Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition
Abstract
:1. Introduction
2. Experimental Methods
2.1. Synthesis of MoSe2
2.2. Characterization of MoSe2
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2011, 6, 74–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaibley, J.R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1. [Google Scholar] [CrossRef]
- Pospischil, A.; Furchi, M.M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 2014, 9, 257–261. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [Green Version]
- Komsa, H.P.; Krasheninnikov, A.V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201. [Google Scholar] [CrossRef] [Green Version]
- Shaw, J.C.; Zhou, H.; Chen, Y.; Weiss, N.O.; Liu, Y.; Huang, Y.; Duan, X. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517. [Google Scholar] [CrossRef]
- Chang, Y.H.; Zhang, W.; Zhu, Y.; Han, Y.; Pu, J.; Chang, J.K.; Takenobu, T. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xie, Y.; Cui, H.; Zhao, W.; Zhu, X.; Wang, Y.; Huang, F. In situ growth of a MoSe2/Mo counter electrode for high efficiency dye-sensitized solar cells. Chem. Commun. 2014, 50, 4475. [Google Scholar] [CrossRef]
- Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T.S.; Li, J.; Wu, J. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, T.R.; Zhou, B.; Cui, Y.T.; Yan, H.; Liu, Z.; Lin, H. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Y.; Zhong, M.; Huang, Y.; Wan, X.; Peng, J.; Weng, J. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser. Photonics Res. 2015, 3, A79. [Google Scholar] [CrossRef]
- Yin, J.; Chen, H.; Lu, W.; Liu, M.; Li, I.L.; Zhang, M.; Liu, W. Large-area and highly crystalline MoSe2 for optical modulator. Nanotechnology 2017, 28. [Google Scholar] [CrossRef]
- Nie, Z.; Trovatello, C.; Pogna, E.A.; Dal Conte, S.; Miranda, P.B.; Kelleher, E.; Cerullo, G. Broadband nonlinear optical response of monolayer MoSe2 under ultrafast excitation. Appl. Phys. Lett. 2018, 112. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Zhang, Z.; Duan, X.; Duan, X. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Y.; Sendeku, M.G.; Yin, L.; Zhan, X.; Wang, F.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019. [Google Scholar] [CrossRef]
- Lee, Y.H.; Zhang, X.Q.; Zhang, W.; Chang, M.T.; Lin, C.T.; Chang, K.D.; Lin, T.W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gong, Y.; Shi, G.; Chow, W.L.; Keyshar, K.; Ye, G.; Tay, B.K. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125–5131. [Google Scholar] [CrossRef]
- Zhao, Y.; Lee, H.; Choi, W.; Fei, W.; Lee, C.J. Large-area synthesis of monolayer MoSe2 films on SiO2/Si substrates by atmospheric pressure chemical vapor deposition. RSC Adv. 2017, 7, 27969–27973. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Hao, G.; Wang, G.; Li, B.; Kou, L.; Hang, Y.; Zhong, J. Controlled growth of atomically thin MoSe2 films and nanoribbons by chemical vapor deposition. 2D Mater. 2019, 6. [Google Scholar] [CrossRef]
- Chen, T.; Ding, D.; Shi, J.; Wang, G.; Kou, L.; Zheng, X.; Hao, G. Lateral and vertical MoSe2–MoS2 heterostructures via epitaxial growth: Triggered by high-temperature annealing and precursor concentration. J. Phys. Chem. Lett. 2019, 10, 5027–5035. [Google Scholar] [CrossRef]
- Rhyee, J.S.; Kwon, J.; Dak, P.; Kim, J.H.; Kim, S.M.; Park, J.; Kim, S. High-mobility transistors based on large-area and highly crystalline CVD-grown MoSe2 films on insulating substrates. Adv. Mater. 2016, 28, 2316–2321. [Google Scholar] [CrossRef]
- Xia, J.; Huang, X.; Liu, L.Z.; Wang, M.; Wang, L.; Huang, B.; Meng, X.M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 2014, 6, 8949–8955. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.; Yin, D.; Liu, N.; Omkaram, I.; Jung, C.; Im, H.; Yoon, Y. A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Res. 2017, 10, 1861–1871. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, P.; Duan, X.; Zang, K.; Luo, J.; Duan, X. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Nan, H.; Xiao, S.; Wan, X.; Gu, X.; Du, A.; Ostrikov, K.K. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef]
- Cabrera, N.; Burton, W.K. Crystal growth and surface structure. Part II. Discuss. Faraday Soc. 1949, 5, 40–48. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, D.; Jiang, F.; Zhao, P.; Wang, H.; Zhang, Z.; Jin, C. Revealing the microscopic CVD growth mechanism of MoSe2 and the role of hydrogen gas during the growth procedure. Nanotechnology 2018, 29. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Yang, R.; Wang, Q.; Zheng, J.; Qiao, L.; Duan, J. Weakened interlayer coupling in two-dimensional MoSe2 flakes with screw dislocations. Nano Res. 2019, 12, 1900–1905. [Google Scholar] [CrossRef]
- Mitioglu, A.A.; Galkowski, K.; Surrente, A.; Klopotowski, L.; Dumcenco, D.; Kis, A.; Plochocka, P. Magnetoexcitons in large area CVD-grown monolayer MoS2 and MoSe2 on sapphire. Phys. Rev. B 2016, 93, 165412. [Google Scholar] [CrossRef]
- Hwang, Y.; Shin, N. Hydrogen-assisted step-edge nucleation of MoSe2 monolayers on sapphire substrates. Nanoscale 2019, 11, 7701–7709. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, B.; Nie, H.; Li, G.; Sun, X.; Wang, Y.; He, J. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers. Nanoscale 2018, 10, 20171–20177. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, S.B.; Zheng, J.; Du, J.; Wen, S.C.; Tang, D.Y.; Loh, K.P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249–7260. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, G.; Yang, X.; Yang, H.; Zhu, M.; Zhang, S.; Peng, G.; Li, Z. Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition. Nanomaterials 2020, 10, 75. https://doi.org/10.3390/nano10010075
Wang S, Wang G, Yang X, Yang H, Zhu M, Zhang S, Peng G, Li Z. Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition. Nanomaterials. 2020; 10(1):75. https://doi.org/10.3390/nano10010075
Chicago/Turabian StyleWang, Siyuan, Guang Wang, Xi Yang, Hang Yang, Mengjian Zhu, Sen Zhang, Gang Peng, and Zheng Li. 2020. "Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition" Nanomaterials 10, no. 1: 75. https://doi.org/10.3390/nano10010075
APA StyleWang, S., Wang, G., Yang, X., Yang, H., Zhu, M., Zhang, S., Peng, G., & Li, Z. (2020). Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition. Nanomaterials, 10(1), 75. https://doi.org/10.3390/nano10010075