, Z.; Bie, N.; Zhang, X.; Zhan, G.; Li, J.; Qin, J.; Yu, J.; Zhang, B.; et al. Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts. Nat. Commun. 2022, 13, 2794. [Google Scholar] [CrossRef]
- Arami, H.; Kananian, S.; Khalifehzadeh, L.; Patel, C.B.; Chang, E.; Tanabe, Y.; Zeng, Y.; Madsen, S.J.; Mandella, M.J.; Natarajan, A.; et al. Remotely controlled near-infrared-triggered photothermal treatment of brain tumors in freely behaving mice using gold nanostars. Nat. Nanotechnol. 2022, 17, 1015–1022. [Google Scholar] [CrossRef]
- Li, J.; Tian, H.; Zhu, F.; Jiang, S.; He, M.; Li, Y.; Luo, Q.; Sun, W.; Liu, X.; Wang, P. Amorphous Ultra-Small Fe-Based Nanocluster Engineered and ICG Loaded Organo-Mesoporous Silica for GSH Depletion and Photothermal-Chemodynamic Synergistic Therapy. Adv. Healthc. Mater. 2022, 11, 2201986. [Google Scholar] [CrossRef]
- Sun, P.; Qu, F.; Zhang, C.; Cheng, P.; Li, X.; Shen, Q.; Li, D.; Fan, Q. NIR-II Excitation Phototheranostic Platform for Synergistic Photothermal Therapy/Chemotherapy/Chemodynamic Therapy of Breast Cancer Bone Metastases. Adv. Sci. 2022, 9, 2204718. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Q.-C.; Wang, S.; Xiao, Y.; Wan, S.-C.; Sun, Z.-J.; Zhang, L.; Deng, H. Engineering Multienzyme-Mimicking Covalent Organic Frameworks as Pyroptosis Inducers for Boosting Antitumor Immunity. Adv. Mater. 2022, 34, e2108174. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Q.; Yang, P.; Yu, X.; Huang, L.Y.; Shen, S.; Cai, S. Manganese Oxide-Coated Carbon Nanotubes As Dual-Modality Lymph Mapping Agents for Photothermal Therapy of Tumor Metastasis. ACS Appl. Mater. Interfaces 2016, 8, 3736–3743. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Riedinger, A.; Li, H.; Fu, C.; Liu, H.; Li, L.; Liu, T.; Tan, L.; Barthel, M.J.; Pugliese, G. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano 2015, 9, 1788–1800. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yang, X.; Jacobson, O.; Lin, L.; Huang, P.; Niu, G.; Ma, Q.; Chen, X. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 2015, 9, 9199–9209. [Google Scholar] [CrossRef]
- Ma, J.; Li, P.; Wang, W.; Wang, S.; Pan, X.; Zhang, F.; Li, S.; Liu, S.; Wang, H.; Gao, G.; et al. Biodegradable Poly(amino acid)-Gold-Magnetic Complex with Efficient Endocytosis for Multimodal Imaging-Guided Chemo-photothermal Therapy. ACS Nano 2018, 12, 9022–9032. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhao, N.; Xu, F.-J. Hollow Nanostars with Photothermal Gold Caps and Their Controlled Surface Functionalization for Complementary Therapies. Adv. Funct. Mater. 2017, 27, 1700256. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, L.; Wang, X.; Jia, Q.; Chen, Z.; Yang, Z.; Ji, R.; Tian, J.; Wang, Z. Acid-Induced In Vivo Assembly of Gold Nanoparticles for Enhanced Photoacoustic Imaging-Guided Photothermal Therapy of Tumors. Adv. Healthc. Mater. 2020, 9, 2000394. [Google Scholar] [CrossRef]
- Kang, S.; Bhang, S.H.; Hwang, S.; Yoon, J.-K.; Song, J.; Jang, H.-K.; Kim, S.; Kim, B.-S. Mesenchymal Stem Cells Aggregate and Deliver Gold Nanoparticles to Tumors for Photothermal Therapy. ACS Nano 2015, 9, 9678–9690. [Google Scholar] [CrossRef]
- Aioub, M.; Panikkanvalappil, S.R.; El-Sayed, M.A. Platinum-Coated Gold Nanorods: Efficient Reactive Oxygen Scavengers That Prevent Oxidative Damage toward Healthy, Untreated Cells during Plasmonic Photothermal Therapy. ACS Nano 2017, 11, 579–586. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, Y.; Zhang, C.; Zhan, M.; Jia, L.; Song, S.; Jiang, C.; Shen, M.; Shi, X. Fibronectin-Coated Metal-Phenolic Networks for Cooperative Tumor Chemo-/Chemodynamic/Immune Therapy via Enhanced Ferroptosis-Mediated Immunogenic Cell Death. ACS Nano 2022, 16, 984–996. [Google Scholar] [CrossRef]
- Li, X.; Duan, Z.; Chen, X.; Pan, D.; Luo, Q.; Gu, L.; Xu, G.; Li, Y.; Zhang, H.; Gong, Q.; et al. Impairing Tumor Metabolic Plasticity Via a Stable Metal-Phenolic Based Polymeric Nanomedicine to Suppress Colorectal Cancer. Adv. Mater. 2023, 3, e2300548. [Google Scholar] [CrossRef]
- Zhang, Z.; Sang, W.; Xie, L.; Li, W.; Li, B.; Li, J.; Tian, H.; Yuan, Z.; Zhao, Q.; Dai, Y. Polyphenol-Based Nanomedicine Evokes Immune Activation for Combination Cancer Treatment. Angew. Chem. Int. Ed. 2021, 60, 1967–1975. [Google Scholar] [CrossRef]
- Li, B.; Xie, X.; Chen, Z.; Zhan, C.; Zeng, F.; Wu, S. Tumor Inhibition Achieved by Targeting and Regulating Multiple Key Elements in EGFR Signaling Pathway Using a Self-Assembled Nanoprodrug. Adv. Funct. Mater. 2018, 28, 1800692. [Google Scholar] [CrossRef]
- Wang, Q.; Bao, Y.; Ahire, J.; Chao, Y. Co-encapsulation of Biodegradable Nanoparticles with Silicon Quantum Dots and Quercetin for Monitored Delivery. Adv. Healthc. Mater. 2013, 2, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-G.; Zhou, D.-J.; Pan, Z.-Y.; Yang, J.; Zhang, D.-Y.; Cao, Q.; Ji, L.-N.; Mao, Z.-W. Multifunctional low-temperature photothermal nanodrug with in vivo clearance, ROS-Scavenging and anti-inflammatory abilities. Biomaterials 2019, 216, 119280. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Wang, J.; Chu, C.; Chen, W.; Wu, C.; Liu, G. Metal-Organic Framework-Based Stimuli-Responsive Systems for Drug Delivery. Adv. Sci. 2019, 6, 1801526. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.; Wen, N.; Xiong, H.; Cai, S.; He, Q.; Hu, Y.; Peng, D.; Liu, Z.; Liu, Y. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 2019, 230, 119619. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yuan, Y.; Cheng, Y.; Fu, D.; Chen, Z.; Wang, Y.; Zhang, L.; Yao, C.; Shi, L.; Li, M.; et al. Copper-Based Metal-Organic Framework Overcomes Cancer Chemoresistance through Systemically Disrupting Dynamically Balanced Cellular Redox Homeostasis. J. Am. Chem. Soc. 2022, 144, 4799–4809. [Google Scholar] [CrossRef]
- Zheng, R.; Cheng, Y.; Qi, F.; Wu, Y.; Han, X.; Yan, J.; Zhang, H. Biodegradable Copper-Based Nanoparticles Augmented Chemodynamic Therapy through Deep Penetration and Suppressing Antioxidant Activity in Tumors. Adv. Healthc. Mater. 2021, 10, 2100412. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Yu, Z.; Liu, T.; Jin, R.; Weng, L.; Bai, Y.; Gooding, J.J.; Zhang, Y.; Chen, X. Intelligent gold nanoparticles with oncogenic microRNA-dependent activities to manipulate tumorigenic environments for synergistic tumor therapy. Adv. Mater. 2022, 34, 2110219. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, M.; Abbas, G.; Li, C.; Cui, M.; Zhang, X.-E.; Wang, D.-B. A Cancer Cell Membrane-Derived Biomimetic Nanocarrier for Synergistic Photothermal/Gene Therapy by Efficient Delivery of CRISPR/Cas9 and Gold Nanorods. Adv. Healthc. Mater. 2022, 11, 2201038. [Google Scholar] [CrossRef]
- Liu, C.; Xing, J.; Akakuru, O.U.; Luo, L.; Sun, S.; Zou, R.; Yu, Z.; Fang, Q.; Wu, A. Nanozymes-Engineered Metal-Organic Frameworks for Catalytic Cascades-Enhanced Synergistic Cancer Therapy. Nano Lett. 2019, 19, 5674–5682. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Nicastri, A.; Coluccio, M.L.; Gentile, F.; Candeloro, P.; Cojoc, G.; Liberale, C.; De Angelis, F.; Di Fabrizio, E. FT-IR, Raman, RRS measurements and DFT calculation for doxorubicin. Microsc. Res. Tech. 2010, 73, 991–995. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.F.V.; De Giovani, W.F. Antioxidant properties of complexes of flavonoids with metal ions. Redox Rep. 2013, 9, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Zhong, H.; Pan, W.; Li, Y.; Chen, Y.; Li, N.; Tang, B. Programmed Release of Dihydroartemisinin for Synergistic Cancer Therapy Using a CaCO3 Mineralized Metal-Organic Framework. Angew. Chem. Int. Ed. Engl. 2019, 58, 14134–14139. [Google Scholar] [CrossRef]
- Maleki, A.; Shahbazi, M.A.; Alinezhad, V.; Santos, H.A. The Progress and Prospect of Zeolitic Imidazolate Frameworks in Cancer Therapy, Antibacterial Activity, and Biomineralization. Adv. Healthc. Mater. 2020, 9, e2000248. [Google Scholar] [CrossRef]
- Yu, J.; Wei, Z.; Li, Q.; Wan, F.; Chao, Z.; Zhang, X.; Lin, L.; Meng, H.; Tian, L. Advanced Cancer Starvation Therapy by Simultaneous Deprivation of Lactate and Glucose Using a MOF Nanoplatform. Adv. Sci. 2021, 8, e2101467. [Google Scholar] [CrossRef]
- Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef]
- Lu, Y.-t.; Xiao, Y.-f.; Li, Y.-f.; Li, J.; Nan, F.-j.; Li, J.-y. Sulfuretin protects hepatic cells through regulation of ROS levels and autophagic flux. Acta Pharmacol. Sin. 2018, 40, 908–918. [Google Scholar] [CrossRef]
- Gao, C.; Cheng, Q.; Li, J.; Chen, J.; Wang, Q.; Wei, J.; Huang, Q.; Lee, S.M.Y.; Gu, D.; Wang, R. Supramolecular Macrophage-Liposome Marriage for Cell-Hitchhiking Delivery and Immunotherapy of Acute Pneumonia and Melanoma. Adv. Funct. Mater. 2021, 31, 2102440. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Liu, T.; Li, J.; Sun, S.; Chen, J.; Liu, Z.; Zhang, Z.; Zhang, L. Quercetin-ferrum nanoparticles enhance photothermal therapy by modulating the tumor immunosuppressive microenvironment. Acta Biomater. 2022, 154, 454–466. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Yang, M.; Li, J.; Chen, Z.; Hu, L.; Zhang, J.; Cai, L.; Qiu, L.; Chen, J. GSH-Activatable Metal-Phenolic Networks for Photothermal-Enhanced Chemotherapy and Chemodynamic Therapy. J. Funct. Biomater. 2023, 14, 436. https://doi.org/10.3390/jfb14090436
Chen W, Yang M, Li J, Chen Z, Hu L, Zhang J, Cai L, Qiu L, Chen J. GSH-Activatable Metal-Phenolic Networks for Photothermal-Enhanced Chemotherapy and Chemodynamic Therapy. Journal of Functional Biomaterials. 2023; 14(9):436. https://doi.org/10.3390/jfb14090436
Chicago/Turabian StyleChen, Weijun, Meiyang Yang, Jie Li, Zhilan Chen, Lefei Hu, Jiannan Zhang, Liangyu Cai, Lipeng Qiu, and Jinghua Chen. 2023. "GSH-Activatable Metal-Phenolic Networks for Photothermal-Enhanced Chemotherapy and Chemodynamic Therapy" Journal of Functional Biomaterials 14, no. 9: 436. https://doi.org/10.3390/jfb14090436
APA StyleChen, W., Yang, M., Li, J., Chen, Z., Hu, L., Zhang, J., Cai, L., Qiu, L., & Chen, J. (2023). GSH-Activatable Metal-Phenolic Networks for Photothermal-Enhanced Chemotherapy and Chemodynamic Therapy. Journal of Functional Biomaterials, 14(9), 436. https://doi.org/10.3390/jfb14090436