Study on the Mechanism of Nano-SiO2 for Improving the Properties of Cement-Based Soil Stabilizer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Stabilizer
2.2. Nano-SiO2
2.3. Sample Preparation
2.4. Test Procedures
3. Results and Discussions
3.1. Effects of NS on Mechanical Properties of N-MBER
3.2. Strength of Different Cement-based Soil Stabilizers
3.3. Effect of NS on the Hydration Process of Soil Stabilizers
3.4. Particle Fractal Characteristics of Stabilized Loess
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, J.E.; Sun, S.L.; Wu, P.T. A New Type of Soil Stabilizer: China Patent No. 200410073273.5. P. Northwest Sci.-Technol. Univ. Agric. For. 2005, 6, 29. [Google Scholar]
- Coudert, E.; Paris, M.; Deneele, D.; Russo, G.; Tarantino, A. Use of alkali activated high-calcium fly ash binder for kaolin clay soil stabilisation: Physicochemical evolution. Constr. Build. Mater. 2019, 201, 539–552. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Cai, G.; Liu, S. Application of lignin-based by-product stabilized silty soil in highway subgrade: A field investigation. J. Clean. Prod. 2017, 142, 4243–4257. [Google Scholar] [CrossRef]
- Zhang, Y.; Korkiala-Tanttu, L.K.; Boren, M. Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part II-Stabilization and Characterization of Quarry Fine Materials. Materials 2019, 12, 2450. [Google Scholar] [CrossRef] [Green Version]
- Ta’negonbadi, B.; Noorzad, R. Stabilization of clayey soil using lignosulfonate. Transp. Geotech. 2017, 12, 45–55. [Google Scholar] [CrossRef]
- Phetchuay, C.; Horpibulsuk, S.; Arulrajah, A.; Suksiripattanapong, C.; Udomchai, A. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. Appl. Clay Sci. 2016, 127, 134–142. [Google Scholar] [CrossRef]
- Fan, H.H.; Gao, J.E.; Wu, P.T. Prospect of researches on soil stabilizer. J. Northwest A F Univ. 2006, 141–146, 152. [Google Scholar]
- Shahnavaz, M.; Haddad, M.N.; Gholami, A.; Panahpour, E. Investigation the Efficiency of Soil Stabilizers against Soil Loss and their Effects on Chemical Properties of Soil. Arid Land Res. Manag. 2019, 33, 119–135. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, Y.; Zhang, Y.; Wang, Y. Effect of fines on the mechanical properties of composite soil stabilizer stabilized gravel soil. Constr. Build. Mater. 2016, 126, 701–710. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sivapullaiah, P.V. Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils Found. 2016, 56, 205–212. [Google Scholar] [CrossRef]
- Flores, J.; Kamali, M.; Ghahremaninezhad, A. An Investigation into the Properties and Microstructure of Cement Mixtures Modified with Cellulose Nanocrystal. Materials 2017, 10, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kathirvel, P.; Anik, G.A.; Kaliyaperuma, S.R.M. Effect of partial replacement of cement with Prosopis juliflora ash on the strength and microstructural characteristics of cement concrete. Constr. Build. Mater. 2019, 225, 273–282. [Google Scholar] [CrossRef]
- Wei, Y.; Song, C.; Chen, B.; Ahmad, M.R. Experimental investigation on two new corn stalk biocomposites based on magnesium phosphate cement and ordinary Portland cement. Constr. Build. Mater. 2019, 224, 700–710. [Google Scholar] [CrossRef]
- del Carmen Camacho, M.; Galao, O.; Javier Baeza, F.; Zornoza, E.; Garces, P. Mechanical Properties and Durability of CNT Cement Composites. Materials 2014, 7, 1640–1651. [Google Scholar] [CrossRef]
- Samiei, R.R.; Daniotti, B.; Pelosato, R.; Dotelli, G. Properties of cement-lime mortars vs. cement mortars containing recycled concrete aggregates. Constr. Build. Mater. 2015, 84, 84–94. [Google Scholar] [CrossRef]
- Attaur, R.; Lee, J.B.; Qudoos, A.; Jakhrani, S.H.; Kim, H.G.; Ryou, J.-S. Influence of nano silica on the fresh, hardened and durability properties of selfcleaning white Portland cement mortars. J. Ceram. Process. Res. 2019, 20, 270–275. [Google Scholar]
- Huang, Q.; Wen, J.; Li, Y.; Zheng, W.; Chang, C.; Dong, J.; Man, Y.; Danchun; Zhou, A.; Xiao, X. The effect of silica fume on the durability of magnesium oxychloride cement. Ceramics-Silikaty 2019, 63, 338–346. [Google Scholar] [CrossRef]
- Rupasinghe, M.; Mendis, P.; Tuan, N.; Ngoc, N.T.; Sofi, M. Compressive strength prediction of nano-silica incorporated cement systems based on a multiscale approach. Mater. Des. 2017, 115, 379–392. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, Y.F.; Li, M. Influence of Nano-SiO2 on the Consistency, Setting Time, Early-Age Strength, and Shrinkage of Composite Cement Pastes. Adv. Mater. Sci. Eng. 2016, 2016, 5283706. [Google Scholar] [CrossRef] [Green Version]
- Lavergne, F.; Belhadi, R.; Carriat, J.; Fraj, A.B. Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste. Cement Concr. Compos. 2019, 95, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Roychand, R.; De Silva, S.; Law, D.; Setunge, S. High volume fly ash cement composite modified with nano silica, hydrated lime and set accelerator. Mater. Struct. 2016, 49, 1997–2008. [Google Scholar] [CrossRef]
- Shafiq, N.; Kumar, R.; Zahid, M.; Tufail, R.F. Effects of Modified Metakaolin Using Nano-Silica on the Mechanical Properties and Durability of Concrete. Materials 2019, 12, 2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murthy, A.R.; Ganesh, P. Effect of steel fibres and nano silica on fracture properties of medium strength concrete. Adv. Concr. Constr. 2019, 7, 143–150. [Google Scholar]
- Kong, R.; Zhang, F.; Wang, G.; Peng, J. Stabilization of Loess Using Nano-SiO2. Materials 2018, 11, 1014. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; McGlinchey, D.; Crapper, M. Breakage functions of particles of four different materials subjected to uniaxial compression. Part. Sci. Technol. 2016, 34, 494–501. [Google Scholar] [CrossRef]
- Cheol, H.M.; Chuel, S.B. Estimation of Compressive Strength of Concrete Using Blast Furnace Slag Subjected to High Temperature Environment. J. Environ. Sci. Int. 2007, 16, 347–355. [Google Scholar]
- Mandelbrot, B.B.; Passoja, D.E.; Paullay, A.J. Fractal character of fracture surfaces of metals. Nature 1984, 308, 721–722. [Google Scholar] [CrossRef]
- Tyler, S.W.; Wheatcraft, S.W. Fractal scaling of soil particle-size distributions—Analysis and limitations. Soil Sci. Soc. Am. J. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- Yang, P.L.; Luo, Y.P.; Shi, Y.C. Soil fractal characteristics characterized by weight distribution of particle size. Chin. Sci. Bull. 1993, 20, 1896–1899. [Google Scholar]
- Huang, G.H.; Zhan, W.H. Fractal Property of Soil Particle Size Distribution and Its Application. Acta Pedol. Sin. 2002, 39, 497–503. [Google Scholar]
- Fan, H.H.; Gao, J.E.; Wu, P.T.; Ju, W.; Sun, S.L. Comparison of different construction techniques for the catchment area with soil stabilizer. Trans. CSAE 2006, 22, 73–77. [Google Scholar]
- Fan, H.H.; Gao, J.E.; Wu, P.T.; Yang, S.W. Mechanical and rainwater harvesting properties of catchments with different structures and soil stabilizers. J. Northwest A F Univ. 2013, 41, 224–234. [Google Scholar]
- Ji, L.; Gao, J.E.; Hao, L.A.; Zhang, Y.X.; Sun, S.L. Experimental Research on Elastic Modulus of MBER Stabilized Soil. Bull. Soil Water Conserv. 2012, 32, 261–264. [Google Scholar]
- Zhang, T.; Gao, J.E.; Li, X.H.; Gao, Z.; Wang, F.; Sun, S.L. Factor Test for Splitting Tensile Strength of MBER Stabilized Soil. Bull. Soil Water Conserv. 2013, 33, 49–52. [Google Scholar]
- Xu, X.Q.; Gao, J.E. Rainwater quality assessment of a solidified soil cistern using new construction technology. J. Southeast Univ. 2014, 30, 240–245. [Google Scholar]
Ingredients | Cement Clinker | Fly Ash | Gypsum | Active Agent | Soil Stabilizer |
---|---|---|---|---|---|
Content % | 85 | 11 | 3 | 1 | 100 |
SO3 Content | 2.01 | 0.26 | 1.40 | 0 | 3.67 |
Physical Properties | Nano-SiO2 |
---|---|
Purity (%) | 99.9% |
APS (nm) | 30 |
SSA (m2/g) | 600 |
Colour | white |
Morphology | spherical |
Bulk Density (g/cm3) | 0.08 |
True Density (g/cm3) | 2.2~2.6 |
Statistics | Nano Content % | ||||||
---|---|---|---|---|---|---|---|
0.0 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | ||
Breaking Strength | Adj.R-Square | 0.929 | 0.888 | 0.921 | 0.970 | 0.900 | 0.996 |
Reduced Chi-Sqr | 0.077 | 0.096 | 0.072 | 0.034 | 0.136 | 0.003 | |
P > F | 0.005 | 0.011 | 0.006 | 0.001 | 0.009 | 0.0001 | |
Compressive Strength | Adj.R-Square | 0.977 | 0.928 | 0.975 | 0.995 | 0.996 | 0.955 |
Reduced Chi-Sqr | 1.464 | 4.721 | 1.516 | 0.373 | 0.329 | 4.398 | |
P > F | 0.012 | 0.036 | 0.013 | 0.002 | 0.002 | 0.022 |
Materials | Compressive Strength (MPa) | ||||
---|---|---|---|---|---|
3 d | 7 d | 14 d | 28 d | 60 d | |
NS-MBER | 33.30 | 43.10 | 49.70 | 54.20 | 55.20 |
MBER | 28.50 | 37.60 | 42.60 | 46.20 | 48.50 |
Cement 325 | 17.90 | 25.20 | 29.80 | 33.30 | 35.40 |
Materials | n | m | Statistics | |||
---|---|---|---|---|---|---|
Adj.R-Square | Reduced C-S | |||||
NS-MBER | 25.25 | 56.12 | 5.80 | 1.58 | 0.97 | 0.32 |
MBER | −39.64 | 52.03 | 0.69 | 0.72 | 0.99 | 0.01 |
Cement325 | −1.80 | 38.02 | 3.07 | 0.90 | 0.98 | 0.02 |
Point | Metering Mode | C | O | Na | Mg | Al | Si | S | K | Ca | Fe | Mineral Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Wt% | 5.00 | 43.62 | 0.74 | 0.77 | 3.74 | 10.04 | 0.60 | 0.94 | 31.53 | 3.02 | C-S-H |
At% | 9.08 | 59.44 | 0.70 | 0.69 | 3.02 | 7.80 | 0.41 | 0.53 | 17.15 | 1.18 | ||
2 | Wt% | 5.00 | 43.72 | 0.85 | 0.87 | 3.84 | 9.85 | 0.58 | 1.08 | 31.54 | 2.67 | CH |
At% | 9.06 | 59.46 | 0.81 | 0.78 | 3.09 | 7.63 | 0.40 | 0.60 | 17.13 | 1.04 | ||
3 | Wt% | 4.78 | 43.73 | 0.83 | 0.76 | 3.76 | 9.83 | 0.63 | 1.02 | 31.97 | 2.69 | CH |
At% | 8.68 | 59.69 | 0.79 | 0.69 | 3.04 | 7.64 | 0.43 | 0.57 | 17.42 | 1.05 | ||
4 | Wt% | 7.85 | 45.85 | 1.06 | 0.52 | 4.10 | 10.23 | 0.69 | 1.12 | 27.68 | 0.92 | AFt |
At% | 13.44 | 58.97 | 0.94 | 0.44 | 3.13 | 7.50 | 0.44 | 0.59 | 14.21 | 0.34 | ||
5 | Wt% | 7.77 | 45.76 | 0.95 | 0.53 | 4.21 | 10.3 | 0.72 | 1.12 | 27.58 | 1.07 | C-S-H |
At% | 13.34 | 58.96 | 0.85 | 0.45 | 3.22 | 7.56 | 0.46 | 0.59 | 14.19 | 0.39 | ||
6 | Wt% | 7.92 | 45.87 | 1.07 | 0.56 | 4.18 | 10.33 | 0.50 | 0.90 | 27.77 | 0.89 | AFt |
At% | 13.56 | 58.91 | 0.95 | 0.48 | 3.18 | 7.56 | 0.32 | 0.48 | 14.23 | 0.33 | ||
7 | Wt% | 5.29 | 46.43 | 0.82 | 0.46 | 1.53 | 7.74 | 0.45 | 0.84 | 35.31 | 1.14 | C-S-H |
At% | 9.43 | 62.20 | 0.76 | 0.40 | 1.22 | 5.91 | 0.30 | 0.46 | 18.88 | 0.44 | ||
8 | Wt% | 3.91 | 38.53 | 1.58 | 0.48 | 2.59 | 16.38 | 0.72 | 1.82 | 32.78 | 1.20 | C-S-H |
At% | 7.39 | 54.61 | 1.56 | 0.45 | 2.18 | 13.22 | 0.51 | 1.06 | 18.54 | 0.49 | ||
9 | Wt% | 3.72 | 42.95 | 0.98 | 0.07 | 1.53 | 16.70 | 0.23 | 1.52 | 32.30 | 0.00 | CH |
At% | 6.83 | 59.09 | 0.94 | 0.06 | 1.24 | 13.09 | 0.16 | 0.86 | 17.74 | 0.00 | ||
10 | Wt% | 5.22 | 41.74 | 0.71 | 1.87 | 4.33 | 11.11 | 0.59 | 0.75 | 30.05 | 3.62 | C-S-H |
At% | 9.53 | 57.22 | 0.68 | 1.69 | 3.52 | 8.67 | 0.4 | 0.42 | 16.45 | 1.42 | ||
11 | Wt% | 5.17 | 41.99 | 0.76 | 1.82 | 4.30 | 10.73 | 0.62 | 0.80 | 30.26 | 3.55 | C-S-H |
At% | 9.43 | 57.52 | 0.73 | 1.64 | 3.50 | 8.38 | 0.42 | 0.45 | 16.55 | 1.39 | ||
12 | Wt% | 5.08 | 41.68 | 0.78 | 1.99 | 4.45 | 10.98 | 0.51 | 0.68 | 30.17 | 3.68 | AFt |
At% | 9.29 | 57.24 | 0.75 | 1.80 | 3.63 | 8.59 | 0.35 | 0.38 | 16.54 | 1.45 |
Materials | The Ratio of Particle Volume to Total Volume in Different Particle Sizes | ||||||
---|---|---|---|---|---|---|---|
<0.002 | 0.002~0.02 | 0.02~0.05 | 0.05~0.1 | 0.1~0.25 | 0.25~0.5 | 0.5~2 | |
N-SS | 8.88 | 17.58 | 32.30 | 18.74 | 7.432 | 5.92 | 9.14 |
SS | 7.87 | 16.16 | 30.67 | 20.62 | 11.11 | 8.033 | 5.53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Gao, J.; Fan, H.; Li, X.; Gao, Z.; Xue, L.; Sun, S. Study on the Mechanism of Nano-SiO2 for Improving the Properties of Cement-Based Soil Stabilizer. Nanomaterials 2020, 10, 405. https://doi.org/10.3390/nano10030405
Zhang X, Gao J, Fan H, Li X, Gao Z, Xue L, Sun S. Study on the Mechanism of Nano-SiO2 for Improving the Properties of Cement-Based Soil Stabilizer. Nanomaterials. 2020; 10(3):405. https://doi.org/10.3390/nano10030405
Chicago/Turabian StyleZhang, Xingchen, Jianen Gao, Henghui Fan, Xinghua Li, Zhe Gao, Li Xue, and Shengli Sun. 2020. "Study on the Mechanism of Nano-SiO2 for Improving the Properties of Cement-Based Soil Stabilizer" Nanomaterials 10, no. 3: 405. https://doi.org/10.3390/nano10030405
APA StyleZhang, X., Gao, J., Fan, H., Li, X., Gao, Z., Xue, L., & Sun, S. (2020). Study on the Mechanism of Nano-SiO2 for Improving the Properties of Cement-Based Soil Stabilizer. Nanomaterials, 10(3), 405. https://doi.org/10.3390/nano10030405