Cellulose/Zeolitic Imidazolate Framework (ZIF-8) Composites with Antibacterial Properties for the Management of Wound Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Instrumentation
2.3. Synthesis of Cell@ZIF-8 and Cell2@ZIF-8
2.4. Synthesis of ZIF-8
2.5. Bacterial Strains
2.6. In Vitro Assessment of Cellulose/ZIF-8 Antibacterial Activity
2.7. Cells
2.8. Cell Viability and Cytotoxicity
3. Results and Discussion
3.1. Synthesis and Characterization of Cellulose/ZIF-8 Composites
3.2. Microbiological Results
3.3. Cell Compatibility
3.4. Clinical Isolates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heinze, T. Cellulose: Structure and Properties. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Rojas, O.J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–52. ISBN 978-3-319-26015-0. [Google Scholar]
- Read, S.M.; Bacic, T. Prime Time for Cellulose. Science 2002, 295, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Palanisamy, C.P.; Alugoju, P.; Anthikapalli, N.V.A.; Natarajan, P.M.; Umapathy, V.R.; Swamikannu, B.; Jayaraman, S.; Rajagopal, P.; Poompradub, S. A Comprehensive Review on Bio-Based Materials for Chronic Diabetic Wounds. Molecules 2023, 28, 604. [Google Scholar] [CrossRef] [PubMed]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Abazari, M.F.; Gholizadeh, S.; Karizi, S.Z.; Birgani, N.H.; Abazari, D.; Paknia, S.; Derakhshankhah, H.; Allahyari, Z.; Amini, S.M.; Hamidi, M.; et al. Recent Advances in Cellulose-Based Structures as the Wound-Healing Biomaterials: A Clinically Oriented Review. Appl. Sci. 2021, 11, 7769. [Google Scholar] [CrossRef]
- de Amorim, J.D.P.; da Silva Junior, C.J.G.; de Medeiros, A.D.M.; do Nascimento, H.A.; Sarubbo, M.; de Medeiros, T.P.M.; de Santana Costa, A.F.; Sarubbo, L.A. Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules 2022, 27, 5580. [Google Scholar] [CrossRef]
- Ribeiro, D.; Carvalho Júnior, A.; Vale de Macedo, G.; Chagas, V.; Silva, L.; Cutrim, B.; Santos, D.; Soares, B.; Zagmignan, A.; de Miranda, R.; et al. Polysaccharide-Based Formulations for Healing of Skin-Related Wound Infections: Lessons from Animal Models and Clinical Trials. Biomolecules 2019, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Nussbaum, S.R.; Carter, M.J.; Fife, C.E.; DaVanzo, J.; Haught, R.; Nusgart, M.; Cartwright, D. An Economic Evaluation of the Impact, Cost, and Medicare Policy Implications of Chronic Nonhealing Wounds. Value Health 2018, 21, 27–32. [Google Scholar] [CrossRef]
- Sen, C.K. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv. Wound Care 2021, 10, 281–292. [Google Scholar] [CrossRef]
- Pino, P.; Bosco, F.; Mollea, C.; Onida, B. Antimicrobial Nano-Zinc Oxide Biocomposites for Wound Healing Applications: A Review. Pharmaceutics 2023, 15, 970. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Mathew, A.P. Cellulose–Metal Organic Frameworks (CelloMOFs) Hybrid Materials and Their Multifaceted Applications: A Review. Coord. Chem. Rev. 2022, 451, 214263. [Google Scholar] [CrossRef]
- Mai, T.; Li, D.-D.; Chen, L.; Ma, M.-G. Collaboration of Two-Star Nanomaterials: The Applications of Nanocellulose-Based Metal Organic Frameworks Composites. Carbohydr. Polym. 2023, 302, 120359. [Google Scholar] [CrossRef]
- Tu, K.; Ding, Y.; Keplinger, T. Review on Design Strategies and Applications of Metal-Organic Framework-Cellulose Composites. Carbohydr. Polym. 2022, 291, 119539. [Google Scholar] [CrossRef] [PubMed]
- Ragazzini, I.; Gualandi, I.; Selli, S.; Polizzi, C.; Cassani, M.C.; Nanni, D.; Gambassi, F.; Tarterini, F.; Tonelli, D.; Scavetta, E.; et al. A Simple and Industrially Scalable Method for Making a PANI-Modified Cellulose Touch Sensor. Carbohydr. Polym. 2021, 254, 117304. [Google Scholar] [CrossRef]
- Ragazzini, I.; Castagnoli, R.; Gualandi, I.; Cassani, M.C.; Nanni, D.; Gambassi, F.; Scavetta, E.; Bernardi, E.; Ballarin, B. A Resistive Sensor for Humidity Detection Based on Cellulose/Polyaniline. RSC Adv. 2022, 12, 28217–28226. [Google Scholar] [CrossRef]
- Ragazzini, I.; Gualandi, I.; D’Altri, G.; Di Matteo, V.; Yeasmin, L.; Cassani, M.C.; Scavetta, E.; Bernardi, E.; Ballarin, B. Polyaniline/Poly (2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Modified Cellulose as Promising Material for Sensors Design. Carbohydr. Polym. 2023, 316, 121079. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [PubMed]
- Ploetz, E.; Engelke, H.; Lächelt, U.; Wuttke, S. The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Adv. Funct. Mater. 2020, 30, 1909062. [Google Scholar] [CrossRef]
- Venna, S.R.; Jasinski, J.B.; Carreon, M.A. Structural Evolution of Zeolitic Imidazolate Framework-8. J. Am. Chem. Soc. 2010, 132, 18030–18033. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Long, J.R.; Yaghi, O.M. Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Qin, C.; Wang, X.-L.; Yang, G.-S.; Shao, K.-Z.; Lan, Y.-Q.; Su, Z.-M.; Huang, P.; Wang, C.-G.; Wang, E.-B. Zeolitic Imidazolate Framework-8 as Efficient PH-Sensitive Drug Delivery Vehicle. Dalton Trans. 2012, 25, 13189–13196. [Google Scholar] [CrossRef]
- She, P.; Liu, Y.; Wang, Y.; Tan, F.; Luo, Z.; Wu, Y. Antibiofilm Efficacy of the Gold Compound Auranofin on Dual Species Biofilms of Staphylococcus Aureus and Candida Sp. J. Appl. Microbiol. 2020, 128, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, H.N. Zeolitic Imidazolate Frameworks (ZIF-8) for Biomedical Applications: A Review. Curr. Med. Chem. 2021, 28, 7023–7075. [Google Scholar] [CrossRef] [PubMed]
- Pourmadadi, M.; Ostovar, S.; Eshaghi, M.M.; Rajabzadeh-Khosroshahi, M.; Safakhah, S.; Ghotekar, S.; Rahdar, A.; Díez-Pascual, A.M. Nanoscale Metallic-organic Frameworks as an Advanced Tool for Medical Applications: Challenges and Recent Progress. Appl. Organomet. Chem. 2023, 37, e6982. [Google Scholar] [CrossRef]
- Sun, Y. Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. NanoMicro Lett. 2020, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, Y.-W. Metal–Organic Frameworks for Biomedical Applications. NanoMicro Small 2020, 16, 1906846. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. Synthesis and Modification of ZIF-8 and Its Application in Drug Delivery and Tumor Therapy. RSC Adv. 2020, 10, 37600–37620. [Google Scholar] [CrossRef] [PubMed]
- Pettinari, C.; Pettinari, R.; Di Nicola, C.; Tombesi, A.; Scuri, S.; Marchetti, F. Antimicrobial MOFs. Coord. Chem. Rev. 2021, 446, 214121. [Google Scholar] [CrossRef]
- Zhang, X. Graphene Oxide Caged in Cellulose Microbeads for Removal of Malachite Green Dye from Aqueous Solution. J. Colloid Interface Sci. 2015, 437, 277–282. [Google Scholar] [CrossRef]
- Barjasteh, M.; Mohsen Dehnavi, S.; Ahmadi Seyedkhani, S.; Yahya Rahnamaee, S.; Golizadeh, M. Synergistic Wound Healing by Novel Ag@ZIF-8 Nanostructures. Int. J. Pharm. 2022, 629, 122339. [Google Scholar] [CrossRef]
- Guo, Y.-F.; Fang, W.-J.; Fu, J.-R.; Wu, Y.; Zheng, J.; Gao, G.-Q.; Chen, C.; Yan, R.-W.; Huang, S.-G.; Wang, C.-C. Facile Synthesis of Ag@ZIF-8 Core-Shell Heterostructure Nanowires for Improved Antibacterial Activities. Appl. Surf. Sci. 2018, 435, 149–155. [Google Scholar] [CrossRef]
- Deng, L.; Huang, Y.; Chen, S.; Han, Z.; Han, Z.; Jin, M.; Qu, X.; Wang, B.; Wang, H.; Gu, S. Bacterial Cellulose-Based Hydrogel with Antibacterial Activity and Vascularization for Wound Healing. Carbohydr. Polym. 2023, 308, 120647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, T.-T.; Shiu, B.-C.; Lin, J.-H.; Lou, C.-W. Two Methods for Constructing ZIF-8 Nanomaterials with Good Bio Compatibility and Robust Antibacterial Applied to Biomedical. J. Biomater. Appl. 2022, 36, 1042–1054. [Google Scholar] [CrossRef] [PubMed]
- Taheri, M.; Ashok, D.; Sen, T.; Enge, T.G.; Verma, N.K.; Tricoli, A.; Lowe, A.; Nisbet, D.R.; Tsuzuki, T. Stability of ZIF-8 Nanopowders in Bacterial Culture Media and Its Implication for Antibacterial Properties. Chem. Eng. J. 2021, 413, 127511. [Google Scholar] [CrossRef]
- Gómez-Gualdrón, D.A.; Moghadam, P.Z.; Hupp, J.T.; Farha, O.K.; Snurr, R.Q. Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal–Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Howarth, A.J.; Peters, A.W.; Vermeulen, N.A.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chem. Mater. 2017, 29, 26–39. [Google Scholar] [CrossRef]
- Hoop, M. Biocompatibility Characteristics of the Metal Organic Framework ZIF-8 for Therapeutical Applications. Appl. Mater. Today 2018, 11, 13–21. [Google Scholar] [CrossRef]
- EUCAST Breakpoint Tables. 12. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 1 July 2023).
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef]
- Gross, A.F.; Sherman, E.; Vajo, J.J. Aqueous Room Temperature Synthesis of Cobalt and Zinc Sodalite Zeolitic Imidizolate Frameworks. Dalton Trans. 2012, 41, 5458–5460. [Google Scholar] [CrossRef]
- Liang, K. Biomimetic Mineralization of Metal-Organic Frameworks as Protective Coatings for Biomacromolecules. Nat. Commun. 2015, 6, 7240. [Google Scholar] [CrossRef]
- Jian, M. Water-Based Synthesis of Zeolitic Imidazolate Framework-8 with High Morphology Level at Room Temperature. RSC Adv. 2015, 5, 48433–48441. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, Y.; Zou, L.; Wang, Y.; Zhou, X.; Yao, L.; Wang, Z.; Li, C.; Qiu, Y. Robust ZIF-8/Alginate Fibers for the Durable and Highly Effective Antibacterial Textiles. Colloids Surf. B Biointerfaces 2020, 193, 111127. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Zhang, M.; Lu, Z.; Song, S.; Zhao, Y.; Hao, Y. Functionalization of Cellulose Fiber by in Situ Growth of Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals for Preparing a Cellulose-Based Air Filter with Gas Adsorption Ability. Cellulose 2018, 25, 1997–2008. [Google Scholar] [CrossRef]
- Velásquez-Hernández, M.D.J.; Ricco, R.; Carraro, F.; Limpoco, F.T.; Linares-Moreau, M.; Leitner, E.; Wiltsche, H.; Rattenberger, J.; Schröttner, H.; Frühwirt, P.; et al. Degradation of ZIF-8 in Phosphate Buffered Saline Media. CrystEngComm 2019, 21, 4538–4544. [Google Scholar] [CrossRef]
- James, J.B.; Lin, Y.S. Kinetics of ZIF-8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments. J. Phys. Chem. C 2016, 120, 14015–14026. [Google Scholar] [CrossRef]
- Carraro, F. Phase Dependent Encapsulation and Release Profile of ZIF-Based Biocomposites. Chem. Sci. 2020, 11, 3397–3404. [Google Scholar] [CrossRef] [PubMed]
- Hafner, M.R. App-Based Quantification of Crystal Phases and Amorphous Content in ZIF Biocomposites. CrystEngComm 2022, 24, 7266–7271. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. CelloZIFPaper: Cellulose-ZIF Hybrid Paper for Heavy Metal Removal and Electrochemical Sensing. Chem. Eng. J. 2022, 446, 136614. [Google Scholar] [CrossRef]
- Karimi Alavijeh, R.; Beheshti, S.; Akhbari, K.; Morsali, A. Investigation of Reasons for Metal–Organic Framework’s Antibacterial Activities. Polyhedron 2018, 156, 257–278. [Google Scholar] [CrossRef]
- Severn, M.M.; Horswill, A.R. Staphylococcus Epidermidis and Its Dual Lifestyle in Skin Health and Infection. Nat. Rev. Microbiol. 2023, 21, 97–111. [Google Scholar] [CrossRef]
- Puca, V.; Marulli, R.Z.; Grande, R.; Vitale, I.; Niro, A.; Molinaro, G.; Prezioso, S.; Muraro, R.; Di Giovanni, P. Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis: Data Emerging from a Three-Years Retrospective Study. Antibiotics 2021, 10, 1162. [Google Scholar] [CrossRef]
- Silingardi, F.; Bonvicini, F.; Cassani, M.C.; Mazzaro, R.; Rubini, K.; Gentilomi, G.A.; Bigi, A.; Boanini, E. Hydroxyapatite Decorated with Tungsten Oxide Nanoparticles: New Composite Materials against Bacterial Growth. J. Funct. Biomater. 2022, 13, 88. [Google Scholar] [CrossRef]
Sample Name | Cellulose (g) | Zn(OAc)2∙2H2O(g) 1 | 2-HmIM (g) 1 | Zn (wt %) 2 | ZIF-8 (wt %) 3 |
---|---|---|---|---|---|
Cell@ZIF-8 4 | 2.50 | 2.30 | 8.60 | 9.1 ± 0.4 | 38.2 ± 0.4 |
Cell2@ZIF-8 5 | 5.00 | 2.30 | 8.60 | 8.5 ± 0.4 | 30.2 ± 0.4 |
Sample Name | ZIF-8 (wt %) | SLAN (m2/g) 1 | SBET (m2/g) 2 | VTOTAL (cm3/g) 3 |
---|---|---|---|---|
Cell@ZIF-8 | 38.2 ± 0.4 | 662 ± 1 | 660 ± 16 | 0.25 |
Cell2@ZIF-8 | 30.2 ± 0.4 | 455 ± 1 | 451 ± 15 | 0.18 |
Sample Name | S. epidermidis | P. aeruginosa |
---|---|---|
Sterile paper disk | NA 1 | NA |
Cellulose bare | NA | NA |
Cell@ZIF-8 as-synthetized | 14−15 | 13−14 |
Cell@ZIF-8 activated | 12−14 | 13 ± 16 |
Cell2@ZIF-8 as-synthetized | 9−12 | 11−14 |
Cell2@ZIF-8 activated | 9−13 | 10−14 |
GNT 10 µg | 21−23 | 17−19 |
VNC 10 µg | 14−16 | NA |
Sample Name | Cell Viability 1 | LDH Activity 1 |
---|---|---|
Sterile paper disk | 100.0 ± 8.7 | <5 |
Cellulose bare | 99.0 ± 0.7 | <5 |
Cell@ZIF-8 as-synthetized | 0.20 ± 0.7 | 32.0 ± 4.7 |
Cell@ZIF-8 activated | 58.1 ± 2.4 | 13.9 ± 2.5 |
Cell2@ZIF-8 as-synthetized | 6.3 ± 1.3 | 29.4 ± 1.2 |
Cell2@ZIF-8 activated | 84.3 ± 2.5 | 10.4 ± 2.4 |
Clinical Isolate | Diameter of Inhibition | Antibiotic-Resistance Profile 1,2 |
---|---|---|
S. epidermidis ATCC 12228 | 12−14 | - |
Strain 1 (MRSE) 3 | 11−13 | CMS, DAPS, ER, GMNS, LVXI, OXR, TES, SXTS, VAS |
Strain 2 (MRSE) 3 | 13−15 | CMS, DAPS, ES, GMNS, LVXR, OXR, TES, SXTS, VAS |
Strain 3 | 15−17 | CMS, DAPS, ES, GMNS, LVXS, OXS, TES, SXTS, VAS |
Strain 4 | 18−20 | CMS, DAPS, ES, GMNS, LVXS, OXS, TES, SXTS, VAS |
P. aeruginosa ATCC 27853 | 13−16 | - |
Strain 1 | 12−14 | ANS, CAZS, CAZ-AVIS, CTS, CIPS, FEPs, IMIs, MEMS, MEVS, TZPS |
Strain 2 | 15−17 | ANS, CAZS, CAZ-AVIS, CTS, CIPS, FEPS, IMIS, MEMS, MEVS, TZPS |
Strain 3 (MDR) 4 | 13−15 | ANS, CAZI, CAZ-AVIS, CTS, CIPR, FEPS, IMII, MEMS, MEVS, TZPS |
Strain 4 (MDR) 4 | 19−21 | ANS, CAZR, CAZ-AVIS, CTS, CIPR, FEPR, IMIR, MEMI, TZPS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Matteo, V.; Di Filippo, M.F.; Ballarin, B.; Gentilomi, G.A.; Bonvicini, F.; Panzavolta, S.; Cassani, M.C. Cellulose/Zeolitic Imidazolate Framework (ZIF-8) Composites with Antibacterial Properties for the Management of Wound Infections. J. Funct. Biomater. 2023, 14, 472. https://doi.org/10.3390/jfb14090472
Di Matteo V, Di Filippo MF, Ballarin B, Gentilomi GA, Bonvicini F, Panzavolta S, Cassani MC. Cellulose/Zeolitic Imidazolate Framework (ZIF-8) Composites with Antibacterial Properties for the Management of Wound Infections. Journal of Functional Biomaterials. 2023; 14(9):472. https://doi.org/10.3390/jfb14090472
Chicago/Turabian StyleDi Matteo, Valentina, Maria Francesca Di Filippo, Barbara Ballarin, Giovanna Angela Gentilomi, Francesca Bonvicini, Silvia Panzavolta, and Maria Cristina Cassani. 2023. "Cellulose/Zeolitic Imidazolate Framework (ZIF-8) Composites with Antibacterial Properties for the Management of Wound Infections" Journal of Functional Biomaterials 14, no. 9: 472. https://doi.org/10.3390/jfb14090472
APA StyleDi Matteo, V., Di Filippo, M. F., Ballarin, B., Gentilomi, G. A., Bonvicini, F., Panzavolta, S., & Cassani, M. C. (2023). Cellulose/Zeolitic Imidazolate Framework (ZIF-8) Composites with Antibacterial Properties for the Management of Wound Infections. Journal of Functional Biomaterials, 14(9), 472. https://doi.org/10.3390/jfb14090472