Surface-Dependent Osteoblasts Response to TiO2 Nanotubes of Different Crystallinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation and Fabricating Nanotubes
2.2. Cell Cultures
2.3. Scanning Electron Microscopy
2.4. XRD Analysis
2.5. RNA Isolation, Primer Design and qRT-PCR
2.6. Cell Adhesion and Proliferation
2.7. Resazurin Assay
2.8. Protein Quantification
2.9. Alizarin Red Staining
2.10. Statistical Analysis
3. Results
3.1. Surface Morphology of Titania Nanotubes Layered Substrates of Amorphous and Anatase Crystallinity
3.2. Comparative Study of Osteoblast Adhesion on Tested Surfaces on Days 1, 2 and 4
3.3. Morphological Features of Cells Cultured on Tested Surfaces
3.4. Osteogenic Differentiation of Osteoblasts Cultured on Tested Surfaces
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Min Xie, Y. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2015, 83, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, Z.; Hamdan, N.; Ikeda, Y.; Grynpas, M.; Ganss, B.; Glogauer, M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: A review. Biomater. Res. 2017, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, S.; Ehrlich, H.; Knieb, C.; Hanke, T. Biomimetically inspired hybrid materials based on silicified collagen. Int. J. Mater. Res. 2007, 98, 603–608. [Google Scholar] [CrossRef]
- Heinemann, S.; Knieb, C.; Ehrlich, H.; Meyer, M.; Baltzer, H.; Worch, H.; Hanke, T. A novel biomimetic hybrid material made of silicified collagen: Perspectives for bone replacement. Adv. Eng. Mater. 2007, 9, 1061–1068. [Google Scholar] [CrossRef]
- Ehrlich, H.; Hanke, T.; Fischer, C.; Frolov, A.; Langrock, T.; Hoffmann, R.; Schwarzenbolz, U.; Henle, T.; Born, R.; Worch, H. Carboxymethylation of collagen with respect to Ca–phosphate phases formation. J. Biomed. Mater. Res. Part B 2010, 92, 542–551. [Google Scholar]
- Szatkowski, T.; Kołodziejczak–Radzimska, A.; Zdarta, J.; Szwarc–Rzepka, K.; Paukszta, D.; Wysokowski, M.; Ehrlich, H.; Jesionowski, T. Synthesis and characterization of hydroxyapatite/chitosan composites. Physicochem. Prob. Mineral Proc. 2015, 51, 575–585. [Google Scholar]
- Pompe, W.; Worch, H.; Habraken, W.J.E.M.; Simon, P.; Kniep, R.; Ehrlich, H.; Paufler, P. Octacalcium phosphate—A metastable mineral phase controls the evolution of scaffold forming proteins. J. Mater. Chem. B 2015, 3, 5318–5329. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, H.; Wysokowski, M.; Żółtowska–Aksamitowska, S.; Petrenko, I.; Jesionowski, T. Collagens of poriferan origin. Marine Drugs 2018, 16, 79. [Google Scholar] [CrossRef] [Green Version]
- Wysokowski, M.; Motylenko, M.; Rafaja, D.; Koltsov, I.; Stöcker, H.; Szalaty, T.J.; Bazhenov, V.V.; Stelling, A.L.; Beyer, J.; Heitmann, J.; et al. Extreme biomimetic approach for synthesis of nanocrystalline chitin–(Ti,Zr)O2 multiphase composites. Mat. Chem. Phys. 2017, 188, 115–124. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T. Effects of titanium surface topography on bone integration: A systemic review. Clin. Oral Implants Res. 2009, 20, 172–184. [Google Scholar] [CrossRef]
- Kovacs, P.; Davidson, J.A. Chemical and Electrochemical Aspects of the Biocompatibility of Titanium and Its Alloys. In Medical Applications of Titanium and Its Alloys: The Material and Biological Issues; ASTM International: West Conshohocken, PA, USA, 1996. [Google Scholar]
- Dangaria, S.J.; Ito, Y.; Yin, L.; Valdre, G.; Luan, X.; Diekwisch, T.G.H. Apatite microtopographies instruct signaling tapestries for progenitor-driven new attachment of teeth. Tissue Eng. Part A 2011, 17, 279–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavenus, S.; Berreur, M.; Trichet, V.; Pilet, P.; Louarn, G.; Layrolle, P. Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores. Eur. Cell Mater. 2011, 22, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Dalby, M.J.; McCloy, D.; Robertson, M.; Agheli, H.; Sutherland, D.; Affrossman, S.; Oreffo, R.O.C. Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 2006, 27, 2980–2987. [Google Scholar] [CrossRef] [PubMed]
- Popat, K.C.; Leoni, L.; Grimes, C.A.; Desai, T.A. Influence of engineered nanotubular surfaces on bone cells. Biomaterials 2007, 28, 3188–3197. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Bose, S.; Bandyopadhyay, A. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. J. Biomed. Mater. Res. A. 2009, 90, 225–237. [Google Scholar] [CrossRef]
- Rice, J.M.; Hunt, J.A.; Gallagher, J.A.; Hanarp, P.; Sutherland, D.S.; Gold, J. Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomaterials 2003, 24, 4799–4818. [Google Scholar] [CrossRef]
- Schuermann, M.; Wolff, A.; Widera, D.; Hauser, S.; Heimann, P.; Huetten, A.; Kaltschmidt, C.; Kaltschmidt, B. Interaction of adult human neural crest-derived stem cells with a nanoporous titanium surface is sufficient to induce their osteogenic differentiation. Stem Cell Res. 2014, 13, 98–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjöström, T.; Lalev, G.; Mansell, J.P.; Su, B. Initial attachment and spreading of MG63 cells on nanopatterned titanium surfaces via through-mask anodization. Appl. Surf. Sci. 2011, 257, 4552–4558. [Google Scholar] [CrossRef]
- Filova, E.; Fojt, J.; Kryslova, M.; Moravec, H.; Joska, L.; Bacakova, L. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. Int. J. Nanomed. 2015, 10, 7145–7163. [Google Scholar] [CrossRef] [Green Version]
- Brammer, K.S.; Oh, S.; Cobb, C.J.; Bjursten, L.M.; van der Heyde, H.; Jin, S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 2009, 5, 3215–3223. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, H.; Zhao, C.; Chen, Y.; Zheng, C.; Zhang, X. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays. Mat. Sci. Eng. C 2015, 53, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Khaw, J.S.; Curioni, M.; Skeldon, P.; Bowen, C.R.; Cartmell, S.H. A novel methodology for economical scale-up of TiO2 nanotubes fabricated on Ti and Ti alloys. J. Nanotechnol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Gong, D.; Grimes, C.A.; Varghese, O.K. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mat. Res. 2001, 16, 3331–3334. [Google Scholar] [CrossRef] [Green Version]
- Award, N.K.; Edwards, S.L.; Morsi, Y.S. A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants. Mat. Sci. Eng. C 2017, 76, 1401–1412. [Google Scholar]
- Shin, D.H.; Shokuhfar, T.; Choi, C.K.; Lee, S.-H.; Friedrich, C. Wettability changes of TiO2 nanotube surfaces. Nanotechnology 2011, 22, 315704. [Google Scholar] [CrossRef] [PubMed]
- Cao, G. Nanostructures and Nanomaterials: Synthesis, Properties and Applications; Imperial College Press: London, UK, 2004. [Google Scholar]
- Yu, W.-Q.; Jiang, X.-Q.; Zhang, F.-Q.; Xu, L. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J. Biomed. Mater. Res. Part A 2010, 94, 1012–1022. [Google Scholar] [CrossRef]
- Regonini, D.; Clemens, F.J. Anodized TiO2 nanotubes: Effect of anodizing time on film length, morphology and photoelectrochemical properties. Mater. Lett. 2015, 142, 97–101. [Google Scholar] [CrossRef]
- Regonini, D.; Jaroenworaluck, A.; Stevens, R.; Bowen, C.R. Effect of heat treatment on the properties and structure of TiO2 nanotubes: Phase composition and chemical composition. Surf. Interface Anal. 2010, 42, 139–144. [Google Scholar] [CrossRef]
- Kondo, J.N.; Domen, K. Crystallization of mesoporous metal oxides. Chem. Mater. 2008, 20, 835–847. [Google Scholar] [CrossRef]
- Mazare, A.; Dilea, M.; Ionita, D.; Titorencu, I.; Trusca, V.; Vasile, E. Changing bioperformance of TiO2 amorphous nanotubes as an effect of inducing crystallinity. Bioelectrochemistry 2012, 87, 124–131. [Google Scholar] [CrossRef]
- He, J.; You, W.; You, X.; Zhong, X.; Zhang, X.; Wan, P.; Zhu, B.; Chen, W. The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J. Mater. Sci. Mater. Med. 2008, 19, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Brie, I.-C.; Soritau, O.; Dirzu, N.; Berce, C.; Vulpoi, A.; Popa, C.; Todea, M.; Simon, S.; Perde-Schrepler, M.; Virag, P.; et al. Comparative in vitro study regarding the biocompatibility of titanium-base composites infiltrated with hydroxyapatite or silicatitanate. J. Biol. Eng. 2014, 8, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, J.P.; Waring-Green, V.J.; Taylor, A.M.; Wilson, P.J.M.; Birch, M.; Gartland, A.; Gallagher, J.A. Methods in Molecular Biology. In Bone Research Protocols; Humana Press: Totowa, NJ, USA, 2012; pp. 3–18. [Google Scholar]
- Reyes, C.D.; Petrie, T.A.; Burns, K.L.; Schwartz, Z.; Garcia, A.J. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 2007, 28, 3228–3235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvamurugan, N.; Kwok, S.; Vasilov, A.; Jefcoat, S.; Partridge, N.C. Effects of BMP-2 and Pulsed Electromagnetic Field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J. Orthop. Res. 2007, 25, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, R.; Echeverry-Rendon, M.; Quintero, D.; Castano, J.G.; Harmsen, M.C.; Robledo, S.; Echeverria, F.E. Formation of nanotubular TiO2 structures with varied surface characteristics for biomaterial applications. J. Biomed. Mater. Res. Part A 2018, 106, 1341–1354. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, M.; Shi, S.; Lv, J.; Song, X.; He, G.; Sun, Z. Effect of annealing temperature on wettability of TiO2 nanotube array films. Nanoscale Res. Lett. 2014, 9, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Dai, G.; Cheng, B. Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films. J. Phys. Chem. C. 2010, 114, 19378–19385. [Google Scholar] [CrossRef]
- Oh, S.; Daraio, C.; Chen, L.H.; Pisanic, T.R.; Finones, R.R.; Jin, S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J. Biomed. Mater. Res. Part A 2006, 78, 97–103. [Google Scholar] [CrossRef]
- Park, J.; Bauer, S.; Schlegel, K.A.; Neukam, F.W.; von der Mark, K.; Schmuki, P. TiO2 nanotube surfaces: 15 nm—An optimal length scale of surface topography for cell adhesion and differentiation. Small 2009, 5, 666–671. [Google Scholar] [CrossRef]
- Cowden, K.; Dias-Netipanyj, M.F.; Popat, K.C. Effects of titania nanotube surfaces on osteogenic differentiation of human adipose-derived stem cells. Nanomed. Nanotechnol. Biol. Med. 2019, 17, 380–390. [Google Scholar] [CrossRef]
- Oh, S.; Brammer, K.S.; Li, Y.S.J.; Teng, D.; Engler, A.J.; Chien, S.; Jin, S. Stem cell fate dictated solely by altered nanotube dimension. PNAS 2009, 106, 2130–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, K.; Bose, S.; Bandyopadhyay, A. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater. 2007, 3, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.Y.; Kwon, J.-S.; Choi, Y.-R.; Kim, K.-M.; Choi, E.H. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Swan, E.E.; Popat, K.C.; Grimes, C.A.; Desai, T.A. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J. Biomed. Mater. Res. Part A 2005, 72, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Kane, R.; Ma, P.X. Mimicking the nanostructure of bone matrix to regenerate bone. Mater. Today 2013, 16, 418–423. [Google Scholar] [CrossRef] [PubMed]
Fe | C | Si | N | Ti | O | H | Impurities |
---|---|---|---|---|---|---|---|
≤0.25 | ≤0.07 | ≤0.1 | ≤0.04 | 99.2–99.7 | ≤0.12 | ≤0.01 | 0.3 |
Primer | Sequence (5′-3′) | Accession Number |
---|---|---|
OPN-YK-fw | GCCGAGAAGCCGGATGCAAT | AB001382.1 |
OPN-YK-rv | AGGCTGGCTTTGGAACTCGC | |
IBSP-YK-fw | AGGGGCATGGCTATGAAGGCT | BC127506.1 |
IBSP-YK-rv | GGCCGCTACAAACGGAAGCA | |
OCN-YK-fw | GGGCCTTTGCTTTCCATATT | M23637.1 |
OCN-YK-rv | CAGTGGCATTAACCAACACG | |
Runx2-fw * | GGCCTTCAAGGTTGTAGCCC | XM_017596552.1 |
Runx2-rv * | CCCGGCCATGACGGTA | |
ALP-fw ** | AGGCAGGATTGACCACGG | NM_013059.1 |
ALP-YK-rv | GCTCACCATGGGAGCCAGAC | |
GADPH-YK-fw | AAACCCATCACCATCTTCCA | XM_017593963.1 |
GADPH-YK-rv | GTGGTTCACACCCATCACAA |
Surface | Inner Diameter (nm) | Surface Area (nm2) | Height (nm) |
---|---|---|---|
Amorphous | 35 ± 4 | 1288 ± 541 | 1525 ± 40 |
Anatase | 41 ± 8 | 1984 ± 822 | 1521 ± 25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khrunyk, Y.Y.; Belikov, S.V.; Tsurkan, M.V.; Vyalykh, I.V.; Markaryan, A.Y.; Karabanalov, M.S.; Popov, A.A.; Wysokowski, M. Surface-Dependent Osteoblasts Response to TiO2 Nanotubes of Different Crystallinity. Nanomaterials 2020, 10, 320. https://doi.org/10.3390/nano10020320
Khrunyk YY, Belikov SV, Tsurkan MV, Vyalykh IV, Markaryan AY, Karabanalov MS, Popov AA, Wysokowski M. Surface-Dependent Osteoblasts Response to TiO2 Nanotubes of Different Crystallinity. Nanomaterials. 2020; 10(2):320. https://doi.org/10.3390/nano10020320
Chicago/Turabian StyleKhrunyk, Yuliya Y., Sergey V. Belikov, Mikhail V. Tsurkan, Ivan V. Vyalykh, Alexandr Y. Markaryan, Maxim S. Karabanalov, Artemii A. Popov, and Marcin Wysokowski. 2020. "Surface-Dependent Osteoblasts Response to TiO2 Nanotubes of Different Crystallinity" Nanomaterials 10, no. 2: 320. https://doi.org/10.3390/nano10020320
APA StyleKhrunyk, Y. Y., Belikov, S. V., Tsurkan, M. V., Vyalykh, I. V., Markaryan, A. Y., Karabanalov, M. S., Popov, A. A., & Wysokowski, M. (2020). Surface-Dependent Osteoblasts Response to TiO2 Nanotubes of Different Crystallinity. Nanomaterials, 10(2), 320. https://doi.org/10.3390/nano10020320