Antimicrobial Oleogel Containing Sustainably Prepared Silver-Based Nanomaterials for Topical Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cab-O-Sil-Ag
2.2. Cab-O-Sil-Ag UV Irradiation
2.3. Characterization of Cab-O-Sil-Ag and Cab-O-Sil-Ag-Irr
2.4. Preparation of the Oleogels
2.5. In Vitro Silver Release Studies
2.6. Microbial Strains and Growth Conditions
2.7. Antimicrobial Activity of Nanocomposites
2.8. Antimicrobial Activity of Oleogels
2.9. Oleogel Cytotoxicity
3. Results and Discussion
3.1. Composite Preparation and Characterization
3.2. Oleogel Formulation and Characterization
3.3. Antimicrobial Activity and Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Williamson, D.A.; Carter, G.P.; Howden, B.P. Current and emerging topical antibacterials and antiseptics: Agents, action, and resistance patterns. Clin. Microbiol. Rev. 2017, 30, 827–860. [Google Scholar] [CrossRef] [PubMed]
- Dieckmann, R.; Boone, I.; Brockmann, S.O.; Hammerl, J.A.; Kolb-Mäurer, A.; Goebeler, M.; Luch, A.; Al Dahouk, S. The Risk of Bacterial Infection After Tattooing. Dtsch. Arztebl. Int. 2016, 113, 665–671. [Google Scholar] [CrossRef]
- WHO, World Health Organization. Antibiotic Resistance. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 15 December 2023).
- Bonamonte, D.; De Marco, A.; Giuffrida, R.; Conforti, C.; Barlusconi, C.; Foti, C.; Romita, P. Topical antibiotics in the dermatological clinical practice: Indications, efficacy, and adverse effects. Dermatol. Ther. 2020, 33, e13824. [Google Scholar] [CrossRef] [PubMed]
- Odeniyi, M.A.; Okumah, V.C.; Adebayo-Tayo, B.C.; Odeniyi, O.A. Green synthesis and cream formulations of silver nanoparticles of Nauclealatifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustain. Chem. Pharm. 2020, 15, 100197. [Google Scholar] [CrossRef]
- Sonia, S.; Linda Jeeva Kumari, H.; Ruckmani, K.; Sivakumar, M. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: A potent nanocosmeceutical application. Mater. Sci. Eng. C 2017, 79, 581–589. [Google Scholar] [CrossRef]
- Jain, J.; Arora, S.; Rajwade, J.M.; Omray, P.; Khandelwal, S.; Paknikar, K.M. Silver Nanoparticles in Therapeutics: Development of an Antimicrobial Gel Formulation for Topical Use. Mol. Pharm. 2009, 6, 1388–1401. [Google Scholar] [CrossRef] [PubMed]
- Marslin, G.; Selvakesavan, R.K.; Franklin, G.; Sarmento, B.; Dias, A.C.P. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from from Withania somnifera. Int. J. Nanomed. 2015, 10, 5955–5963. [Google Scholar] [CrossRef]
- Mekkawy, A.I.; El-Mokhtar, M.A.; Nafady, N.A.; Yousef, N.; Hamad, M.A.; El-Shanawany, S.M.; Ibrahim, E.H.; Elsabahy, M. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: Effect of surface coating and loading into hydrogels. Int. J. Nanomed. 2017, 12, 759–777. [Google Scholar] [CrossRef]
- Bansod, S.D.; Bawaskar, M.S.; Gade, A.K.; Rai, M.K. Development of shampoo, soap and ointment formulated by green synthesized silver nanoparticles functionalized with antimicrobial plants oils in veterinary dermatology: Treatment and prevention strategies. IET Nanobiotechnol. 2015, 9, 165–171. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, S.; Rahman, N.A.A.; Peile, E.; Rahman, M.; Sartelli, M.; Hassali, M.A.; Islam, T.; Islam, S.; Haque, M. Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter. Front. Public Health 2020, 8, 535668. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Zampini, G.; Planas, O.; Marmottini, F.; Gulıas, O.; Agut, M.; Nonell, S.; Latterini, L. Morphology effects on singlet oxygen production and bacterial photoinactivation efficiency by different silica-protoporphyrin IX nanocomposites. RSC Adv. 2017, 7, 14422–14429. [Google Scholar] [CrossRef]
- Gambucci, M.; Tarpani, L.; Zampini, G.; Massaro, G.; Nocchetti, M.; Sassi, P.; Latterini, L. Fluorimetric studies of a transmembrane protein and its interactions with differently functionalized silver nanoparticles. J. Phys. Chem. B 2018, 122, 6872–6879. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.; Salman, A.; Khan, Z.; Khan, S.; Krishnaraj, C.; Yun, S. Metallic Nanoparticles: A Promising Arsenal against Antimicrobial Resistance—Unraveling Mechanisms and Enhancing Medication Efficacy. Int. J. Mol. Sci. 2023, 24, 14897. [Google Scholar] [CrossRef] [PubMed]
- Keck, C.M.; Anantaworasakul, P.; Patel, M.; Okonogi, S.; Singh, K.K.; Roessner, D.; Scherrers, R.; Schwabe, K.; Rimpler, C.; Müller, R.H. A new concept for the treatment of atopic dermatitis: Silver–nanolipid complex (sNLC). Int. J. Pharm. 2014, 462, 44–51. [Google Scholar] [CrossRef]
- Altmeyer, P.; Bacharach-Buhles, M.; Buhles, N. Dermatologie, Allergologie, Umweltmedizin; Springer: Berlin/Heidelberg, Germany, 2002; pp. 426–436. [Google Scholar]
- Glaser, R.; Meyer-Hoffert, U.; Harder, J.; Cordes, J.; Wittersheim, M.; Kobliakova, J.; Folster-Holst, R.; Proksch, E.; Schroder, J.M.; Schwarz, T. The antimicrobial protein psoriasin (S100A7) is upregulated in atopic dermatitis and after experimental skin barrier disruption. J. Investig. Dermatol. 2009, 129, 641–649. [Google Scholar] [CrossRef]
- Baker, B.S. The role of microorganisms in atopic dermatitis. Clin. Exp. Immunol. 2006, 144, 1–9. [Google Scholar] [CrossRef]
- Czarnowicki, T.; Malajian, D.; Khattri, S.; Shemer, A.; Krueger, J.G.; Guttman-Yassky, E. Petrolatum: Barrier repair and antimicrobial responses underlying this “inert” moisturizer. J. Allergy Clin. Immunol. 2016, 137, 1091–1102.e7. [Google Scholar] [CrossRef]
- Arkwright, P.D.; Motala, C.; Subramanian, H.; Spergel, J.; Schneider, L.C.; Wollenberg, A. Management of Difficult-to-Treat Atopic Dermatitis. J. Allergy Clin. Immunol. Pract. 2013, 1, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Nijhawan, R.I.; Smith, L.A.; Mariwalla, K. Mohs surgeons’ use of topical emollients in postoperative wound care. Dermatol. Surg. 2013, 39, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Ambrogi, V.; Pietrella, D.; Donnadio, A.; Latterini, L.; Di Michele, A.; Luffarelli, I.; Ricci, M. Biocompatible alginate silica supported silver nanoparticles composite films for wound dressing with antibiofilm activity. Mater. Sci. Eng. C 2020, 112, 110863. [Google Scholar] [CrossRef]
- Donnadio, A.; Cardinali, G.; Latterini, L.; Roscini, L.; Ambrogi, V. Nanostructured zinc oxide on silica surface: Preparation, physicochemical characterization, and antimicrobial activity. Mater. Sci. Eng. C 2019, 104, 109977. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Quirós, S.; Gómez-Graña, S.; Vallet-Regí, M.; Prados-Rosales, R.C.; González, B.; Luque-Garcia, J.L. Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis. Colloids Surf. B 2021, 197, 111405. [Google Scholar] [CrossRef] [PubMed]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press: London, UK, 2009; pp. 506–509. [Google Scholar]
- Available online: https://www.cabotcorp.com/solutions/products-plus/fumed-metal-oxides (accessed on 15 December 2023).
- Quaglia, G.; Ambrogi, V.; Pietrella, D.; Nocchetti, M.; Latterini, L. Solid state photoreduction of silver on mesoporous silica to enhance antifungal activity. Nanomaterials 2021, 11, 2340. [Google Scholar] [CrossRef]
- Videira-Quintela, D.; Guillén, F.; Montalvo, G.; Martin, O. Silver, copper, and copper hydroxy salt decorated fumed silica hybrid composites as antibacterial agents. Colloids Surf. B 2020, 195, 111216. [Google Scholar] [CrossRef]
- Molleman, B.; Hiemstra, T. Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir 2015, 31, 13361–13372. [Google Scholar] [CrossRef]
- Liu, J.; Sonshine, D.A.; Shervani, S.; Hurt, R.H. Controlled Release of Biologically Active Silver from Nanosilver Surfaces. ACS Nano 2010, 4, 6903–6913. [Google Scholar] [CrossRef]
Excipient | Oleogel-1 | Oleogel-2 | Oleogel-3 | Oleogel-4 | Oleogel-5 |
---|---|---|---|---|---|
Cab-O-Sil | 5.000 | 5.000 | 4.883 | 4.880 | 4.880 |
Cab-O-Sil-Ag | - | - | - | 0.120 | - |
Cab-O-Sil-Ag-Irr | - | - | - | - | 0.120 |
AgNO3 | - | 0.016 | 0.016 | - | - |
Deionized water | - | - | 0.100 | - | - |
Lanolin alcohols | - | - | 0.500 | - | - |
Liquid paraffin | 95.00 | 94.984 | 94.501 | 95.000 | 95.000 |
Sample | S. epidermidis | S. aureus | P. aeruginosa | |||
---|---|---|---|---|---|---|
MIC (µg/mL) | MICsilver (µg/mL) | MIC (µg/mL) | MICsilver (µg/mL) | MIC (µg/mL) | MICsilver (µg/mL) | |
Cab-O-Sil | >10,000 | >10,000 | >10,000 | >10,000 | >10,000 | >10,000 |
Cab-O-Sil-Ag | 38.7 | 3.2 | 77.5 | 6.5 | 155 | 13.2 |
Cab-O-Sil-Ag-irr | 38.7 | 3.2 | 57.8 | 4.8 | 154 | 12.9 |
AgNO3 | 15.6 | 9.9 | 15.6 | 9.9 | 15.6 | 9.9 |
Gentamicin | 0.1 | 0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Sample | CC50 (µg/mL) NCTC 2544 | CC50 (µg/mL) HuDe | ||
---|---|---|---|---|
4 h | 24 h | 4 h | 24 h | |
Cab-O-Sil-Ag | 17.48 | 22.06 | 13.43 | 16.35 |
Cab-O-Sil-Ag-irr | 22.00 | 15.29 | 15.38 | 5.09 |
AgNO3 | 5.72 | 5.72 | 3.00 | 3.00 |
Sample | NCTC2544 4 h µg/mL | NCTC2544 24 h µg/mL | Hude 4 h µg/mL | Hude 24 h µg/mL |
---|---|---|---|---|
Oleogel-2 | 136 | >250 | 75 | >250 |
Oleogel-3 | >250 | >250 | >250 | >250 |
Oleogel-4 | >250 | >250 | 109 | >250 |
Oleogel-5 | >250 | >250 | >250 | >250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrogi, V.; Nocchetti, M.; Pietrella, D.; Quaglia, G.; Di Michele, A.; Latterini, L. Antimicrobial Oleogel Containing Sustainably Prepared Silver-Based Nanomaterials for Topical Application. J. Funct. Biomater. 2024, 15, 4. https://doi.org/10.3390/jfb15010004
Ambrogi V, Nocchetti M, Pietrella D, Quaglia G, Di Michele A, Latterini L. Antimicrobial Oleogel Containing Sustainably Prepared Silver-Based Nanomaterials for Topical Application. Journal of Functional Biomaterials. 2024; 15(1):4. https://doi.org/10.3390/jfb15010004
Chicago/Turabian StyleAmbrogi, Valeria, Morena Nocchetti, Donatella Pietrella, Giulia Quaglia, Alessandro Di Michele, and Loredana Latterini. 2024. "Antimicrobial Oleogel Containing Sustainably Prepared Silver-Based Nanomaterials for Topical Application" Journal of Functional Biomaterials 15, no. 1: 4. https://doi.org/10.3390/jfb15010004
APA StyleAmbrogi, V., Nocchetti, M., Pietrella, D., Quaglia, G., Di Michele, A., & Latterini, L. (2024). Antimicrobial Oleogel Containing Sustainably Prepared Silver-Based Nanomaterials for Topical Application. Journal of Functional Biomaterials, 15(1), 4. https://doi.org/10.3390/jfb15010004