Antibacterial Activity and Biocompatibility of Ag-Montmorillonite/Chitosan Colloidal Dressing in a Skin Infection Rat Model: An In Vitro and In Vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Materials
2.3. Preparation of Materials
2.3.1. Single-Factor and Orthogonal Experiments
2.3.2. Preparation of Ag-MMT/CS Colloid
2.4. Characterization of the Materials
2.5. Cytotoxicity Assay
2.6. Antibacterial Activity
2.6.1. Inhibitory Activity
2.6.2. Bacterial Growth Curve
2.6.3. Plate Colony Counting
2.6.4. Analysis of the Rat Infection Model
2.7. Ag+ Release Determination
2.8. Statistical Analysis
3. Results
3.1. Single-Factor Experiment
3.2. Orthogonal Experiments
3.3. Material Characterization
3.4. Cytotoxicity Test
3.5. Live/Dead Cell Staining Experiment
3.6. Antibacterial Properties of Ag-MMT/CS
3.6.1. Inhibition Zone Test
3.6.2. Colony Counting Assay
3.6.3. Bacterial Growth Curve
3.6.4. Analysis of the Rat Infection Model
3.6.5. Rat Wound Pathology
3.7. Ag+ Release Determination
4. Discussion
5. Conclusions
- (1)
- The Ag-MMT/CS colloid showed a typical montmorillonite lamellar structure under the electron microscope. EDS showed the presence of Ag. XRD showed characteristic peaks attributed to MMT appearing at 19.78° and 21.78°, consistent with FT-IR.
- (2)
- The Ag-MMT/CS colloid showed a good in vitro antibacterial effect on S. aureus, and the inhibition zone had a diameter of 19 mm. The bacterial growth curve showed that the colloid could significantly inhibit S. aureus, with the antibacterial rate reaching 99.18%.
- (3)
- The Ag-MMT/CS colloid demonstrated good cytocompatibility, indicating that it is an eco-friendly dressing.
- (4)
- The Ag-MMT/CS colloid has the advantages of fast wound healing and good hygroscopicity in a rat skin wound infection model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akturk, O.; Kismet, K.; Yasti, A.C.; Kuru, S.; Duymus, M.E.; Kaya, F.; Caydere, M.; Hucumenoglu, S.; Keskin, D. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J. Biomater. Appl. 2016, 31, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zhao, Z.; Wang, J.; Gao, J.; Wang, L.; Shen, B.; Hu, X.; Donghua University; Zhende Medical Co., Ltd. Structural design and directional fluid transport performance of medical cotton gauze. Shanghai Text. Sci. Technol. 2018, 46, 13–17. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, F.; Cao, M.; Cui, J.; Deng, H. Progress in biomass fiber medical dressings. J. Text. Res. 2022, 43, 8–16. [Google Scholar] [CrossRef]
- Nouri, A.; Rohani Shirvan, A.; Li, Y.; Wen, C. Surface modification of additively manufactured metallic biomaterials with active antipathogenic properties. Smart Mater. Manuf. 2023, 1, 100001. [Google Scholar] [CrossRef]
- Ji, L.Y.; Su, R.J.; Wen, Z.H.; Dai, C.S. Preparation and performance of AZ91D-Mg alloy based Zn~(2+) doped calcium phosphate/chitosan/CNTs compound coatings. J. Harbin Univ. Commer. (Nat. Sci. Ed.) 2016, 32, 165–169. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.-L.; He, Y.; Zhang, J.-L.; Wang, X. Research progress in biomedical magnesium alloys. Gongneng Cailiao/J. Funct. Mater. 2013, 44, 2913–2918. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Li, S.; Dong, S.; Xu, W.; Tu, S.; Yan, L.; Zhao, C.; Ding, J.; Chen, X. Antibacterial Hydrogels. Adv. Sci. 2018, 5, 1700527. [Google Scholar] [CrossRef]
- Khan, M.A.; Mujahid, M. A review on recent advances in chitosan based composite for hemostatic dressings. Int. J. Biol. Macromol. 2019, 124, 138–147. [Google Scholar] [CrossRef]
- Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT-Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Liu, Y.; Li, N.; Zhang, X.; Yan, C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021, 26, 7136. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.-Y.; Xu, J.; Lu, N.; Zeng, R.-C.; Zou, Y.-H.; Li, S.-Q.; Zhang, F. In vitro corrosion resistance and antibacterial properties of layer-by-layer assembled chitosan/poly-L-glutamic acid coating on AZ31 magnesium alloys. Trans. Nonferrous Met. Soc. China 2017, 27, 1081–1086. [Google Scholar] [CrossRef]
- Yu, C.; Cui, L.-Y.; Zhou, Y.-F.; Han, Z.-Z.; Chen, X.-B.; Zeng, R.-C.; Zou, Y.-H.; Li, S.-Q.; Zhang, F.; Han, E.-H.; et al. Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy. Surf. Coat. Technol. 2018, 344, 1–11. [Google Scholar] [CrossRef]
- Layek, B.; Rahman Nirzhor, S.S.; Rathi, S.; Kandimalla, K.K.; Wiedmann, T.S.; Prabha, S. Design, Development, and Characterization of Imiquimod-Loaded Chitosan Films for Topical Delivery. AAPS PharmSciTech 2019, 20, 58. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, Y.; Feng, P.; Gao, C.; Yang, Y.; Yang, W.; Peng, S.; Shuai, C. Montmorillonite with unique interlayer space imparted polymer scaffolds with sustained release of Ag+. Ceram. Int. 2019, 45, 11517–11526. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Q.; Zeng, R.; Han, Q.; Wang, C.; Liu, Z. Synthesis and properties of Zn-MMT antimicrobial composites and application on the surface of magnesium alloy. Funct. Mater. 2016, 47, 07121–07129. [Google Scholar] [CrossRef]
- Fan, L.; Sun, W.; Zou, Y.; Xu, Q.-q.; Zeng, R.-C.; Tian, J. Enhanced corrosion resistance, antibacterial activity and biocompatibility of gentamicin-montmorillonite coating on Mg alloy-in vitro and in vivo studies. J. Mater. Sci. Technol. 2022, 111, 167–180. [Google Scholar] [CrossRef]
- Roy, A.; Joshi, M.; Butola, B.; Srivastava, A.K. Silver-loaded HDPE/clay nanocomposites with antibacterial property: A potential replacement for commodity polyethylene plastic. Polym. Compos. 2017, 39, E366–E377. [Google Scholar] [CrossRef]
- Liu, X.; Rodeheaver, D.P.; White, J.C.; Wright, A.M.; Walker, L.M.; Zhang, F.; Shannon, S. A comparison of in vitro cytotoxicity assays in medical device regulatory studies. Regul. Toxicol. Pharmacol. 2018, 97, 24–32. [Google Scholar] [CrossRef]
- Vivcharenko, V.; Przekora, A. Modifications of Wound Dressings with Bioactive Agents to Achieve Improved Pro-Healing Properties. Appl. Sci. 2021, 11, 4114. [Google Scholar] [CrossRef]
- López-Carballo, G.; Higueras, L.; Gavara, R.; Hernández-Muñoz, P. Silver Ions Release from Antibacterial Chitosan Films Containing in Situ Generated Silver Nanoparticles. J. Agric. Food Chem. 2013, 61, 260–267. [Google Scholar] [CrossRef]
- Yamanaka, M.; Hara, K.; Kudo, J. Bactericidal Actions of a Silver Ion Solution on Escherichia coli, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis. Appl. Environ. Microbiol. 2005, 71, 7589–7593. [Google Scholar] [CrossRef]
- Yilmaz Atay, H.; Yaşa, İ.; Çelik, E. Antibacterial Polymeric Coatings with Synthesized Silver Nanoparticles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2015, 45, 784–798. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018, 16, 101–112. [Google Scholar] [CrossRef]
- Baek, J.; Ramasamy, M.; Willis, N.C.; Kim, D.S.; Anderson, W.A.; Tam, K.C. Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan nanocapsules. Curr. Res. Food Sci. 2021, 4, 215–223. [Google Scholar] [CrossRef]
- Lord, M.S.; Cheng, B.; McCarthy, S.J.; Jung, M.; Whitelock, J.M. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials 2011, 32, 6655–6662. [Google Scholar] [CrossRef]
- Parolo, M.E.; Avena, M.J.; Pettinari, G.; Zajonkovsky, I.; Valles, J.M.; Baschini, M.T. Antimicrobial properties of tetracycline and minocycline-montmorillonites. Appl. Clay Sci. 2010, 49, 194–199. [Google Scholar] [CrossRef]
- Rapacz-Kmita, A.; Szaraniec, B.; Mikokajczyk, M.; Stodolak-Zych, E.; Dzierzkowska, E.; Gajek, M.; Dudek, P. Multifunctional biodegradable polymer/clay nanocomposites with antibacterial properties in drug delivery systems. Acta Bioeng. Biomech. 2020, 22, 83–92. [Google Scholar] [CrossRef]
- Li, G.; Quan, K.; Liang, Y.; Li, T.; Yuan, Q.; Tao, L.; Xie, Q.; Wang, X. Graphene-Montmorillonite Composite Sponge for Safe and Effective Hemostasis. ACS Appl. Mater. Interfaces 2016, 8, 35071–35080. [Google Scholar] [CrossRef]
- Ohashi, F.; Oya, A.; Duclaux, L.; Beguin, F. Structural model calculation of antimicrobial and antifungal agents derived from clay minerals. Appl. Clay Sci. 1998, 12, 435–445. [Google Scholar] [CrossRef]
- Xinping, L.; Shengli, L.; Miaotao, Z.; Wenlong, Z.; Chuanghong, L. Evaluations of Antibacterial Activity and Cytotoxicity on Ag Nanoparticles. Rare Met. Mater. Eng. 2011, 40, 209–214. [Google Scholar] [CrossRef]
- Frigaard, J.; Jensen, J.L.; Galtung, H.K.; Hiorth, M. Potential of Chitosan in Nanomedicine: An Overview of the Cytotoxicity of Chitosan Based Nanoparticles. Front. Pharmacol. 2022, 13, 880377. [Google Scholar] [CrossRef]
- Bekaroğlu, G.M.; İşçi, S. Raw and Purified Clay Minerals for Drug Delivery Applications. ACS Omega 2022, 7, 38825–38831. [Google Scholar] [CrossRef] [PubMed]
Level | Silver Nitrate Concentration A (mol/L) | Time B (h) | Temperature C (°C) | pH D |
---|---|---|---|---|
1 | 0.04 | 3 | 50 | 4.4 |
2 | 0.05 | 4 | 60 | 5.4 |
3 | 0.06 | 5 | 70 | 6.4 |
Serial Number | Silver Nitrate Concentration (mol/L) | Time (h) | Temperature (°C) | pH | Silver Content (mg/g) |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 44.38 |
2 | 1 | 2 | 2 | 2 | 49.89 |
3 | 1 | 3 | 3 | 3 | 41.23 |
4 | 2 | 1 | 2 | 3 | 60.56 |
5 | 2 | 2 | 3 | 1 | 68.42 |
6 | 2 | 3 | 1 | 2 | 59.67 |
7 | 3 | 1 | 3 | 2 | 55.66 |
8 | 3 | 2 | 1 | 3 | 51.35 |
9 | 3 | 3 | 2 | 1 | 53.11 |
Mean value 1 | 45.167 | 53.533 | 51.800 | 55.303 | |
Mean value 2 | 62.883 | 56.553 | 54.520 | 55.037 | |
Mean value 3 | 53.373 | 51.337 | 55.103 | 51.047 | |
Range | 17.716 | 5.216 | 3.303 | 4.256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Shen, L.; Zhang, L.; Sun, W.; Zou, Y.; Ren, Y.; Zeng, R. Antibacterial Activity and Biocompatibility of Ag-Montmorillonite/Chitosan Colloidal Dressing in a Skin Infection Rat Model: An In Vitro and In Vivo Study. J. Funct. Biomater. 2023, 14, 470. https://doi.org/10.3390/jfb14090470
Yang K, Shen L, Zhang L, Sun W, Zou Y, Ren Y, Zeng R. Antibacterial Activity and Biocompatibility of Ag-Montmorillonite/Chitosan Colloidal Dressing in a Skin Infection Rat Model: An In Vitro and In Vivo Study. Journal of Functional Biomaterials. 2023; 14(9):470. https://doi.org/10.3390/jfb14090470
Chicago/Turabian StyleYang, Kaining, Lei Shen, Lin Zhang, Wenxin Sun, Yuhong Zou, Yande Ren, and Rongchang Zeng. 2023. "Antibacterial Activity and Biocompatibility of Ag-Montmorillonite/Chitosan Colloidal Dressing in a Skin Infection Rat Model: An In Vitro and In Vivo Study" Journal of Functional Biomaterials 14, no. 9: 470. https://doi.org/10.3390/jfb14090470
APA StyleYang, K., Shen, L., Zhang, L., Sun, W., Zou, Y., Ren, Y., & Zeng, R. (2023). Antibacterial Activity and Biocompatibility of Ag-Montmorillonite/Chitosan Colloidal Dressing in a Skin Infection Rat Model: An In Vitro and In Vivo Study. Journal of Functional Biomaterials, 14(9), 470. https://doi.org/10.3390/jfb14090470