Influence of Dopant Nature on Biological Properties of ZnO Thin-Film Coatings on Ti Alloy Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis of the Samples
2.2. Characterization
3. Results and Discussion
3.1. ZnO and Co2+/Mg2+ Doped ZnO Coatings Morphology and Phase Composition
3.2. ZnO and Co2+/Mg2+-Doped ZnO Depositions in In Vitro Investigation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrade Neto, N.F.; Matsui, K.N.; Paskocimas, C.A.; Bomio, M.R.D.; Motta, F.V. Study of the Photocatalysis and Increase of Antimicrobial Properties of Fe3+ and Pb2+ Co-Doped ZnO Nanoparticles Obtained by Microwave-Assisted Hydrothermal Method. Mater. Sci. Semicond. Process. 2019, 93, 123–133. [Google Scholar] [CrossRef]
- Pereira-Silva, P.; Costa-Barbosa, A.; Costa, D.; Rodrigues, M.S.; Carvalho, P.; Borges, J.; Vaz, F.; Sampaio, P. Antifungal Activity of ZnO Thin Films Prepared by Glancing Angle Deposition. Thin Solid Films 2019, 687, 137461. [Google Scholar] [CrossRef]
- Bilal, M.; Rasheed, T.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X. Macromolecular Agents with Antimicrobial Potentialities: A Drive to Combat Antimicrobial Resistance. Int. J. Biol. Macromol. 2017, 103, 554–574. [Google Scholar] [CrossRef] [PubMed]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The Global Threat of Antimicrobial Resistance: Science for Intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, H.M.N.; Kyazze, G.; Locke, I.C.; Tron, T.; Keshavarz, T. Development of Bio-Composites with Novel Characteristics: Evaluation of Phenol-Induced Antibacterial, Biocompatible and Biodegradable Behaviours. Carbohydr. Polym. 2015, 131, 197–207. [Google Scholar] [CrossRef]
- Surugiu, A.; Andronescu, E.; Turculet, C.; Badea, M.L.; Iordache, F.M.; Prodan, A.M. Antimicrobial Studies on Iron Oxide Nanoparticles in a Silica Matrix. Univ. Politeh. Buchar. Sci. Bull. Ser. B Chem. Mater. Sci. 2016, 78, 53–62. [Google Scholar]
- Kasi, G.; Viswanathan, K.; Sadeghi, K.; Seo, J. Optical, Thermal, and Structural Properties of Polyurethane in Mg-Doped Zinc Oxide Nanoparticles for Antibacterial Activity. Prog. Org. Coat. 2019, 133, 309–315. [Google Scholar] [CrossRef]
- Shi, S.; Xu, J.; Li, L. Effect of Mg Concentration on Morphological, Structural and Optical Properties of Mg-K Co-Doped ZnO Thin Films Prepared by Sol-Gel Method. Mater. Lett. 2018, 229, 178–181. [Google Scholar] [CrossRef]
- Mahmood, A.; Naeem, A. Sol-Gel-Derived Doped ZnO Thin Films: Processing, Properties, and Applications. Recent Appl. Sol-Gel Synth. 2017. [Google Scholar] [CrossRef] [Green Version]
- Hameed, A.S.H.; Karthikeyan, C.; Sasikumar, S.; Senthil Kumar, V.; Kumaresan, S.; Ravi, G. Impact of Alkaline Metal Ions Mg2+, Ca2+, Sr2+ and Ba2+ on the Structural, Optical, Thermal and Antibacterial Properties of ZnO Nanoparticles Prepared by the Co-Precipitation Method. J. Mater. Chem. B 2013, 1, 5950–5962. [Google Scholar] [CrossRef]
- Kulandaisamy, A.J.; Elavalagan, V.; Shankar, P.; Mani, G.K.; Babu, K.J.; Rayappan, J.B.B. Nanostructured Cerium-Doped ZnO Thin Film—A Breath Sensor. Ceram. Int. 2016, 42, 18289–18295. [Google Scholar] [CrossRef]
- Shukla, P.; Tiwari, S.; Joshi, S.R.; Akshay, V.R.; Vasundhara, M.; Varma, S.; Singh, J.; Chanda, A. Investigation on Structural, Morphological and Optical Properties of Co-Doped ZnO Thin Films. Phys. B Condens. Matter 2018, 550, 303–310. [Google Scholar] [CrossRef]
- Turculet, C.S.; Prodan, A.M.; Negoi, I.; Teleanu, G.; Popa, M.; Andronescu, E.; Beuran, M.; Stanciu, G.A.; Hristu, R.; Badea, M.L. Preliminary Evaluation of the Antifungal Activity of Samarium Doped Hydroxyapatite Thin Films. Rom. Biotechnol. Lett. 2018, 23, 13927. [Google Scholar] [CrossRef]
- Oves, M.; Arshad, M.; Khan, M.S.; Ahmed, A.S.; Azam, A.; Ismail, I.M.I. Anti-Microbial Activity of Cobalt Doped Zinc Oxide Nanoparticles: Targeting Water Borne Bacteria. J. Saudi Chem. Soc. 2015, 19, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Poongodi, G.; Anandan, P.; Kumar, R.M.; Jayavel, R. Studies on Visible Light Photocatalytic and Antibacterial Activities of Nanostructured Cobalt Doped ZnO Thin Films Prepared by Sol-Gel Spin Coating Method. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2015, 148, 237–243. [Google Scholar] [CrossRef]
- Rambu, A.P.; Iftimie, N.; Nica, V.; Dobromir, M.; Tascu, S. Efficient Methane Detection by Co Doping of ZnO Thin Films. Superlattices Microstruct. 2015, 78, 61–70. [Google Scholar] [CrossRef]
- Voicu, G.; Miu, D.; Ghitulica, C.D.; Jinga, S.I.; Nicoara, A.I.; Busuioc, C.; Holban, A.M. Co Doped ZnO Thin Films Deposited by Spin Coating as Antibacterial Coating for Metallic Implants. Ceram. Int. 2020, 46, 3904–3911. [Google Scholar] [CrossRef]
- Hussin, R.; Yahya, H.; Zulkiflee, N.S. Depositionof TiO2/ZnO Thin Films Using Spin-Coating Method. Int. J. Curr. Res. Sci. Eng. Technol. 2018, 1, 226. [Google Scholar] [CrossRef]
- Ferdaus, M.M.; Rashid, M.M.; Rahman, M.A. Design and Fabrication of a Simple Cost Effective Spin Coater for Deposition of Thin Film. Adv. Environ. Biol. 2014, 8, 729–733. [Google Scholar]
- Faisal, M.; Bouzid, H.; Harraz, F.A.; Ismail, A.A.; Al-Sayari, S.A.; Al-Assiri, M.S. Mesoporous Ag/ZnO Multilayer Films Prepared by Repeated Spin-Coating for Enhancing Its Photonic Efficiencies. Surf. Coat. Technol. 2015, 263, 44–53. [Google Scholar] [CrossRef]
- Verma, K.; Chaudhary, B.; Kumar, V.; Sharma, V.; Kumar, M. Investigation of Structural, Morphological and Optical Properties of Mg: ZnO Thin Films Prepared by Sol-Gel Spin Coating Method. Vacuum 2017, 146, 524–529. [Google Scholar] [CrossRef]
- Khuili, M.; Fazouan, N.; El Makarim, H.A.; Atmani, E.H. Study of Properties of (Mg, Al)-Codoped ZnO with GGA and MBJ Approximations. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2016, 380, 2881–2887. [Google Scholar] [CrossRef]
- Rashid, M.; Hussain, F.; Imran, M.; Abo, G.S.; Ahmad, S.A.; Feng, Y.P. First-Principles Study of Structural, Electronic and Optical Properties of Zn1-XMgxO Ternary Alloys Using Modified Becke-Johnson Potential. Mater. Sci. Semicond. Process. 2014, 18, 114–121. [Google Scholar] [CrossRef]
- Benramache, S.; Benhaoua, B.; Belahssen, O. The Crystalline Structure, Conductivity and Optical Properties of Co-Doped ZnO Thin Films. Opt. Int. J. Light Electron Opt. 2014, 125, 5864–5868. [Google Scholar] [CrossRef]
- Rouchdi, M.; Salmani, E.; Fares, B.; Hassanain, N.; Mzerd, A. Synthesis and Characteristics of Mg Doped ZnO Thin Films: Experimental and Ab-Initio Study. Results Phys. 2017, 7, 620–627. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, V.; Som, S.; Yousif, A.; Singh, N.; Ntwaeaborwa, O.M.; Kapoor, A.; Swart, H.C. Effect of Annealing on the Structural, Morphological and Photoluminescence Properties of ZnO Thin Films Prepared by Spin Coating. J. Colloid Interface Sci. 2014, 428, 8–15. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Xiang, L. Hydrothermal Synthesis of ZnO Whiskers from ε-Zn(OH)2 in NaOH/Na2SO4 Solution. Particuology 2015, 19, 113–117. [Google Scholar] [CrossRef]
- Inc, M.P. Vybrant® MTT Cell Proliferation Assay Kit (V-13154). Prod. Inf. 2002, 4–6. [Google Scholar]
- Manual, T. GSH-GloTM Glutathione Assay Instruc θ Ons for Use of Products V6911 and V6912 GSH-GloTM Glutathione Assay; Promega: Madison, WI, USA, 2015; pp. 2–18. [Google Scholar]
- Prodana, M.; Duta, M.; Ionita, D.; Bojin, D.; Stan, M.S.; Dinischiotu, A.; Demetrescu, I. A new complex ceramic coating with carbon nanotubes, hydroxyapatite and TiO2 nanotubes on Ti surface for biomedical applications. Ceram. Int. 2015, 41, 6318–6325. [Google Scholar] [CrossRef]
- Kim, H.T.; Lee, S.Y.; Park, C. Controls of Surface Morphology on Sol-Gel Derived ZnO Films under Isothermal Treatment Conditions. Vacuum 2017, 143, 312–315. [Google Scholar] [CrossRef]
- Shivanna, R.; Rajaram, S.; Narayan, K.S. Interface Engineering for Efficient Fullerene-Free Organic Solar Cells. Appl. Phys. Lett. 2015, 106. [Google Scholar] [CrossRef]
- Tsay, C.Y.; Wang, M.C.; Chiang, S.C. Characterization of Zn1−xMgxO Films Prepared by the Sol-Gel Process and Their Application for Thin-Film Transistors. J. Electron. Mater. 2009, 38, 1962–1968. [Google Scholar] [CrossRef] [Green Version]
- Saranya, S.; Vijayaranai, K.; Pavithra, S.; Raihana, N.; Kumanan, K. In Vitro Cytotoxicity of Zinc Oxide, Iron Oxide and Copper Nanopowders Prepared by Green Synthesis. Toxicol. Rep. 2017, 4, 427–430. [Google Scholar] [CrossRef]
- Stoica, A.O.; Andronescu, E.; Ghitulica, C.D.; Voicu, G.; Grumezescu, A.M.; Popa, M.; Chifiriuc, M.C. Preparation and characterization of undoped and cobalt doped ZnO for antimicrobial use. Int. J. Pharm. 2016, 510, 430–438. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoleriu, S.; Lungu, C.; Ghitulica, C.D.; Surdu, A.; Voicu, G.; Cucuruz, A.; Turculet, C.S.; Ciocan, L.T. Influence of Dopant Nature on Biological Properties of ZnO Thin-Film Coatings on Ti Alloy Substrate. Nanomaterials 2020, 10, 129. https://doi.org/10.3390/nano10010129
Stoleriu S, Lungu C, Ghitulica CD, Surdu A, Voicu G, Cucuruz A, Turculet CS, Ciocan LT. Influence of Dopant Nature on Biological Properties of ZnO Thin-Film Coatings on Ti Alloy Substrate. Nanomaterials. 2020; 10(1):129. https://doi.org/10.3390/nano10010129
Chicago/Turabian StyleStoleriu, Stefania, Codruta Lungu, Cristina Daniela Ghitulica, Adrian Surdu, Georgeta Voicu, Andreia Cucuruz, Claudiu Stefan Turculet, and Lucian Toma Ciocan. 2020. "Influence of Dopant Nature on Biological Properties of ZnO Thin-Film Coatings on Ti Alloy Substrate" Nanomaterials 10, no. 1: 129. https://doi.org/10.3390/nano10010129
APA StyleStoleriu, S., Lungu, C., Ghitulica, C. D., Surdu, A., Voicu, G., Cucuruz, A., Turculet, C. S., & Ciocan, L. T. (2020). Influence of Dopant Nature on Biological Properties of ZnO Thin-Film Coatings on Ti Alloy Substrate. Nanomaterials, 10(1), 129. https://doi.org/10.3390/nano10010129