Round Robin into Best Practices for the Determination of Indentation Size Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoindentation Tests
2.3. Data Analysis
3. Results
3.1. Hardness and Modulus Profiles
- calibration differences (force, displacement, the calibration of the indenter area function and the correction of the frame compliance) and other measurement uncertainties,
- sample to sample property variations (compositional variation, polishing differences, residual stress, etc.),
- or could be due to differences in the details of the analysis methods applied in the software of each instrument: Oliver and Pharr uses a beta factor of 1.034, whereas ISO 14577:2002 uses a factor of 1; software compliant with ISO 14577:2015 applies a variable ε (i.e., determines a correction factor for ε which depends on the exponent of the power law fitting the unloading curve) and a lateral dilation correction to the contact area calculation (which depends on the hardness to elastic modulus ratio of the test piece) [28].
3.2. Elastic Modulus Correction (EMC)
3.3. Cross-Correlation Analysis before and after EMC
4. Discussion
4.1. Uncertainty Analysis and Effects of Elastic Modulus Correction
4.2. Statistical Analysis of Measurement Methods for Improved ISE Determination
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CSM | Continuous Stiffness Measurements |
DSC | Depth Controlled Single cycles |
EMC | Elastic Modulus Correction |
FSC | Force Controlled Single cycles |
ISE | Indentation Size Effects |
ISO | International Standard Organization |
PMC | Progressive Multi-Cycles in force control |
References
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Sci. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Siu, K.W.; Ngan, A.H.W. Oscillation-induced softening in copper and molybdenum form nano- to micro-length scales. Mater. Sci. Eng. A 2013, 572, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Leitner, A.; Maier-Kiener, V.; Kiener, D. Dynamic nanoindentation testing: Is there an influence on a material’s hardness? Mater. Res. Lett. 2017, 5, 486–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merle, B.; Maier-Kiener, V.; Pharr, G.M. Influence of modulus-to-hardness ratio and harmonic parameters on continuous stiffness measurement during nanoindentation. Acta Mater. 2017, 134, 167–176. [Google Scholar] [CrossRef]
- Schuh, C.A. Nanoindentation studies of materials. Mater. Today 2006, 9, 32–40. [Google Scholar] [CrossRef]
- Hou, X.; Jennett, N.M. Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects. Acta Mater. 2012, 60, 4128–4135. [Google Scholar] [CrossRef]
- Hou, X.D.; Bushby, A.J.; Jennett, N.M. Study of the interaction between the indentation size effect and Hall-Petch effect with spherical indenters on annealed polycrystalline copper. J. Phys. D Appl. Phys. 2008, 41, 074006. [Google Scholar] [CrossRef]
- Zhao, M.; Slaughter, W.S.; Li, M.; Mao, S.X. Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Mater. 2003, 51, 4461–4469. [Google Scholar] [CrossRef]
- Swadener, J.G.; Misra, A.; Hoagland, R.G.; Nastasi, M. A mechanistic description of combined hardening and size effects. Scr. Mater. 2002, 47, 343–348. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, F.; Chen, B.; Xue, F. The correlation between indentation hardness and material properties with considering size effect. J. Mater. Res. 2014, 29, 1317–1325. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Review of nanoindentation size effect: Experiments and atomistic simulation. Crystals 2017, 7, 321. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Moreno, A.; Hähner, P. Indentation size effects of ferritic/martensitic steels: A comparative experimental and modelling study. Mater. Design 2018, 145, 168–180. [Google Scholar] [CrossRef]
- Durst, K.; Backes, B.; Franke, O.; Göken, M. Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 2006, 54, 2547–2555. [Google Scholar] [CrossRef]
- Pharr, G.M.; Herbert, E.G.; Gao, Y. The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 2010, 40, 271–292. [Google Scholar] [CrossRef]
- Gale, J.D.; Achuthan, A. The effect of work-hardening and pile-up on nanoindentation measurements. J. Mater. Sci 2014, 49, 5066–5075. [Google Scholar] [CrossRef]
- Joslin, D.L.; Oliver, W.C. A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 1990, 5, 123–126. [Google Scholar] [CrossRef]
- Aldrich-Smith, G.; Jennett, N.M.; Hangen, U. Direct measurement of nanoindentation area function by metrological AFM. Zeitschrift Metallkunde 2005, 96, 1267–1271. [Google Scholar] [CrossRef]
- Menčík, J. Uncertainties and Errors in Nanoindentation. Nanoindentation Mater. Sci. 2012, 54, 53–86. [Google Scholar] [CrossRef] [Green Version]
- Moharrami, N.; Bull, S.J. A comparison of nanoindentation pile-up in bulk materials and thin films. Thin Solid Films 2014, 572, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Hosemann, P.; Shin, C.; Kiener, D. Small scale mechanical testing of irradiated materials. J. Mater. Res. 2015, 30, 1–15. [Google Scholar] [CrossRef]
- Hardie, C.D.; Roberts, S.G.; Bushby, A.J. Understanding the effects of ion irradiation using nanoindentation techniques. J. Nucl. Mater. 2015, 462, 391–401. [Google Scholar] [CrossRef]
- Heintze, C.; Bergner, F.; Akhmadaliev, S.; Alstadt, E. Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening. J. Nucl. Mater. 2016, 472, 196–205. [Google Scholar] [CrossRef]
- Chang, C.; Garrido, M.A.; Ruiz-Hervias, J.; Rodriguez, J. On the possibility of reducing the pile-up effect on the Berkovich instrumented indentation tests. Int. J. Mech. Sci. 2017, 121, 181–186. [Google Scholar] [CrossRef]
- Beck, C.E.; Hofman, F.; Eliason, J.K.; Maznev, A.A.; Nelson, K.A.; Armstrong, D.E.J. Correcting for contact area changes in nanoindentation using surface acoustic waves. Scr. Mater. 2017, 128, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.D.; Jennett, N.M. A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation. J. Phys. D Appl. Phys. 2017, 50, 455304. [Google Scholar] [CrossRef] [Green Version]
- Fischer-Cripps, A.C. Nanoindentation, 3rd ed.; Mechanical Engineering Series; Springer: New York, NY, USA, 2004; pp. 50–51. [Google Scholar]
- Chudoba, T.; Jennett, N.M. Higher accuracy analysis of instrumented indentation data obtained with pointed indenters. J. Phys. D Appl. Phys. 2008, 41, 215407. [Google Scholar] [CrossRef]
- Hall, E.O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
Element | Cr | Mo | Mn | Si | V | Ni | Nb | Cu | Al |
T91 | 8.873 | 0.871 | 0.386 | 0.218 | 0.195 | 0.115 | 0.077 | 0.080 | 0.009 |
Eurofer97 | 8.87 | <0.001 | 0.42 | 0.06 | 0.19 | 0.0075 | <0.001 | 0.021 | 0.008 |
Element | C | N | P | S | Sn | O | W | Ta | Ti |
T91 | 0.097 | 0.0440 | 0.020 | 0.0005 | - | - | - | - | - |
Eurofer97 | 0.12 | 0.018 | 0.004 | 0.003 | <0.005 | 0.001 | 1.10 | 0.14 | 0.008 |
Element | Co | As | Sb | Zr | |||||
T91 | - | - | - | - | |||||
Eurofer97 | 0.005 | <0.005 | <0.005 | <0.005 |
Material | Method | Goodness of Hardness Fits, χ2 | Standard Deviation of Cross-Correlations, σR | ||||
---|---|---|---|---|---|---|---|
Raw, HIT | EMC, HIT,corr | EMC with Exclusion, HIT,corr | Raw, HIT | EMC, HIT,corr | EMC with Exclusion, HIT,corr | ||
T91 | FSC | 1.78 | 0.81 | 0.074 | 0.96 | 1.28 | 0.498 |
DSC | 0.35 | 0.31 | 0.029 | 1.67 | 2.25 | 0.589 | |
PMC | 0.05 | 0.14 | 0.005 | 1.50 | 1.64 | 0.187 | |
All methods | 0.71 | 0.40 | 0.037 | 1.26 | 1.61 | 0.487 | |
EU97 | FSC | 1.58 | 0.81 | 0.159 | 0.75 | 1.40 | 0.797 |
DSC | 0.57 | 0.69 | 0.144 | 0.85 | 1.43 | 0.785 | |
PMC | 0.05 | 0.15 | 0.020 | 1.03 | 0.81 | 0.254 | |
All methods | 0.71 | 0.56 | 0.143 | 0.87 | 1.49 | 0.759 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Moreno, A.; Hähner, P.; Kurpaska, L.; Jagielski, J.; Spätig, P.; Trebala, M.; Hannula, S.-P.; Merino, S.; de Diego, G.; Namburi, H.; et al. Round Robin into Best Practices for the Determination of Indentation Size Effects. Nanomaterials 2020, 10, 130. https://doi.org/10.3390/nano10010130
Ruiz-Moreno A, Hähner P, Kurpaska L, Jagielski J, Spätig P, Trebala M, Hannula S-P, Merino S, de Diego G, Namburi H, et al. Round Robin into Best Practices for the Determination of Indentation Size Effects. Nanomaterials. 2020; 10(1):130. https://doi.org/10.3390/nano10010130
Chicago/Turabian StyleRuiz-Moreno, Ana, Peter Hähner, Lukasz Kurpaska, Jacek Jagielski, Philippe Spätig, Michal Trebala, Simo-Pekka Hannula, Susana Merino, Gonzalo de Diego, Hygreeva Namburi, and et al. 2020. "Round Robin into Best Practices for the Determination of Indentation Size Effects" Nanomaterials 10, no. 1: 130. https://doi.org/10.3390/nano10010130
APA StyleRuiz-Moreno, A., Hähner, P., Kurpaska, L., Jagielski, J., Spätig, P., Trebala, M., Hannula, S. -P., Merino, S., de Diego, G., Namburi, H., Libera, O., Terentyev, D., Khvan, T., Heintze, C., & Jennett, N. (2020). Round Robin into Best Practices for the Determination of Indentation Size Effects. Nanomaterials, 10(1), 130. https://doi.org/10.3390/nano10010130