Electrochemically Deposited NiO Films as a Blocking Layer in p-Type Dye-Sensitized Solar Cells with an Impressive 45% Fill Factor
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mozaffari, S.; Nateghi, M.R.; Zarandi, M.B. An overview of the Challenges in the commercialization of dye sensitized solar cells. Renew. Sustain. Energy Rev. 2017, 71, 675–686. [Google Scholar] [CrossRef]
- Hardin, B.E.; Snaith, H.J.; McGehee, M.D. The renaissance of dye-sensitized solar cells. Nat. Photonics 2012, 6, 162–169. [Google Scholar] [CrossRef]
- Guo, X.; Xu, Z.; Huang, J.; Zhang, Y.; Liu, X.; Guo, W. Photoelectrochromic smart windows powered by flexible dye-sensitized solar cell using CuS mesh as counter electrode. Mater. Lett. 2019, 244, 92–95. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Gong, J.; Liang, J.; Sumathy, K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 2012, 16, 5848–5860. [Google Scholar] [CrossRef]
- Nagaraj, P.; Sasidharan, A.; David, V.; Sambandam, A. Effect of Cross-Linking on the Performances of Starch-Based Biopolymer as Gel Electrolyte for Dye-Sensitized Solar Cell Applications. Polymers 2017, 9, 667. [Google Scholar] [CrossRef] [Green Version]
- Chalkias, D.A.; Laios, A.I.; Petala, A.; Papanicolaou, G.C. Evaluation of the limiting factors affecting large-sized, flexible, platinum-free dye-sensitized solar cells performance: A combined experimental and equivalent circuit analysis. J. Mater. Sci. Mater. Electron. 2018, 29, 9621–9634. [Google Scholar] [CrossRef]
- Xiong, D.; Chen, W. Recent progress on tandem structured dye-sensitized solar cells. Front. Optoelectron. 2012, 5, 371–389. [Google Scholar] [CrossRef]
- Bonomo, M.; Dini, D. Nanostructured p-type semiconductor electrodes and photoelectrochemistry of their reduction processes. Energies 2016, 9, 373. [Google Scholar] [CrossRef] [Green Version]
- Bonomo, M.; Dini, D.; Decker, F. Electrochemical and photoelectrochemical properties of nickel oxide (NiO) with nanostructured morphology for photoconversion applications. Front. Chem. 2018, 6, 601. [Google Scholar] [CrossRef]
- Jiang, T.; Bujoli-Doeuff, M.; Farré, Y.; Pellegrin, Y.; Gautron, E.; Boujtita, M.; Cario, L.; Jobic, S.; Odobel, F. CuO nanomaterials for p-type dye-sensitized solar cells. RSC Adv. 2016, 6, 112765–112770. [Google Scholar] [CrossRef]
- Sullivan, I.; Zoellner, B.; Maggard, P.A. Copper(I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion. Chem. Mater. 2016, 28, 5999. [Google Scholar] [CrossRef]
- Yu, M.; Draskovic, T.I.; Wu, Y. Cu(I)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2014, 16, 5026. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Bujoli-Doeuff, M.; Farré, Y.; Blart, E.; Pellegrin, Y.; Gautron, E.; Boujtita, M.; Cario, L.; Odobel, F.; Jobic, S. Copper borate as a photocathode in p-type dye-sensitized solar cells. RSC Adv. 2016, 6, 1549. [Google Scholar] [CrossRef]
- Ursu, D.; Miclau, M.; Banica, R.; Vaszilcsin, N. Impact of Fe doping on performances of CuGaO2 p-type dye-sensitized solar cells. Mater. Lett. 2015, 143, 91–93. [Google Scholar] [CrossRef]
- Yu, M.; Natu, G.; Ji, Z.; Wu, Y. P-type dye-sensitized solar cells based on delafossite CuGaO 2 nanoplates with saturation photovoltages exceeding 460 mV. J. Phys. Chem. Lett. 2012, 3, 1074–1078. [Google Scholar] [CrossRef] [PubMed]
- Cihan, I.; Akin, S.; Akyildiz, H.; Sonmezoglu, S. Highly efficient tandem photoelectrochemical solar cells using coumarin6 dye-sensitized CuCrO2 delafossite oxide as photocathode. Sol. Energy 2018, 169, 196–205. [Google Scholar] [CrossRef]
- O’Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–739. [Google Scholar] [CrossRef]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Perera, I.R.; Daeneke, T.; Makuta, S.; Yu, Z.; Tachibana, Y.; Mishra, A.; Bäuerle, P.; Ohlin, C.A.; Bach, U.; Spiccia, L. Application of the tris(acetylacetonato)iron(III)/(II) redox couple in p-type dye-sensitized solar cells. Angew. Chem. Int. Ed. 2015, 54, 3758–3762. [Google Scholar] [CrossRef]
- Daeneke, T.; Yu, Z.; Lee, G.P.; Fu, D.; Duffy, N.W.; Makuta, S.; Tachibana, Y.; Spiccia, L.; Mishra, A.; Bäuerle, P.; et al. Dominating energy losses in NiO p-type dye-sensitized solar cells. Adv. Energy Mater. 2015, 5, 1401387. [Google Scholar] [CrossRef]
- Choi, H.; Hwang, T.; Lee, S.; Nam, S.; Kang, J.; Lee, B.; Park, B. The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes. J. Power Sources 2015, 274, 937. [Google Scholar] [CrossRef]
- Le Pleux, L.; Smeigh, A.L.; Gibson, E.; Pellegrin, Y.; Blart, E.; Boschloo, G.; Hagfeldt, A.; Hammarström, L.; Odobel, F. Synthesis, photophysical and photovoltaic investigations of acceptor-functionalized perylene monoimide dyes for nickel oxide p-type dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 2075–2084. [Google Scholar] [CrossRef]
- Odobel, F.; Pellegrin, Y.; Gibson, E.A.; Hagfeldt, A.; Smeigh, A.L.; Hammarström, L. Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells. Coord. Chem. Rev. 2012, 256, 2414–2423. [Google Scholar] [CrossRef]
- Sinopoli, A.; Wood, C.J.; Gibson, E.A.; Elliott, P.I.P. New cyclometalated iridium(III) dye chromophore complexes for p-type dye-sensitised solar cells. Dyes Pigments 2017, 140, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.J.; Cheng, M.; Clark, C.A.; Horvath, R.; Clark, I.P.; Hamilton, M.L.; Towrie, M.; George, M.W.; Sun, L.; Yang, X.; et al. Red-absorbing cationic acceptor dyes for photocathodes in tandem solar cells. J. Phys. Chem. C 2014, 118, 16536–16546. [Google Scholar] [CrossRef]
- Warnan, J.; Gardner, J.; Le Pleux, L.; Petersson, J.; Pellegrin, Y.; Blart, E.; Hammarström, L.; Odobel, F. Multichromophoric sensitizers based on squaraine for NiO based dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 103–113. [Google Scholar] [CrossRef]
- Farrè, Y.; Zhang, L.; Pellegrin, Y.; Planchat, A.; Blart, E.; Boujtita, M.; Hammarstrom, L.; Jacquemin, D.; Odobel, F. Second Generation of Diketopyrrolopyrrole Dyes for NiO-Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2016, 120, 7923–7940. [Google Scholar] [CrossRef]
- Bonomo, M.; Saccone, D.; Magistris, C.; Di Carlo, A.; Barolo, C.; Dini, D.; Di Carlo, A.; Barolo, C.; Dini, D.; Di Carlo, A.; et al. Effect of alkyl chain length on the sensitizing action of substituted non symmetric squaraines for p-type dye-sensitized solar cells. ChemElectroChem 2017, 4, 2385–2397. [Google Scholar] [CrossRef]
- Bonomo, M.; Saccone, D.; Magistris, C.; Barolo, C.; Ciná, L.; Di Carlo, A.; Dini, D. Influence of the Conditions of Sensitization on the Characteristics of p -DSCs Sensitized with Asymmetric Squaraines. J. Electrochem. Soc. 2017, 164, H1099–H1111. [Google Scholar] [CrossRef]
- Wu, F.; Zhu, L.; Zhao, S.; Song, Q.; Yang, C. Engineering of organic dyes for highly efficient p-type dye-sensitized solar cells. Dyes Pigments 2016, 124, 93. [Google Scholar] [CrossRef]
- Dini, D.; Meneghetti, M.; Calvete, M.J.F.; Arndt, T.; Liddiard, C.; Hanack, M. Tetrabrominated lead naphthalocyanine for optical power limiting. Chem. Eur. J. 2010, 16, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dini, D.; Calvete, M.J.F.; Hanack, M.; Sun, W. Photophysics and nonlinear optical properties of tetra-and octabrominated silicon naphthalocyanines. J. Phys. Chem. A 2008, 112, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Dini, D.; Calvete, M.J.F.; Hanack, M.; Amendola, V.; Meneghetti, M. Large two-photon absorption cross sections of hemiporphyrazines in the excited state: The multiphoton absorption process of hemiporphyrazines with different central metals. J. Am. Chem. Soc. 2008, 130, 12290–12298. [Google Scholar] [CrossRef]
- Bonomo, M.; Carlo, A.; Di Dini, D. Study of the Influence of the I-Based Electrolyte Composition on the Photoconversion Properties of p-Type Dye-Sensitized Solar Cells. J. Electrochem. Soc. 2018, 165, H889–H896. [Google Scholar] [CrossRef]
- Perera, I.R.; Gupta, A.; Xiang, W.; Daeneke, T.; Bach, U.; Evans, R.A.; Ohlin, C.A.; Spiccia, L. Introducing manganese complexes as redox mediators for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2014, 16, 12021–12028. [Google Scholar] [CrossRef]
- Powar, S.; Daeneke, T.; Ma, M.T.; Fu, D.; Duffy, N.W.; Gotz, G.; Weidelener, M.; Mishra, A.; Bauerle, P.; Spiccia, L.; et al. Highly efficient p-type dye-sensitized solar cells based on tris(1,2-diaminoethane) cobalt(II)/(III) electrolytes. Angew. Chem. Int. Ed. 2013, 52, 602–605. [Google Scholar] [CrossRef]
- Gibson, E.A.; Smeigh, A.L.; Le Pleux, L.; Hammarström, L.; Odobel, F.; Boschloo, G.; Hagfeldt, A. Cobalt polypyridyl-based electrolytes for p-type dye-sensitized solar cells. J. Phys. Chem. C 2011, 115, 9772–9779. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, W.; Tao, H. Probing the influence of lithium cation as electrolyte additive for the improved performance of p-type aqueous dye sensitized solar cells. J. Photochem. Photobiol. A Chem. 2017, 344, 199–205. [Google Scholar] [CrossRef]
- Awais, M.; Gibson, E.; Vos, J.G.; Dowling, D.P.; Hagfeldt, A.; Dini, D. Fabrication of Efficient NiO Photocathodes Prepared via RDS with Novel Routes of Substrate Processing for p-Type Dye-Sensitized Solar Cells. ChemElectroChem 2014, 1, 384–391. [Google Scholar] [CrossRef]
- D’Amario, L.; Boschloo, G.; Hagfeldt, A.; Hammarström, L. Tuning of conductivity and density of states of NiO mesoporous films used in p-type DSSCs. J. Phys. Chem. C 2014, 118, 19556–19564. [Google Scholar] [CrossRef]
- Liu, Q.; Wei, L.; Yuan, S.; Ren, X.; Zhao, Y.; Wang, Z.; Zhang, M.; Shi, L.; Li, D.; Li, A. Influence of interface properties on charge density, band edge shifts and kinetics of the photoelectrochemical process in p-type NiO photocathodes. RSC Adv. 2015, 5, 71778–71784. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chen, W.T.; Chen, Y.C.; Wei, H.Y.; Yen, Y.S.; Huang, K.C.; Ho, K.C.; Chu, C.W.; Lin, J.T. Charge transporting enhancement of NiO photocathodes for p-type dye-sensitized solar cells. Electrochim. Acta 2012, 66, 210–215. [Google Scholar] [CrossRef]
- Cameron, P.J.; Peter, L.M. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? J. Phys. Chem. B 2005. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.; Bao, L.Q.; Ahn, K.S.; Cheruku, R.; Kim, J.H. P-Type dye-sensitized solar cells: Enhanced performance with a NiO compact blocking layer. Synth. Met. 2016, 217, 314–321. [Google Scholar] [CrossRef]
- Nardi, K.L.; Yang, N.; Dickens, C.F.; Strickler, A.L.; Bent, S.F. Creating Highly Active Atomic Layer Deposited NiO Electrocatalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2015, 5, 1500412. [Google Scholar] [CrossRef]
- Natu, G.; Huang, Z.; Ji, Z.; Wu, Y. The effect of an atomically deposited layer of alumina on NiO in P-type dye-sensitized solar cells. Langmuir 2012, 28, 950–956. [Google Scholar] [CrossRef]
- Choi, S.H.; Kang, Y.C. Ultrafast synthesis of yolk-shell and cubic NiO nanopowders and application in lithium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 2312–2316. [Google Scholar] [CrossRef]
- Teoh, L.G.; Li, K.-D. Synthesis and Characterization of NiO Nanoparticles by Sol-Gel Method. Mater. Trans. 2012, 53, 2135–2140. [Google Scholar] [CrossRef] [Green Version]
- Aydin, E.; Troughton, J.; De Bastiani, M.; Ugur, E.; Sajjad, M.; Alzahrani, A.; Neophytou, M.; Schwingenschlögl, U.; Laquai, F.; Baran, D.; et al. Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 6227–6233. [Google Scholar] [CrossRef]
- Lincot, D. Electrodeposition of semiconductors. Thin Solid Films 2005, 487, 40–48. [Google Scholar] [CrossRef]
- Tsionsky, M.; Bard, A.J.; Dini, D.; Decker, F. Polymer Films on Electrodes. 28. Scanning Electrochemical Microscopy Study of Electron Transfer at Poly(alkylterthiophene) Films. Chem. Mater. 1998, 10, 2120–2126. [Google Scholar] [CrossRef]
- Tarola, A.; Dini, D.; Salatelli, E.; Andreani, F.; Decker, F. Electrochemical impedance spectroscopy of polyalkylterthiophenes. Electrochim. Acta 1999, 44, 4189–4193. [Google Scholar] [CrossRef]
- Qin, P.; Zhu, H.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Design of an Organic Chromophore for P-Type Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2008, 130, 8570–8571. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, D.; Phung, N.; Jošt, M.; Al-Ashouri, A.; Chistiakova, G.; Li, J.; Márquez, J.A.; Unold, T.; Korte, L.; Albrecht, S.; et al. From Bulk to Surface: Sodium Treatment Reduces Recombination at the Nickel Oxide/Perovskite Interface. Adv. Mater. Interfaces 2019, 6, 1900789. [Google Scholar] [CrossRef]
- Mariani, P.; Vesce, L.; Di Carlo, A. The role of printing techniques for large-area dye sensitized solar cells. Semicond. Sci. Technol. 2015, 30, 104003. [Google Scholar] [CrossRef]
- De Rossi, F.; Di Gaspare, L.; Reale, A.; Di Carlo, A.; Brown, T.M. Blending CoS and Pt for amelioration of electrodeposited transparent counterelectrodes and the efficiency of back-illuminated dye solar cells. J. Mater. Chem. A 2013, 1, 12941–12947. [Google Scholar] [CrossRef]
- Fabregat-Santiago, F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D.; Zakeeruddin, S.M.; Grätzel, M. Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C 2007, 111, 6550–6560. [Google Scholar] [CrossRef]
- Di Girolamo, D.; Piccinni, M.; Matteocci, F.; Marrani, A.G.; Zanoni, R.; Dini, D. Investigating the electrodeposition mechanism of anodically grown NiOOH films on transparent conductive oxides. Electrochim. Acta 2019, 319, 175–184. [Google Scholar] [CrossRef]
- Yazdani, A.; Zafarkish, H.; Rahimi, K. The variation of Eg-shape dependence of NiO nanoparticles by the variation of annealing temperature. Mater. Sci. Semicond. Process. 2018, 74, 225–231. [Google Scholar] [CrossRef]
- Browne, M.P.; Nolan, H.; Berner, N.C.; Duesberg, G.S.; Colavita, P.E.; Lyons, M.E.G. Electrochromic nickel oxide films for smart window applications. Int. J. Electrochem. Sci. 2016, 11, 6636–6647. [Google Scholar] [CrossRef]
- Bonomo, M. Synthesis and characterization of NiO nanostructures: A review. J. Nanopart. Res. 2018, 20, 222. [Google Scholar] [CrossRef]
- Di Girolamo, D.; Matteocci, F.; Piccinni, M.; Di Carlo, A.; Dini, D. Anodically electrodeposited NiO nanoflakes as hole selective contact in efficient air processed p-i-n perovskite solar cells. Sol. Energy Mater. Sol. Cells 2019, 110288. [Google Scholar] [CrossRef]
- Park, I.J.; Kang, G.; Park, M.A.; Kim, J.S.; Seo, S.W.; Kim, D.H.; Zhu, K.; Park, T.; Kim, J.Y. Highly Efficient and Uniform 1 cm 2 Perovskite Solar Cells with an Electrochemically Deposited NiOx Hole-Extraction Layer. ChemSusChem 2017, 10, 2660–2667. [Google Scholar] [CrossRef]
- Wu, M.-S.; Huang, Y.-A.; Jow, J.-J.; Yang, W.-D.; Hsieh, C.-Y.; Tsai, H.-M. Anodically potentiostatic deposition of flaky nickel oxide nanostructures and their electrochemical performances. Int. J. Hydrogen Energy 2008, 33, 2921–2926. [Google Scholar] [CrossRef]
- Wu, M.-S.; Yang, C.-H.; Wang, M.-J. Morphological and structural studies of nanoporous nickel oxide films fabricated by anodic electrochemical deposition techniques. Electrochim. Acta 2008, 54, 155–161. [Google Scholar] [CrossRef]
- Natu, G.; Hasin, P.; Huang, Z.; Ji, Z.; He, M.; Wu, Y. Valence band-edge engineering of nickel oxide nanoparticles via cobalt doping for application in p-type dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2012, 4, 5922–5929. [Google Scholar] [CrossRef]
- Wei, L.; Jiang, L.; Yuan, S.; Ren, X.; Zhao, Y.; Wang, Z.; Zhang, M.; Shi, L.; Li, D. Valence Band Edge Shifts and Charge-transfer Dynamics in Li-Doped NiO Based p-type DSSCs. Electrochim. Acta 2016, 188, 309. [Google Scholar] [CrossRef]
- Andrade, L.; Lopes, T.; Ribeiro, H.A.; Mendes, A. Transient phenomenological modeling of photoelectrochemical cells for water splitting—Application to undoped hematite electrodes. Int. J. Hydrogen Energy 2011, 36, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Fabregat-Santiago, F.; Garcia-Belmonte, G.; Bisquert, J.; Zaban, A.; Salvador, P. Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods. J. Phys. Chem. B 2002, 106, 334–339. [Google Scholar] [CrossRef]
- Mahbuburrahman, M.; Chandradebnath, N.; Lee, J.-J. Electrochemical Impedance Spectroscopic Analysis of Sensitization-Based Solar Cells. Isr. J. Chem. 2015, 55, 990–1001. [Google Scholar] [CrossRef]
NAME | Potential V vs. Ag/AgCl | Time s | Reduction |
---|---|---|---|
BL 1.00 V | 1.00 | 900 | No |
BL 1.05 V | 1.05 | 300 | No |
BL 1.10 V | 1.10 | 120 | No |
sg-NiO | Sol-gel spin coating from a NiCl2 solution [55] |
Sample | VOC/mV | JSC/mA·cm−2 | FF/% | PCE/% | Roughness/nm | Dye Loading/ 108·mmol·cm−2 |
---|---|---|---|---|---|---|
No Blocking Layer | 101.6 ± 1.6 | −1.77 ± 0.26 | 30.7 ± 1.0 | 0.055 ± 0.003 | 176 ± 10 | 3.19 ± 0.29 |
BL 1.00 V | 130.5 ± 2.1 | −1.84 ± 0.15 | 33.2 ± 1.1 | 0.079 ± 0.006 | 635 ± 13 | 3.45 ± 0.26 |
BL 1.05 V | 136.9 ± 2.0 | −2.19 ± 0.14 | 35.8 ± 1.6 | 0.098 ± 0.010 | 493 ± 23 | 3.42 ± 0.24 |
BL 1.10 V | 150.6 ± 1.8 | −3.08 ± 0.23 | 45.9 ± 1.9 | 0.166 ± 0.013 | 250 ± 10 | 3.32 ± 0.23 |
BL Sol-Gel | 147.4 ± 1.2 | −2.53 ± 0.25 | 36.0 ± 0.9 | 0.134 ± 0.009 | 323 ± 14 | 3.23 ± 0.25 |
NoBL | BL 1.00 V | BL 1.05 V | BL 1.10 V | BL Sol-Gel | |
---|---|---|---|---|---|
Rs/Ω | 20.5 ± 0.2 | 18.9 ± 0.3 | 18.6 ± 0.3 | 17.8 ± 0.6 | 18.2 ± 04 |
R1/Ω | 13.5 ± 0.5 | 11.2 ± 0.4 | 8.6 ± 0.6 | 5.9 ± 0.3 | 5.2 ± 0.3 |
C1/μF | 7.1 ± 0.3 | 4.9 ± 0.3 | 4.3 ± 0.1 | 3.5 ± 0.2 | 3.7 ± 0.2 |
Rt/Ω | 17.5 ± 0.6 | 15.0 ± 0.5 | 13.5 ± 0.6 | 11.7 ± 0.3 | 14.7 ± 0.8 |
Rrec/Ω | 85.4 ± 5.3 | 75.5 ± 3.6 | 68.5 ± 4.8 | 54.5 ± 3.9 | 55.5 ± 5.2 |
Cμ/mF | 0.34 | 0.39 | 0.35 | 0.36 | 0.38 |
Lh/μm | 3.65 ± 0.23 | 4.50 ± 0.28 | 4.48 ± 0.36 | 4.30 ± 0.43 | 3.88 ± 0.18 |
t1/μs | 95.9 ± 3.3 | 54.9 ± 3.6 | 37.0 ± 2.8 | 20.7 ± 1.9 | 19.2 ± 1.2 |
t2/ms | 29.1 ± 2.3 | 29.5 ± 1.2 | 24.0 ± 1.9 | 19.6 ± 0.5 | 21.1 ± 1.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonomo, M.; Di Girolamo, D.; Piccinni, M.; Dowling, D.P.; Dini, D. Electrochemically Deposited NiO Films as a Blocking Layer in p-Type Dye-Sensitized Solar Cells with an Impressive 45% Fill Factor. Nanomaterials 2020, 10, 167. https://doi.org/10.3390/nano10010167
Bonomo M, Di Girolamo D, Piccinni M, Dowling DP, Dini D. Electrochemically Deposited NiO Films as a Blocking Layer in p-Type Dye-Sensitized Solar Cells with an Impressive 45% Fill Factor. Nanomaterials. 2020; 10(1):167. https://doi.org/10.3390/nano10010167
Chicago/Turabian StyleBonomo, Matteo, Diego Di Girolamo, Marco Piccinni, Denis P. Dowling, and Danilo Dini. 2020. "Electrochemically Deposited NiO Films as a Blocking Layer in p-Type Dye-Sensitized Solar Cells with an Impressive 45% Fill Factor" Nanomaterials 10, no. 1: 167. https://doi.org/10.3390/nano10010167
APA StyleBonomo, M., Di Girolamo, D., Piccinni, M., Dowling, D. P., & Dini, D. (2020). Electrochemically Deposited NiO Films as a Blocking Layer in p-Type Dye-Sensitized Solar Cells with an Impressive 45% Fill Factor. Nanomaterials, 10(1), 167. https://doi.org/10.3390/nano10010167