3.1. Synthesis Process and Mechanism of TOCNF-CNT@PANI/PVA Composite Hydrogels
The preparation process of hierarchical 3D network TOCNF-CNT@PANI/PVA composite hydrogel is illustrated in
Figure 1. Firstly, TOCNF suspensions were prepared through a TEMPO oxidation treatment in an aqueous system following an ultrasonication treatment. TEMPO oxidizes the hydroxymethyl group at the glycose C
6 position in the cellulose chain to a more active carboxyl group [
11]. Secondly, the homogeneous TOCNF-CNT nanohybrid dispersions were obtained by mixing CNT powders with TOCNF dispersions through ultrasonication. Not only the fluctuation of counter ions on the surface of TOCNF fibers induced the dipoles of the carbon lattice in CNTs, but also the carboxyl groups of TOCNFs produced electrostatic repulsion, which ensured the stabilization of CNTs in water [
10]. Thirdly, TOCNF-CNT with excellent dispersibility and high specific surface area were used as nanocarrier of PANI. TOCNF-CNT@PANI nanohybrids were synthesized by in-situ chemical polymerization with APS as oxidant and TOCNF-CNT as a biological template in acid medium. PANI formed a wholly uniform coating layer around TOCNF-CNT nanohybrid bundles (
Figure 1d), which would bring enough pseudo-capacitance [
12]. Finally, PVA and borax were introduced into the TOCNF-CNT@PANI nanohybrid dispersions to achieve TOCNF-CNT@PANI/PVA composite hydrogel through cross-linking reaction. Borax would decompose into B(OH)
4− ions in water, and B(OH)
4− ions would create a reversible connection between the CNF-CNT@PANI composite fibers and the PVA molecular chains, forming a dynamic 3D network structure in the hydrogel [
6]. The hierarchical 3D network inside hydrogel is illustrated in
Figure 1e; the CNTs provided the fast electron transport path, and the nano-coating layer of PANI-ensured electrons could only pass through a very short distance to the CNT networks with high conductivity, which improved the electrochemistry of TOCNF-CNT@PANI nanohybrid. In addition, the borate ions could combine with the adjacent hydroxyl groups to form dynamic cross-linking between PVA chains and TOCNF-CNT@PANI nanohybrids. The dynamic PVA-borate cross-linking network provided hydrogel with the moldable and self-healing performance. The TOCNF-CNT networks provided an additional platform to improve strength, toughness, and conductivity. The chain entanglement and hydrogen bonding between TOCNF-CNT@PANI nanohybrids and PVA formed a hierarchical 3D network in TOCNF-CNT@PANI/PVA hydrogels.
3.2. Dispersion State and Chemical Analysis of TOCNF-CNT and TOCNF-CNT@PANI Nanohybrids
The microstructure morphologies of CNTs, TOCNF-CNT, and TOCNF-CNT@PANI-2 nanohybrids are shown in
Figure 2a–c. Due to the hydrophobic surface and strong van der Waals forces between CNT fibers, it was difficult for the pristine CNTs to disperse well in water [
13]. It was clear to see that pristine CNTs formed densely agglomeration and precipitation in water (
Figure 2a and insert). After introducing TOCNFs into CNT suspension, as shown in
Figure 2b, the CNTs (length: 500–700 nm, diameter: 20–30 nm) dispersed in an individual form without aggregation in water with the help of TOCNFs (length: 1 μm, diameter: 20–30 nm).
Figure 2c shows nodular-structure. PANI particles were deposited on the surface of TOCNF-CNT nanohybrids, forming a continuous shell structure with a high aspect ratio. The in-situ deposited aniline fiber could grow a fresh polymer, then initiate the continuous growing process and form a block precipitate, and the initial seed morphology would be transcribed on a long scale [
14]. TOCNF-CNT@PANI composite fiber with a “core-shell” structure was the prototype of the 3D hierarchical conductive network. The PANI grew along the TOCNF-CNT templates to form the “shell”, which was carried by TOCNF-CNT fibers, and dispersed in water to construct a hierarchical 3D conductive network. It was noted that the continuous conductive networks fabricated by TOCNF-CNT@PANI composite fibers were obligatory to synthesize the ECHs with high conductivity and enhanced mechanical performances [
15].
The UV-vis spectroscopy of CNT, TOCNF-CNT, and TOCNF-CNT@PANI-2 complexes are shown in
Figure 2d. Due to the poor dispersibility and high aggregation, the absorption peak of pure CNT suspension was much weaker than that of the TOCNF-CNT nanohybrids at the same CNT concentrations (0.015 wt%), suggesting that TOCNFs improved significantly the dispersibility of CNTs in an aqueous medium. The absorption peak of TOCNF-CNT nanohybrids was around 262 nm in the UV-vis spectrum, which could be assigned to the π−π transitions of CNTs and showed a more uniform dispersion state of CNTs [
16]. Two peaks of TOCNF-CNT@PANI-2 at 285 and 475 nm were from the transition of π−π inter-band and the polaron band of PANI, respectively. The end band (~800 nm) of the TOCNF-CNT@PANI-2 complexes was smooth because of the cross-linking of polymer chains, indicating that it was successful in doping PANI into the conductive state [
17].
The FTIR spectra of TOCNFs, CNTs, TOCNF-CNT nanohybrids, TOCNF-CNT@PANI-2 composite, and TOCNF-CNT@PANI/PVA-2 hydrogel is shown in
Figure 2e. For all the samples, the broad bands at around 3330 cm
−1 and sharp bands at around 2900 cm
−1 were generally due to O-H stretching of the hydrogen bonds and asymmetrically stretching vibration of C–H in the CH
2 group, respectively [
18,
19,
20,
21]. The peaks around 1000 cm
−1 and 1600 cm
−1 were ascribed to the C–O–C vibration and the carbonyl functional groups of cellulose [
22,
23,
24]. For the spectra of neat CNTs, the characteristic absorption around 1640 cm
−1 was assigned to the quaking of the carbon skeleton [
25,
26]. For the spectra of TOCNFs, the peaks at 1430 cm
−1 and 1325 cm
−1 were assigned to the hydrogen bonding and CH
2 wagging [
27]. The typical absorption peak of TOCNF-CNT-2 nanohybrids was analogous to that of TOCNFs, which was due to the absorption peak of TOCNFs covering the absorption peak of the CNTs in the FTIR spectra, revealing the CNTs were successfully combined with TOCNF bio-templates [
28]. Comparing with the spectra of pure CNTs, the C–O–C bending band shifted from 1100 cm
−1 to 1000 cm
−1 (TOCNF-CNT-2 nanohybrids), confirming the existence of hydrogen bonding between TOCNFs and CNTs [
29].
After in situ polymerization, the peaks at 1430 and 1325 cm
−1 were assigned to the C = C vibration deformation of the quinoid ring and benzenoid ring, respectively [
30]. For TOCNF-CNT@PANI-2 complexes, the N−H bonding vibration caused the major peaks at 3330 cm
−1 shifted to lower wavenumbers, indicating that the TOCNF-CNT nanohybrids were coated with PANI [
31]. Further, the vanishing of the sharp band at 1600 cm
−1 from the carbonyl functional groups of cellulose revealed that PANI coated onto TOCNF-CNT nanohybrids successfully. For TOCNF-CNT@PANI/PVA-2, the distinct peaks at 1430 and 1325 cm
−1 were attributed to the asymmetric B−O−C bonding, 840 cm
−1 was assigned as B–O bonding of free B(OH)
4−, and 660 cm
−1 was ascribed to B–O–B bonding in the borate molecule networks, suggesting the presence of borax and borate [
32], which further confirmed the existence of borate cross-linking network between the PVA molecule chains, TOCNF−CNT@PANI nanohybrids, and borate within the hydrogels [
33].
Figure 2f shows the XRD diffraction patterns of CNTs, TOCNFs, TOCNF-CNT nanohybrids, TOCNF-CNT@PANI-2 nanocomposite, and TOCNF-CNT/PVA-2 hydrogel samples. A diffraction peak of CNTs at 2
θ = 26° arose from interlayer spacing (002), reflecting the characteristic of graphite. The diffraction peak at 2
θ = 43° arose from in-plane crystal lattice (100) [
34]. In the XRD diffraction patterns of TOCNFs, a sharp peak and a broad peak at 2
θ = 22.2° and 15.0°, attributed to (002) and (101) planes, suggested the crystallization from cellulose I [
22]. Comparing with the XRD profile of pure CNTs, the TOCNF-CNT nanohybrids showed two additional peaks at 2
θ = 15.0° and 22.2°, reflecting the characteristic of cellulose I. These observations suggested that CNTs and TOCNFs were combined and remained integrality [
35].
For the XRD spectra of TOCNF-CNT@PANI-2 nanocomposite, due to in situ polymerization of ANI monomers, the peaks located at around 2
θ = 15.0° and 22.2° were wider than that of TOCNF-CNT nanohybrids, which could be attributed to the overlapping of diffraction peaks at 2
θ = 19.4° and 14.9° from (020) and (011) crystal planes of PANI [
36]. The peak intensity at 2
θ = 25.8° was enhanced, which was due to the overlapping of diffraction peaks of π-π stacking corresponding to the co-facially stacked conjugated backbones from the polymer chains of PANI [
37]. After the incorporation of PVA hydrogel, the peaks of CNFs at 2
θ = 15° disappeared, and a broad new peak emerged at 2
θ = 22.2°, which contained the diffraction peaks at 2
θ = 19.4° corresponding to the orthogonal lattice from PVA with semi-crystalline structure. All these revealed the strong interactions between PVA, borax, and TOCNF-CNT@PANI-2 nanocomposite and built a 3D network in the composite hydrogels [
38].
3.3. Compression Test and Microstructures of Hydrogels
Figure 3a shows the stress-strain curves of these hydrogels under compression. The measured stresses at the 90% strain level were 52.3 ± 0.3, 86.1 ± 3.9, 108.4 ± 4.3, and 152.3 ± 5.1 kPa for TOCNF-CNT/PVA, TOCNF-CNT@PANI/PVA-1, TOCNF-CNT@PANI/PVA-3, and TOCNF-CNT@PANI/PVA-2, respectively. Thus, the stress of TOCNF-CNT@PANI/PVA-1 hydrogel with PANI at the 90% strain level was almost 1.6-fold than that of TOCNF-CNT/PVA. PANI nanoparticles combined with TOCNF-CNT nanofiber to form TOCNF-CNT@PANI composite fibers with a “core-shell” structure. The composite fibers based on good dispersibility and interfacial adhesion inside the hydrogel effectively transferred the load, thereby improving the mechanical strength of PVA hydrogel [
39]. With the increase of PANI content, the stress of TOCNF-CNT@PANI/PVA increased first and then decreased. The stress of TOCNF-CNT@PANI/PVA-3 was 108.4 ± 4.3 kPa, which was lower than that of TOCNF-CNT@PANI/PVA-2 with 152.3 ± 5.1 kPa. This phenomenon could be attributed to the TOCNF-CNT biological template being insufficient to carry and disperse these excess PANI. Aggregated PANI prevented effective cross-linking between PVA and borax and disrupted the integrity of the network in the hydrogel. Under external force, the stress concentration caused by agglomeration would weaken the mechanical strength [
40].
The TOCNF-CNT@PANI/PVA-2 possessed the highest mechanical strength in all the hydrogels. Its
σ value (152.3 ± 5.1 kPa) at
ε = 90% and
Ee value (61.0 ± 0.8 kPa) in the
σ-
ε curve were 2.9-fold and 4.2-fold more than those (
σ = 52.3 ± 0.3 kPa,
Ee = 14.4 ± 0.3 kPa) of TOCNF-CNT/PVA hydrogel. The specific compressive stress (
σs) value of TOCNF-CNT@PANI/PVA-2 was 128 kPa cm
3 g
−1, which was 2.8-fold larger than that of TOCNF-CNT/PVA with 45.9 kPa cm
3 g
−1. In
Figure 3b, TOCNF-CNT@PANI/PVA-2 had the largest energy absorption (
Ea) value. In the
Ea-ε curves of hydrogels, the
Ea with
ε = 90% was selected to compare the mechanical properties of hydrogels. In particular, the
Ea value of TOCNF-CNT@PANI/PVA-2 at
ε = 90% was 3.2 ± 0.5 kJ m
−3, which was approximately 4 times larger than TOCNF-CNT/PVA with 0.8 ± 0.4 kJ m
−3. All the values of strength and physical properties are collected in
Table 1.
The improvement of mechanical properties was due to the effective enhancement of TOCNF-CNT@PANI composite fibers with a “core-shell” structure. In addition, the CNTs were entangled with each other to form a lot of contact junctions in the interstitial space between the PVA molecular chain. These contact junctions built the continuous conductive network in the hydrogel matrix.
Figure 3c shows the microstructure of TOCNF-CNT@PANI/PVA-2 composite hydrogel, and
Figure 3d presents the schematic diagram of the 3D network structure. The composite hydrogel possessed an interconnected porous structure, and each pore had a diameter of 200–500 nm. The wall of the pore was formed by a hydrogel matrix with a thickness of 10–30 nm. The entangled TOCNF-CNT@PANI composite fibers penetrated through the hole wall and built a hierarchical network. The specific framework could effectively promote the transport of electrons, improving the electrical conductivity of the hydrogel. Among them, TOCNFs were important to promote the formation of hierarchical microstructure, which profited from their excellent natural characteristics of hydrophilicity, high aspect-ratio, mechanical strength, and flexibility. TOCNFs combined with CNTs through hydrogen bonding and chain entanglement and served as nanocarriers to disperse CNTs in aqueous media [
13]. The well-dispersed TOCNF-CNT nanohybrids were coated by PANI to form TOCNF-CNT@PANI composite fibers with “core-shell” structure. The composite fibers could further improve the mechanical strength and electrical properties of hydrogel [
41]. The CNTs in composite fiber could effectively transfer the force from the PVA molecule chains. Moreover, an efficient and stable CNTs electric network could improve the electrical conductivity of TOCNF-CNT@PANI/PVA composite hydrogel. The results showed that the hierarchical network microstructure inside the composite hydrogel increased the interface between the electrolyte and the electroactive material, demonstrating a broad application prospect in flexible electrodes.
3.4. Dynamic Viscoelastic Performance of Hydrogels
Figure 4a shows the
G′ curves of hydrogel samples based on strain at
ω = 1 Hz. Within the LVR, the
G″ and
G′ of the hydrogel were independent of strain, as determined by dynamic strain scanning tests. The critical strain (
γc) of hydrogel was a strain point, where the
G′ value decreased from the platform value by 5%, indicating deviation from LVR [
38]. The
G′ value corresponding to the strain higher than
γc would gradually decrease, indicating that the quasi-solid hydrogel had changed to a quasi-liquid state. The
γc values of TOCNF-CNT/PVA, TOCNF-CNT@PANI/PVA-1, TOCNF-CNT@PANI/PVA-2, and TOCNF-CNT@PANI/PVA-2 were 2.5%, 2.1%, 1.2%, and 1.5%, respectively. Therefore, in the following dynamic oscillation measurement, the
γc value was selected as
γ = 1%, which could ensure that deformations of the hydrogel samples were within the LVR. For all the hydrogel samples in the LVR, the
G′ values were independent of strain, and the corresponding
G′
max was 2.8, 4.1, 7.5, and 5.1 kPa, respectively (
Figure 4a). The
G′
max of TOCNF-CNT@PANI/PVA-1 was 1.5 times that of TOCNF-CNT/PVA. TOCNF-CNT@PANI/PVA-2 possessed the largest
G′
max (7.5 kPa), which was nearly 1.8-fold larger than TOCNF-CNT@PANI/PVA-1 (4.1 kPa) and 1.5-fold greater than TOCNF-CNT@PANI/PVA-3 (5.1 kPa). Incorporation of an appropriate amount of PANI could improve remarkably the stiffness of hydrogel. The shorter the LVR, the closer the sample was to the solid-state. Compared with TOCNF-CNT@PANI/PVA-1 and TOCNF-CNT@PANI/PVA-3, it could be known that the TOCNF-CNT@PANI/PVA-2 possessed a higher
G′
max and shorter LVR, indicating that TOCNF-CNT@PANI/PVA-2 was the strongest hydrogel. The result was consistent with the mechanical strength test.
In order to study the effect of TOCNF-CNT@PANI composite fiber on the viscoelasticity of hydrogels, the
G′ (elasticity) and
G″ (viscosity) of hydrogels versus
ω at
γ = 1% in the LVR are shown in
Figure 4b. As shown, the
G′ and
G″ curves of all the hydrogels followed similar trends. With the increase of
ω, the
G′ increased monotonically and arrived at plateau value (
G′
∞), indicating the formation of neighboring polymer chains entanglements; the
G″ increased preliminarily to reach the maximum value (
G″
max), then decreased gradually. For all the hydrogels, the
G′ values were always higher than the
G″ values throughout the
ω range, suggesting hydrogels showed typical solid-like characteristics, indicating that a dynamic cross-linked network was established inside hydrogel [
6,
42]. The
G′
∞ and
G″
max values of TOCNF-CNT/PVA were 4.3 and 2.6 kPa, respectively. After the introduction of PANI, the
G′
∞ (6.1 kPa) and
G″
max (3.1 kPa) values of TOCNF-CNT@PANI/PVA-1 were 1.4 and 1.2 times those of TOCNF-CNT/PVA, respectively. It was shown that the combination of PANI and TOCNF-CNT to form a TOCNF-CNT@PANI composite fiber with a “core-shell” structure could significantly improve the viscoelasticity of hydrogel. Comparing between TOCNF-CNT@PANI/PVA-1, TOCNF-CNT@PANI/PVA-2, and TOCNF-CNT@PANI/PVA-3, the TOCNF-CNT@PANI/PVA-2 showed the highest
G′
∞ (18.2 kPa) and
G″
max (7.6 kPa). These data of dynamic viscoelastic properties are summarized in
Table 2. It showed that an appropriate proportion of PANI could develop a hierarchical network structure and increase viscoelasticity together with TOCNF-CNT. However, excessive PANI would form aggregation due to insufficient TOCNF-CNT to disperse and load. A large amount of PANI blocked the cross-linking between PVA and borax, reducing the dynamic viscoelasticity of the hydrogel [
33].
Figure 4c shows the curves of complex modulus (
G*) versus
ω, which provided a clear contrast of viscoelasticity. The trend was TOCNF-CNT@PANI/PVA-2 > TOCNF-CNT@PANI/PVA-3 > TOCNF-CNT@PANI/PVA-1 > TOCNF-CNT/PVA within the entire range of
ω. The TOCNF-CNT@PANI/PVA-2 showed the highest
G*, further proving that TOCNF-CNT@PANI/PVA-2 was the most quasi-solid hydrogel among these hydrogels. In
Figure 4d, a piece of rubbery TOCNF-CNT@PANI/PVA-2 hydrogel could be stretched to 400% strain without damage, exhibiting excellent flexibility, viscoelasticity, and efficient energy dissipation capability. Inside hydrogel, flexible PVA chains and long TOCNF-CNT@PANI composite fiber were physically entangled or hydrogen-bonded to build a 3D network, which could unravel and reconstruct the energy dissipating ability of the hydrogel.
3.5. Self-Healing Performance of the Hydrogels
The composite hydrogel possessed a dynamic self-healing PVA-borate network, and the TOCNF-CNT@PANI composite fibers network provided an additional platform to strengthen the structure [
33]. In
Figure 5a, the
G′ and
G″ of TOCNF-CNT@PANI/PVA-2 were 8.1 and 4.2 kPa at
γ = 1%, respectively. The value of
G′ was larger than that of
G″, indicating that the elastic character of hydrogel became the dominant factor. When the strain increased to
γ = 80%, the corresponding
G′ and
G″ of TOCNF-CNT@PANI/PVA-2 were 0.2 and 0.6 kPa, respectively. The value of
G′ was less than that of
G″, indicating hydrogel turned to the quasi-liquid state. Interestingly, when the strain dropped to 1% again, the corresponding
G′ and
G″ immediately restored the original values, indicating that the hydrogel recovered the quasi-solid state. The rapid and repeatable phase transition between the quasi-solid state and quasi-liquid state demonstrated the intrinsic preeminent self-healing capability of the hydrogel. To visualize the self-healing property of the hydrogel, two blocks of TOCNF-CNT@PANI/PVA-2 were pushed together for 20 s, and their contact surfaces would fuse. In addition, after the self-healed hydrogel was stretched to 300% strain, there was no crack at the healing interface (
Figure 5b).
The stress-strain curves of hydrogels are shown in
Figure 5c. The maximum break strain values of original TOCNF-CNT/PVA, TOCNF-CNT@PANI/PVA-1, TOCNF-CNT@PANI/PVA-2, and TOCNF-CNT@PANI/PVA-3 were 450.5 ± 23.2%, 387.8 ± 19.0%, 345.1 ± 15.1%, and 326.7 ± 12.5%, respectively. The highest tensile stress values of original TOCNF-CNT/PVA, TOCNF-CNT@PANI/PVA-1, TOCNF-CNT@PANI/PVA-2, and TOCNF-CNT@PANI/PVA-3 were 57.9 ± 2.1, 63.5 ± 2.5, 95.3 ± 3.2, and 72.9 ± 2.9 kPa, respectively. The TOCNF-CNT@PANI/PVA-2 composite hydrogel possessed the highest tensile stress, which was 1.6 times that of TOCNF-CNT/PVA hydrogel without PANI, indicating that the proper incorporation of PANI could effectively improve the tensile stress of composite hydrogels. This was consistent with previous measurements of mechanical strength and dynamic viscoelasticity.
To calculate the self-healing efficiency of hydrogels, these self-healed hydrogels after 20 s healing in the air were measured by a tensile test. The tensile curves of the self-healed hydrogels were basically the same as that of the original hydrogels. The maximum break strain values of healed TOCNF-CNT/PVA, TOCNF-CNT@PANI/PVA-1, TOCNF-CNT@PANI/PVA-2, and TOCNF-CNT@PANI/PVA-3 were 443.8 ± 22.1%, 381.1 ± 18.0%, 338.5 ± 13.3%, and 321.0 ± 10.2%, respectively. The corresponding
ηk values were 98.5%, 98.3%, 98.1%, and 98.2%, respectively. The maximum tensile stress of healed TOCNF-CNT/PVA, TOCNF-CNT@PANI/PVA-1, TOCNF-CNT@PANI/PVA-2, and TOCNF-CNT@PANI/PVA-3 were 56.3 ± 2.0, 61.9 ± 2.4, 92.3 ± 3.7, and 69.7 ± 2.8 kPa, respectively. The corresponding
ηF values were 97.2%, 97.5%, 96.8%, and 96.7%, respectively. These data of dynamic viscoelasticity properties are summarized in
Table 3, which demonstrated the outstanding self-healing property of as-prepared hydrogels with the dynamic borate-assisted cross-linking network. The complexation between borate and hydroxyl was extremely fast (0.33 s), and TOCNFs and PVA chains contained large number of hydroxyl groups so that the hydrogels could recover quickly [
43].
3.6. Conductivity Analysis of Hydrogels
The composite hydrogel not only possessed excellent mechanical properties and self-healing ability but also possessed outstanding electrical conductivity due to the existence of CNTs and PANI in the hydrogels. The conductivity was quantitatively characterized by the
I–V measurement at potential ranging from −4 to 4 V. In
Figure 6a, the
I–V curves of composite hydrogels are all linear and non-hysteretic, indicating the excellent electro-conductive character. The conductivity of the TOCNF-CNT@PANI/PVA-3, TOCNF-CNT@PANI/PVA-2, TOCNF-CNT@PANI/PVA-1, and TOCNF-CNT/PVA composite hydrogels were 15.3, 12.8, 8.2, and 6.4 S m
−1, respectively. The value was superior to phytic acid cross-linked polyaniline/poly(N-isopropylacrylamide) (PANI/PNIPAM) conductive hydrogels (~0.8 S m
−1) [
15]. polyaniline-poly(styrene sulfonate) (PANI-PSS) hydrogels (~10
−2 S m
−1) strengthened by sorbitol derivatives (DBS) supramolecular nanofibers [
40]. Theoretically, CNTs and PANI were the main active material of conductive network within the composite hydrogels. With PANI as the shell and CNTs as the core, a composite fiber with a “core-shell” structure was formed. The electrical conductivity of the composite fiber was higher than that of bare CNTs fibers [
44]. The conductivity of hydrogel increased rapidly when the mass ratio of ANI to TOCNF-CNTs increased from 1:1 to 2:1. However, the conductivity of hydrogel increased slowly, when the mass ratio of ANI to TOCNF-CNTs changed from 2:1 to 3:1. It could be concluded that a 2:1 ratio of ANI and TOCNF-CNTs could form the most perfect conductive network. As the ratio of ANI to TOCNF-CNT increased to 3:1, the TOCNF-CNT skeleton framework was insufficient to load excess PANI, which resulted in a slow increase in conductivity. Consequently, the well-integrating and stability of the TOCNF-CNT@PANI conductive network with the “core-shell” structure offered an effective electron-transfer pathway in the hydrogel. TOCNF-CNT@PANI/PVA-2 was selected for the next experiment based on the previous mechanical test results.
The electrical conductivity’s self-healing efficiency of composite hydrogels was further investigated. The conductivity of original, cutting, and self-healed TOCNF-CNT@PANI/PVA-2 hydrogel was characterized by the
I–V measurement in
Figure 6b. After 10th, 20th, and 30th self-healing, the conductivity of TOCNF-CNT@PANI/PVA-2 hydrogel was 12.8, 11.6, 10.0, and 8.0 S m
−1, respectively. The self-healing efficiency was calculated by
σr/
σi (
σr is the healing conductivity, and
σi is the original conductivity) [
45]. After 10th, 20th, and 30th self-healing, the self-healing efficiency of TOCNF-CNT@PANI/PVA-2 hydrogel was 90.6%, 78.1%, and 62.5%, respectively. The average efficiency was 99.1% for each self-healing cycle, indicating the composite hydrogel possessed significant and repeatable electrical restoration performance.
By repeating the complete cutting/self-healing process, without any external force at room temperature, the conductivity of TOCNF-CNT@PANI/PVA-2 hydrogel was tested through
I-V measurement.
Figure 6c shows the time-current flow of TOCNF-CNT@PANI/PVA-2 hydrogel at the same location during repeated cutting/healing processes. In
Figure 6d, when the hydrogel was completely cut in half to form an open circuit, the current dropped to zero. Then, the two fractured parts contacted each other, and the current quickly recovered to the initial value through a 20 s in situ self-healing. The conductivity of the hydrogel sample remained stable during the cycle, indicating that the conductivity had a high self-healing efficiency during the cutting-healing process.
As shown in
Figure 6e, the self-healing conductive performance of the composite hydrogel was visually displayed through a closed-loop composed of light-emitting diode (LED), TOCNF-CNT/PVA-2 hydrogel, and power components. The LED indicator was lighted with a voltage of 5 V. The LED indicator was extinguished when the TOCNF-CNT/PVA-2 hydrogel was completely separated. However, the LED indicator lit up again, after pushing the two separated parts together for self-healing, illustrating the excellent self-healing conductive property of the composite hydrogel. The hierarchical 3D network consisting of PANI, CNTs, and TOCNFs formed a continuous conducting pathway for electron transport. The dynamically reversible cross-linking points from different borate-induced complexes provided inherent and repeatable self-healing capabilities for hydrogels, exhibiting promise for the self-healing electrode materials [
46].
3.7. Electrochemical Properties of Composite Hydrogels
In order to evaluate the effect of the incorporated PANI on the electrochemical behavior of the composite hydrogel electrode, a CV test was performed, as shown in
Figure 7a. In the CV test, the potential range was −0.2 to 0.8 V at a scan rate of 40 mV s
−1, in 6 M KOH electrolyte with platinum sheet counter electrode and Hg/HgO reference electrode. In
Figure 7a, the CV curve of TOCNF-CNT/PVA exhibited regular rectangular and symmetric shapes, which reflected the typical characteristics of the electric double layer charge (EDLC) storage. Moreover, the CV curves of composite hydrogel containing PANI possessed a larger current density and different shape. The increase in current density indicated greater capacitance, which was due to the pseudo-capacitance effect of PANI. The deformation of the CV curve was attributed to the diffusion and migration of limited ions in the polymer block and the ohmic resistance due to the thick polymer layer [
47]. However, the voltammograms of PANI-based hydrogel possessed clear faradaic oxidation and reduction peaks. Three pairs characteristic peaks arose at 0, 0.4, and 0.6 V; the peaks arose at 0 and 0.6 V were related to the redox behavior of PANI through the leucoemeraldine and pernigraniline states; the peaks at 0.4 V were assigned to the electron transition from the protonation/deprotonation of PANI [
14,
19]. Among these voltammograms, TOCNF-CNT@PANI/PVA-2 possessed the largest loop area, corresponding to the highest specific capacitance. Furthermore, the G-CD behaviors of these composite hydrogel electrodes were measured at 0.4 A g
−1 current density from −0.2 to 0.8 V with 6 M KOH electrolyte (
Figure 7b). The G-CD curves of the TOCNF-CNT/PVA hydrogel-based electrode exhibited a symmetrical triangle, indicating that it was an electric double-layer capacitor with reversible capacitance characteristics. For all the samples, the G-CD profiles were nearly triangular, demonstrating their excellent capacitive performances. Based on Equation (3), the
Cs was calculated from the G-CD curves data. The
Cs values of TOCNF-CNT/PVA, TOCNF-CNT@PANI/PVA-1, TOCNF-CNT@PANI/PVA-2, and TOCNF-CNT@PANI/PVA-3 were 84.9, 127.3, 226.8, and 184.4 F g
−1 at 0.4 A g
−1 current density, respectively. It was observed that composite hydrogel containing PANI possessed a higher specific capacitance than TOCNF-CNT/PVA hydrogel. The 3D network structure of TOCNF-CNT could load PANI and enable greater contact with electrolytes, thereby forming more active sites inside the hydrogel. Moreover, when CNTs were used as the filler for PANI to build a “core-shell” structure composite, the porous structure could further improve the capacitance performance. The high specific capacitance originated from two different charge storage methods: (1) the EDLC storage in CNTs nano-core and (2) the oxidation and reduction chemistry (pseudo-capacitance) of the PANI nano-shell [
48].
The specific capacitances of composite hydrogels remained approximately 80%. For all samples, the relationships between the specific capacitance and the current density are shown in
Figure 7c. At the same current density, these composite hydrogels containing PANI possessed higher specific capacitances than TOCNF-CNT/PVA hydrogels, indicating that PANI significantly increased the specific capacitance of the composite hydrogel. The sp
2-hybridized carbon atoms of CNTs formed π-π stacking interactions with the quinoid ring of the PANI without destroying the graphitized plane of CNTs [
49,
50]. Among these hydrogels, the TOCNF-CNT@PANI/PVA-2 possessed the largest specific capacitance. It could be attributed to the appropriate ratio of PANI to CNTs, which allowed the PANI to better combine with the CNT networks. The developed pore structure and large specific surface area were beneficial to the charge accumulation and enhanced the specific capacitance.
Nyquist plots from EIS of the composite hydrogel electrodes are shown in
Figure 7d. The Nyquist plots of hydrogel electrodes showed a typical semicircle in the high-frequency region. The intercept of semicircle represented the equivalent series resistance (ESR), and the diameter of semicircle represented the charge-transfer resistance (
Rct) of the interface. Correspondingly, the diameter of a semicircle of TOCNF-CNT@PANI/PVA-2 hydrogel was the smallest in all samples, indicating that TOCNF-CNT@PANI/PVA-2 hydrogel possessed the lowest resistance. It was because the cross-linked 3D network structure in composite hydrogels provided an ideal charge-transfer path. Nyquist plots showed a straight line at the low-frequency region, and nearly vertical shape reflected the ideal capacitance characteristics [
51,
52].
3.8. Self-Healable and Flexible Performance of the Supercapacitor
The self-healable and flexible solid-state supercapacitor was fabricated based on TOCNF-CNT@PANI/PVA-2 hydrogel electrode and TOCNF/PVA hydrogel electrolyte in a sandwich structure. The detailed fabrication process was described in the experimental part. Due to the inherent flexibility and self-healing ability of the PVA hydrogel, the interfaces between hydrogel electrode and electrolyte could be completely combined, thereby manufacturing an integrated solid supercapacitor device. The assembled supercapacitor could withstand cutting, bending, and another mechanical damage, but the electrochemical performance was not obviously affected. As demonstrated above, the dynamically reversible PVA-borate cross-linking network provided the inherent, repeatable, and effective self-healable ability for the composite hydrogel (
Figure 8a).
Figure 8b,c shows the electrochemical performances of the self-healing supercapacitor after multiple cutting/healing cycles. The CV and G-CD curves of supercapacitor had no obvious deformation after multiple cutting/healing cycles, indicating that the capacitance had not been significantly reduced. As calculated by the G-CD curves at 0.6 A g
−1 current density, the initial specific capacitance of the supercapacitor was 138 F g
−1, and the specific capacitance after 1, 5, 10 cutting/healing cycles was 137.3, 134.7, and 124.1 F g
−1, respectively. The corresponding capacitance retention was 99.5%, 97.6%, and 90.0%, respectively. For the as-prepared supercapacitor device, the self-healing capability was more outstanding than those reports. For example, a CNT film was spread on a self-healable substrate to manufacture electrode, combining the self-healable electrodes and polyvinylpyrrolidone-sulfuric acid (PVP-H
2SO
4) gel electrolyte to fabricate a supercapacitor. Its capacitance retention reached 85.7% after the 5th cutting/healing cycles [
53]. By coating PANI and CNT nanomaterials on the surface of polymer fibers with self-healing ability to develop a novel filamentous self-healable supercapacitor, its capacitance retention was 92% after one cutting/healing cycle [
54]. In
Figure 8c, the voltage drop in the G-CD curves was due to the electron transfer resistance of the solid-state hydrogel-based electrolyte, which resulted in the specific capacitance of the supercapacitor being smaller than that of the electrode [
3].
The in-situ measurement method was used to evaluate the electrochemical performance of the assembled supercapacitor device under the bending or twisting state.
Figure 8e shows the variation of capacitance according to the number of cycles, which were calculated from their G-CD curves at a constant current density of 1 A g
−1 after each bending cycle. A bending cycle started from flat-state, passed through a 180° bending-state, and then returned to flat-state. One twisting cycle was similar. In
Figure 8e, the capacitance retention of the supercapacitor device was 85.0% and 82.3% after 1000 bending cycles and twisting cycles, respectively. The performance was comparable supercapacitor to be tested in a flat state. Such a flexible solid-state supercapacitor with PANI hydrogel electrode possessed capacitance retention of 86% after 1000 consecutive charge-discharge cycles [
55]. It even was superior to the polyaniline-sodium alginate (PANI-SA) hydrogel supercapacitor reported previously (typically 71% retention for over 1000 cycles) [
51]. The improved cycling stability could be due to the quasi-solid hydrogel, further protecting the active PANI and avoiding the delamination of the CNT fibers as conductive pathways. The delamination from continuous expansion and shrinkage of the PANI molecular chain during the charge-discharge cycles could cause performance degradation. The superior capacitance retention under bending/twisting cycles also suggested that the contact between different layers of the supercapacitor device was excellent, which could benefit from the inherent self-healing property of PVA-based hydrogels [
43]. The superior flexibility and self-healing solid-state supercapacitor had promising potential applications in a flexible electronic device.