Electric Current Application on Dental Implant Biofilms: Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection (Inclusion and Exclusion Criteria)
2.3. Data Collection and Extraction
2.4. Risk of Bias Assessment
3. Results
3.1. Search Strategy—Results
3.2. Risk of Bias
3.3. Type of Treatment and Objective
3.4. Substrate, Electrodes, and Microorganisms
3.5. Electric Current Parameters (Current, Voltage, Resistance, and Exposure Time)
3.6. Protocol to Access the Bacteria Viability
3.7. Obtained Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Search | Search Terms | Results |
---|---|---|
#1 | “dental implant” | 8777 |
#2 | antifouling | 4.07 |
#3 | bacterial | 1,199,480 |
#4 | biofilm | 54,373 |
#5 | “peri-implantitis” | 2659 |
#6 | #2 OR #3 OR #4 OR #5 | 1,226,588 |
#7 | current | 1,718,619 |
#8 | electr * | 4,341,572 |
#9 | potential | 3,019,019 |
#10 | voltage | 141,184 |
#11 | #7 OR #8 OR #9 OR #10 | 7,695,330 |
#12 | biocidal | 75,983 |
#13 | clean | 74,683 |
#14 | decontamination | 14,498 |
#15 | decrease | 2,488,989 |
#16 | detachment | 64,329 |
#17 | desorption | 45,663 |
#18 | elimination | 330,003 |
#19 | eradication | 65,981 |
#20 | killing | 149,656 |
#21 | inactivation | 221,133 |
#22 | inhibition | 1,662,602 |
#23 | mitigation | 83,276 |
#24 | prevention | 2,574,281 |
#25 | removal | 638,425 |
#26 | stimulation | 1,326,089 |
#27 | treatment | 11,304,504 |
#28 | therapy | 9,692,170 |
#29 | #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR #28 | 15,128,975 |
#30 | #1 AND #6 AND #11 AND #29 | 281 |
References
- Dolete, G.; Ilie, C.F.; Nicoară, I.F.; Vlăsceanu, G.M.; Grumezescu, A.M. Chapter 2-Understanding dental implants. In Nanobiomaterials in Dentistry; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 27–47. [Google Scholar] [CrossRef]
- Gaviria, L.; Salcido, J.P.; Guda, T.; Ong, J.L. Current trends in dental implants. J. Korean Assoc. Oral Maxillofac. Surg. 2014, 40, 50. [Google Scholar] [CrossRef] [PubMed]
- Buser, D.; Sennerby, L.; De Bruyn, H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology 2000 2017, 73, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Schwartzenberg, A.V.; Liu, C.C.; Sahrmann, P.; Schmidlin, P.R.; Jung, R.E.; Naenni, N. Risk Characteristics of Peri-Implant Infections: A Retrospective Evaluation in a University Consultation Setting. Dent. J. 2022, 10, 159. [Google Scholar] [CrossRef] [PubMed]
- Rokaya, D.; Srimaneepong, V.; Wisitrasameewon, W.; Humagain, M.; Thunyakitpisal, P. Peri-implantitis Update: Risk Indicators, Diagnosis, and Treatment. Eur. J. Dent. 2020, 14, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Butera, A.; Pascadopoli, M.; Pellegrini, M.; Gallo, S.; Zampetti, P.; Scribante, A. Oral Microbiota in Patients with Peri-Implant Disease: A Narrative Review. Appl. Sci. 2022, 12, 3250. [Google Scholar] [CrossRef]
- Pérez-Pevida, E.; Chávarri-Prado, D.; Diéguez-Pereira, M.; Estrada-Martínez, A.; Montalbán-Vadillo, O.; Jiménez-Garrudo, A. Consequences of Peri-Implant Bone Loss in the Occlusal Load Transfer to the Supporting Bone in terms of Magnitude of Stress, Strain, and Stress Distribution: A Finite Element Analysis. Biomed Res. Int. 2021, 2021, 3087071. [Google Scholar] [CrossRef] [PubMed]
- Bosshardt, D.D.; Brodbeck, U.R.; Rathe, F.; Stumpf, T.; Imber, J.-C.; Weigl, P.; Schlee, M. Evidence of re-osseointegration after electrolytic cleaning and regenerative therapy of peri-implantitis in humans: A case report with four implants. Clin. Oral Investig. 2022, 26, 3735–3746. [Google Scholar] [CrossRef] [PubMed]
- Brincat, A.; Antezack, A.; Sadowski, C.; Faure-Brac, M.; Ohanessian, R.; Monnet-Corti, V. Absence of Progressive Bone Loss Following Peri-Implantitis Surgical Therapy with Implantoplasty: A Case Series. Appl. Sci. 2023, 13, 7224. [Google Scholar] [CrossRef]
- Săndulescu, M.; Sîrbu, V.D.; Popovici, I.A. Bacterial species associated with peri-implant disease-a literature review. Germs 2023, 13, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Mombelli, A.; Müller, N.; Cionca, N. The epidemiology of peri-implantitis. Clin. Oral Implants Res. 2012, 23, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Prathapachandran, J.; Suresh, N. Management of peri-implantitis. Dent. Res. J. 2012, 9, 516. [Google Scholar] [CrossRef] [PubMed]
- Al-Hashedi, A.A.; Laurenti, M.; Abdallah, M.-N.; Albuquerque, R.F.J.; Tamimi, F. Electrochemical Treatment of Contaminated Titanium Surfaces In Vitro: An Approach for Implant Surface Decontamination. ACS Biomater. Sci. Eng. 2016, 2, 1504–1518. [Google Scholar] [CrossRef] [PubMed]
- Pranno, N.; Monaca, G.L.; Polimeni, A.; Sarto, M.S.; Uccelletti, D.; Bruni, E.; Cristalli, M.P.; Cavallini, D.; Vozza, I. Antibacterial activity against staphylococcus aureus of titanium surfaces coated with graphene nanoplatelets to prevent peri-implant diseases. An in-vitro pilot study. Int. J. Environ. Res. Public Health 2020, 17, 1568. [Google Scholar] [CrossRef] [PubMed]
- Heitz-Mayfield, L.; Mombelli, A. The Therapy of Peri-implantitis: A Systematic Review. Int. J. Oral Maxillofac. Implants 2014, 29, 325–345. [Google Scholar] [CrossRef] [PubMed]
- Roccuzzo, M.; Layton, D.M.; Roccuzzo, A.; Heitz-Mayfield, L.J. Clinical outcomes of peri-implantitis treatment and supportive care: A systematic review. Clin. Oral Implants Res. 2018, 29, 331–350. [Google Scholar] [CrossRef] [PubMed]
- Mohn, D.; Zehnder, M.; Stark, W.J.; Imfeld, T. Electrochemical disinfection of dental implants-A proof-of-concept study | Elektrochemische desinfektion dentaler implantate-Eine machbarkeitsstudie. Implantologie 2011, 19, 151–159. [Google Scholar]
- Lasserre, J.F.; Toma, S.; Bourgeois, T.; El Khatmaoui, H.; Marichal, E.; Brecx, M.C. Influence of low direct electric currents and chlorhexidine upon human dental biofilms. Clin. Exp. Dent. Res. 2016, 2, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Smeets, R.; Henningsen, A.; Jung, O.; Heiland, M.; Hammächer, C.; Stein, J.M. Definition, etiology, prevention and treatment of peri-implantitis-a review. Head Face Med. 2014, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ting, M.; Craig, J.; Balkin, B.E.; Suzuki, J.B. Peri-implantitis: A Comprehensive Overview of Systematic Reviews. J. Oral Implantol. 2018, 44, 225–247. [Google Scholar] [CrossRef] [PubMed]
- Sahrmann, P.; Zehnder, M.; Mohn, D.; Meier, A.; Imfeld, T.; Thurnheer, T. Effect of Low Direct Current on Anaerobic Multispecies Biofilm Adhering to a Titanium Implant Surface. Clin. Implant Dent. Relat. Res. 2014, 16, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Sujala, T.; Sultana, J.T.B.; Beyenal, H. Electrochemical biofilm control: A review. Biofouling 2015, 31, 745–758. [Google Scholar] [CrossRef]
- Freebairn, D.; Linton, D.; Harkin-Jones, E.; Jones, D.S.; Gilmore, B.F.; Gorman, S.P. Electrical methods of controlling bacterial adhesion and biofilm on device surfaces. Expert Rev. Med. Devices 2013, 10, 85–103. [Google Scholar] [CrossRef] [PubMed]
- del Pozo, J.L.; Rouse, M.S.; Mandrekar, J.N.; Steckelberg, J.M.; Patel, R. The electricidal effect: Reduction of Staphylococcus and pseudomonas biofilms by prolonged exposure to low-intensity electrical current. Antimicrob. Agents Chemother. 2009, 53, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo, J.L.; Rouse, M.S.; Euba, G.; Kang, C.-I.; Mandrekar, J.N.; Teckelberg, J.M.; Robin, P. The Electricidal Effect Is Active in an Experimental Model of Staphylococcus epidermidis Chronic Foreign Body Osteomyelitis. Antimicrob. Agents Chemother. 2009, 53, 4064–4068. [Google Scholar] [CrossRef] [PubMed]
- Frédéric, L.J.; Michel, B.; Selena, T. Oral microbes, biofilms and their role in periodontal and peri-implant diseases. Materials 2018, 11, 1802. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Andrade, R.; Hinckel, B.B.; Silva, F.; Espregueira-Mendes, J.; Carvalho, Ó.; Leal, A. In Vitro and In Vivo Effects of Light Therapy on Cartilage Regeneration for Knee Osteoarthritis: A Systematic Review. Cartilage 2021, 13, 1700S–1719S. [Google Scholar] [CrossRef] [PubMed]
- Ratka, C.; Weigl, P.; Henrich, D.; Koch, F.; Schlee, M.; Zipprich, H. The Effect of In Vitro Electrolytic Cleaning on Biofilm-Contaminated Implant Surfaces. J. Clin. Med. 2019, 8, 1397. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Göltz, M.; Xiangjun, M.; Karl, M.; Rosiwal, S.; Burkovski, A. Electrochemical Disinfection of Dental Implants Experimentally Contaminated with Microorganisms as a Model for Periimplantitis. J. Clin. Med. 2020, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Rudolph, M.; Bause, V.; Terfort, A. Electrochemical removal of biofilms from titanium dental implant surfaces. Bioelectrochemistry 2018, 121, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska-Główka, D.; Krukiewicz, K. A journey in the complex interactions between electrochemistry and bacteriology: From electroactivity to electromodulation of bacterial biofilms. Bioelectrochemistry 2020, 131, 107401. [Google Scholar] [CrossRef] [PubMed]
- Sandvik, E.L.; McLeod, B.R.; Parker, A.E.; Stewart, P.S. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid. PLoS ONE 2013, 8, e55118. [Google Scholar] [CrossRef] [PubMed]
- del Pozo, J.L.; Rouse, M.S.; Patel, R. Bioelectric effect and bacterial biofilms. A systematic review. Int. J. Artif. Organs 2008, 31, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.-F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef] [PubMed]
- Asadi, M.R.; Torkaman, G. Bacterial Inhibition by Electrical Stimulation. Adv. Wound Care 2014, 3, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Szuminsky, N.J.; Albers, A.C.; Unger, P.; Eddy, J.G. Effect of narrow, pulsed high voltages on bacterial viability. Phys. Ther. 1994, 74, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Poortinga, A.T.; Smit, J.; Van Der Mei, H.C.; Busscher, H.J. Electric field induced desorption of bacteria from a conditioning film covered substratum. Biotechnol. Bioeng. 2001, 76, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Seok, H.H.; Jeong, J.; Shim, S.; Kang, H.; Kwon, S.; Kyung, H.A.; Yoon, J. Effect of electric currents on bacterial detachment and inactivation. Biotechnol. Bioeng. 2008, 100, 379–386. [Google Scholar] [CrossRef]
- Somers, R.A.; Tolmie, R.J. Low Voltage DC Motor. U.S. Patent 3,234,417, 8 February 1966. Available online: https://patents.google.com/patent/US3234417A/en%0Ahttps://patentimages.storage.googleapis.com/66/ea/e5/3c807d2b674c7a/US3234417.pdf (accessed on 23 November 2023).
- Fish, R.M.; Geddes, L.A. Conduction of electrical current to and through the human body: A review. Eplasty 2009, 9, e44. [Google Scholar] [PubMed]
- Raikar, S.; Talukdar, P.; Kumari, S.; Panda, S.K.; Oommen, V.M.; Prasad, A. Factors affecting the survival rate of dental implants: A retrospective study. J. Int. Soc. Prev. Community Dent. 2017, 7, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, F.; Scharnweber, D.; Bierbaum, S.; Wolf-Brandstetter, C. Success and side effects of different treatment options in the low current attack of bacterial biofilms on titanium implants. Bioelectrochemistry 2020, 133, 107485. [Google Scholar] [CrossRef] [PubMed]
- Shawki, M.M.; Gaballah, A. The Effect of Low Ac Electric Field on Bacterial Cell Death. Rom. J. Biophys. 2015, 25, 163–172. [Google Scholar]
Domain | Description for In Vitro |
---|---|
Confounding variables | Selection bias caused by inadequate confirmation and consideration of confounding variables. For in vitro studies, bacteria should be used from the same strain and the same growth protocol for all experimental groups. Same experimental conditions should be guaranteed for both control and intervention groups (temperature conditions). |
Selection of Bacteria | Selection bias caused by inadequate confirmation and consideration of confounding variables. For in vitro studies, selection of bacteria should be performed from commercially available strains or from biofilm samples collected from humans. In the second case, the biofilm composition should be clearly described. |
Planning and Implementation of Interventions | Performance bias caused by inadequate planning and implementation of interventions. Techniques used to study the electric current effects should be adequate and well-established for the specific outcomes that studies are assessing, and their measurement protocol should be clearly described to allow for replication. Semiquantitative and/or qualitative analysis should be performed by two independent observers to ascertain interoperator reliability. |
Measurements of Exposure | Performance bias caused by inadequate measurement of exposure. Measurement techniques should be adequate and well-established for the specific outcomes that studies are assessing, and their measurement protocol should be clearly described to allow for replication. Semiquantitative and/or qualitative analysis should be performed by two independent observers to ascertain interoperator reliability. |
Binding Outcomes Assessment | Detection bias caused by inadequate blinding of outcome assessment. Outcome assessor and/or data analysist not blinded to group (i.e., intervention vs. control). For quantitative analyses, the blinding of outcome assessor and/or data analyst was not considered necessary. Otherwise (semiquantitative and qualitative analyses), blinding was required. |
Incomplete Outcome Data | Attrition bias caused by inadequate handling of incomplete data outcome.Missing data from what is proposed in methodological section. |
Selective Outcome Data | Reporting bias caused by selective outcome reporting. Evaluate whether the reported results might be selective, focusing only on positive findings while omitting negative or null results. |
Article | Inputs | Outputs | |||||||
---|---|---|---|---|---|---|---|---|---|
First Author (Year) | Hypothesis/Objectives | Treatment Type | Substrate | A-Electrodes B-Electrolyte or Medium | Microorganism | A-Current (mA) B-Voltage (V) C-Resistance D-Exposure Time | Lab Analysis | Effect | |
Anode | Cathode | ||||||||
Dirk Mohn (2011) [17] | Electrolysis can reduce viable counts of adhering bacteria and this reduction should be greater if active oxidative species are generated | Electrolysis | Standard Dental Titanium Implants (Straumann SLA, Straumann AG, Basel, Switzerland) with 4.1 diameter and 12.0 in length | A-Titanium implants B-Physiological saline | E. coli | A-Continuous (2; 5; 7.5; 10 mA) B-4–20 V C-2–6 KΩ D-15 min each current | Colony-forming units count of viable bacteria compared to positive control treatments | Complete kill of CFUs | 99% kill of CFUs |
Philipp Sahrmann (2014) [21] | A low, direct current should suffice to eradicate viable counts on implant surfaces, and that electrolytic disinfection should be more thorough on anode implants than on cathode counterparts | Electrolysis | Titanium discs with a sandblasted, acid-etched, large-grit titanium surface (SLA; Straumann, Basel, Switzerland) with an overall surface of 4.0 cm2 | A-Titanium discs B-0.9% NaCL solution as conductive liquid | Streptococcus oralis; Streptococcus anginosus; Actinomyces oris; Fusobacterium nucleatum; Veillonella dispar; Campylobacter rectus; Prevotella intermedia; Porphyromonas gingivalis | A-Constant of 10 mA B-11–19 V C-2–6 KΩ D-10 min each disc | Colony-forming units count (confocal laser scanning microscopy was used with live/dead BacLight bacterial viability assay) | Complete kill of CFUs | 28.6–71.4% kill of CFUs |
Jérôme F. Lasserre (2016) [18] | To test ex-vivo the influence of 5 mA direct electric current on the antimicrobial efficacy of CHX against human dental biofilms grown in vivo on titanium or HA surfaces. | DC application | Grade 5 (TiAl6V4) machined Ti discs with 5.0 diameter and 2.0 width | A-Titanium discs B-Phosphate Buffered Saline | -Biofilm formed in vivo (five healthy volunteers) | A-5 mA DC B-Not given C-Not given D-5 min each disc | Colony-forming units count (computer-assisted device) | At 5 min, the proportion of killed bacteria compared with baseline was more than twice as in the control group with a percentage of viability reduction increasing up to 58.5% | |
Ashwaq Ali Al-Hashedi (2016) [13] | To investigate if electrochemical treatments with alternating potential are able to both remove organic contamination and bacteria from Ti implant surfaces | Electrochemical | Titanium discs with 10 mm diameter and 1 mm thickness | A-A three-electrode electrochemical cell was set up as follows: a saturated Hg/HgCl calomel reference (SCE), a platinum wire counter, and a Ti disc working electrode B-All electrodes were immersed in an electrolytic solution and the electrochemical measurements were performed using a potentiostat | -Oral biofilm formed in six humans and saliva | A-Cathode 2.3 mA anode 22.5 uA B-1.8 V C-Not given D-5 min (2.5 anodic 2.5 cathodic) | Colony-forming units count (scanning electron microscopy images) | Complete removal of thick biofilms required adjunctive mechanical cleaning using Ti brushes | |
Schneider (2018) [30] | Beneficial effect of electrochemical removal of E. coli biofilms by the hydrogen evolution reaction (HER) at titanium surfaces in combination with the in-situ generation of a disinfecting agent. | Electrolysis | Titanium substrate with 10.0 length and 10.0 width | A-Titanium dental implant (Straumann BL Ø 4.1 mm, RC SLA™, Grade 4, L: 11 mm), custom-built titanium disc electrodes (Ø 3 mm), or freshly prepared titanium substrates as cathode and a platinized titanium rod (Custom-built, Ø 4.0 mm, L: 10 mm) and Pt coils as anode B-Many types | -E. coli K12 (JM101) -E. coli-GFP (HB101) | A-Constant of 300 mA B-7 V C-Not given D-30 s | Colony-forming units count (LIVE/DEAD™ assay) | Complete disinfection | |
Christoph Ratka (2019) [28] | To investigate the cleaning effect of an electrolytic approach (EC) compared to a powder-spray system (PSS) on titanium surfaces | Electrolytic | Grade 4 and 5 titanium design (like a standard parallel-threaded dental implant) with the following measures: (∅ 4.0 mm/L 11.0 mm pitch = 0.6 mm) | A-Titanium implants B-(sodium iodide (200 g/L), potassium iodide (200 g/L), L(+)-lactic acid (20 g/L), and water (800 g/L)) | -Saliva (no specific microorganism) | A-Up to 1100 m B-6 V C-Not given D-5 min | Colony-forming units count | It was not possible to breed bacteria after the implants had been cleaned by the electrolytic approach = completely disinfection | |
Maximilian Koch (2020) [29] | Comparison of 3 different types of treatment (air abrasion, mechanical debridement, and boron-doped diamond (BDD) electrodes | Electrochemical | Dental implants (straumann bone level taperes) with 4.1 × 12 mm | A-Diamond coating with boron doping of thin niobium wires (200 µm in diameter) B-Phosphate Buffered Salline | -Bacillus pumilus; Bacillus subtilis; Enterococcus faecalis; Roseomonas mucosa; Staphylococcus epidermidis; Streptococcus sanguinis; Candida albicans; Candida dubliniensis | A-5–22 mA B-6 V C-Not given D-5 to 60 min (variable) | Comparison of growth on Columbia Blood Agar plates after different treatment of implants infected | For C. dubliniensis and multi-species biofilm, electrochemical disinfection shows better results than the other methods; for E. faecalis, BDD shows complete disinfection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, F.; Rodrigues da Silva, M.; Silva, F.S.; Madeira, S.; Carvalho, Ó. Electric Current Application on Dental Implant Biofilms: Review. J. Funct. Biomater. 2024, 15, 197. https://doi.org/10.3390/jfb15070197
Rodrigues F, Rodrigues da Silva M, Silva FS, Madeira S, Carvalho Ó. Electric Current Application on Dental Implant Biofilms: Review. Journal of Functional Biomaterials. 2024; 15(7):197. https://doi.org/10.3390/jfb15070197
Chicago/Turabian StyleRodrigues, Flávio, Mariana Rodrigues da Silva, Filipe S. Silva, Sara Madeira, and Óscar Carvalho. 2024. "Electric Current Application on Dental Implant Biofilms: Review" Journal of Functional Biomaterials 15, no. 7: 197. https://doi.org/10.3390/jfb15070197
APA StyleRodrigues, F., Rodrigues da Silva, M., Silva, F. S., Madeira, S., & Carvalho, Ó. (2024). Electric Current Application on Dental Implant Biofilms: Review. Journal of Functional Biomaterials, 15(7), 197. https://doi.org/10.3390/jfb15070197