Measurement of Quantum Yields of Monolayer TMDs Using Dye-Dispersed PMMA Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Thin Films of R6G Embedded within a PMMA Matrix
2.2. Exfoliation and Growth of 1L-TMDs
2.3. Quantum Yield, Confocal PL, Raman, Transmission, and Scanning Electron Microscopy Measurements
3. Results and Discussion
- ΦTMD = QY of the TMD to be measured
- ΦRef = QY of the reference sample measured with the integrating sphere
- = PL intensity of the TMD measured under the microscope
- = PL intensity of the reference sample measured under the microscope
- ATMD = Absorption of the TMD measured under the microscope
- ARef = Absorption of the reference sample measured under the microscope
- = Calibration factor for the wavelength dependence on the sensitivities of our microscope and spectrometer with respect to the peak emission wavelength of the reference sample (553 nm). Regarding the emission of each 1L-TMDs, Fsp was estimated from the calibration factor vs. wavelength curve shown in Figure S3 in Supplementary Materials. This curve was obtained using 532 nm, 633 nm, and 785 nm lasers in our microscope equipped with a spectrometer, under the same experimental conditions. For our system, this was measured to be 1.17, 1.30, 1.80, and 2.0 for the peak emission at 613 nm of 1L-WS2, 658 nm of 1L-MoS2, 745 nm of 1L-WSe2, and 785 nm of 1L-MoSe2, respectively.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, R.S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A.C.; Avouris, P.; Steiner, M. Electroluminescence in single layer MoS2. Nano Lett. 2013, 13, 1416–1421. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wang, C.; Ataca, C.; Li, Y.; Chen, H.; Cai, H.; Suslu, A.; Grossman, J.C.; Jiang, C.; Liu, Q.; et al. Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p-n vdW heterostructure. ACS Appl. Mater. Interfaces 2016, 8, 2533–2539. [Google Scholar] [CrossRef]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef]
- Ye, Y.; Wong, Z.J.; Lu, X.; Ni, X.; Zhu, H.; Chen, X.; Wang, Y.; Zhang, X. Monolayer excitonic laser. Nat. Photonics 2015, 9, 733–737. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Huang, L. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402–7408. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 2015, 15, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P.M.; Yakobson, B.I.; Idrobo, J.-I. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622. [Google Scholar] [CrossRef]
- Hong, J.; Hu, Z.; Probert, M.; Li, K.; Lv, D.; Yang, X.; Gu, L.; Mao, N.; Feng, Q.; Xie, L.; et al. Exploring atomic defects in molybdenum disulfide monolayers. Nat. Commun. 2015, 6, 6293. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.Y.; Jin, Y.; Yun, S.J.; Zhao, J.; Baik, J.; Keum, D.H.; Lee, H.S.; Lee, Y.H. Heterogeneous defect domains in single-crystalline hexagonal WS2. Adv. Mater. 2017, 29, 1605043. [Google Scholar] [CrossRef]
- Roy, S.; Choi, W.; Jeon, S.; Kim, D.-H.; Kim, H.; Yun, S.J.; Lee, Y.; Lee, J.; Kim, Y.-M.; Kim, J. Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett. 2018, 18, 4523–4530. [Google Scholar] [CrossRef] [PubMed]
- Amani, M.; Lien, D.-H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S.R.; Addou, R.; KC, S.; Dubey, M.; et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhakal, K.P.; Roy, S.; Yun, S.J.; Ghimire, G.; Seo, C.; Kim, J. Heterogeneous modulation of exciton emission in triangular WS2 monolayers by chemical treatment. J. Mater. Chem. C 2017, 5, 6820–6827. [Google Scholar] [CrossRef]
- Amani, M.; Taheri, P.; Addou, R.; Ahn, G.H.; Kiriya, D.; Lien, D.-H.; Ager, J.W., III; Wallace, R.M.; Javey, A. Recombination kinetics and effects of superacid treatment in sulfur and selenium-based transition metal dichalcogenides. Nano Lett. 2016, 16, 2786–2791. [Google Scholar] [CrossRef]
- Han, H.-V.; Lu, A.-Y.; Lu, L.-S.; Huang, J.-K.; Li, H.; Hsu, C.-L.; Lin, Y.-C.; Chiu, M.-H.; Suenaga, K.; Chu, C.-W.; et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano 2016, 10, 1454–1461. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liao, Q.; Liu, S.; Kang, Z.; Zhang, Z.; Du, J.; Li, F.; Zhang, S.; Xiao, J.; Liu, B.; et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881. [Google Scholar] [CrossRef]
- Ardekani, H.; Younts, R.; Yu, Y.; Cao, L.; Gundogdu, K. Reversible photoluminescence tining by defect passivation via laser irradiation on aged monolayer MoS2. ACS Appl. Mater. Interfaces 2019, 11, 38240–38246. [Google Scholar] [CrossRef]
- Sivaram, S.V.; Hanbicki, A.T.; Rosenberger, M.R.; Jernigan, G.G.; Chuang, H.-J.; McCreary, K.M.; Jonker, B.T. Spatially selective enhancement of photoluminescence in MoS2 by exciton-mediated adsorption and defect passivation. ACS Appl. Mater. Interfaces 2019, 11, 16147–16155. [Google Scholar] [CrossRef]
- Bera, A.; Muthu, D.V.S.; Sood, A.K. Enhanced Raman and photoluminescence response in monolayer MoS2 due to laser healing of defects. J. Raman Spectrosc. 2018, 49, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Resch-Genger, U.; Rurack, K. Determination of photoluminescence quantum yield of dilute dye solutions. (IUPAC Technical Report) *. Pure Appl. Chem. 2013, 85, 2005–2026. [Google Scholar] [CrossRef]
- Jameson, D.M.; Croney, J.C.; Moens, P.D.J. [1] Fluorescence: Basic concepts, practical aspects, and some anecdotes. Methods Enzymol. 2003, 360, 1–43. [Google Scholar] [PubMed]
- Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys. Chem. Chem. Phys. 2009, 11, 9850–9860. [Google Scholar] [CrossRef]
- Porres, L.; Holland, A.; Palsson, L.-O.; Monkman, A.P.; Kemp, C.; Beeby, A.J. Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J. Fluoresc. 2006, 16, 267–273. [Google Scholar] [CrossRef]
- De Mello, J.C.; Wittmann, H.F.; Friend, R.H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 1997, 9, 230–232. [Google Scholar] [CrossRef]
- Demas, J.N.; Crosby, G.A. The measurement of photoluminescence quantum yields. A review. J. Phys. Chem. 1971, 75, 991–1024. [Google Scholar]
- Mohamed, N.B.; Wang, F.; Lim, H.E.; Zhang, W.; Koirala, S.; Mouri, S.; Miyauchi, Y.; Matsuda, K. Evaluation of photoluminescence quantum yield of monolayer WSe2 using reference dye of 3-borylbithiophene derivative. Phys. Status Solidi B 2017, 254, 1600563. [Google Scholar] [CrossRef]
- Mohamed, N.B.; Lim, H.E.; Wang, F.; Koirala, S.; Mouri, S.; Shinokita, K.; Miyauchi, Y.; Matsuda, K. Long radiative lifetimes of excitons in monolayer transition-metal dichalcogenides MX2 (M = Mo, W; X = S, Se). Appl. Phys. Express 2018, 11, 015201. [Google Scholar] [CrossRef]
- Mohamed, N.B.; Shinokita, K.; Wang, X.; Lim, H.E.; Tan, D.; Miyauchi, Y.; Matsuda, K. Photoluminescence quantum yields for atomically thin-layered ReS2: Identification of indirect-bandgap semiconductors. Appl. Phys. Lett. 2018, 113, 121112. [Google Scholar] [CrossRef]
- Kubin, R.F.; Fletcher, A.N. Fluorescence quantum yields of some rhodamine dyes. J. Lumin. 1982, 27, 455–462. [Google Scholar] [CrossRef]
- Fischer, M.; Georges, J. Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem. Phys. Lett. 1996, 260, 115–118. [Google Scholar] [CrossRef]
- Sasai, R.; Iyi, N.; Fujita, T.; Arbeloa, F.L.; Martinez, V.M.; Takagi, K.; Itoh, H. Luminescence properties of rhodamine 6G intercalated in surfactant/clay hybrid thin solid films. Langmuir 2004, 20, 4715. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Roy, S.; Lee, J.; Kim, B.G.; Kim, H.; Park, J.H.; Yun, S.J.; Han, G.H.; Leem, J.-Y.; Kim, J. Enhanced light emission from monolayer semiconductors by forming heterostructures with ZnO thin films. ACS Appl. Mater. Interfaces 2016, 8, 28809–28815. [Google Scholar] [CrossRef]
- Roy, S.; Neupane, G.P.; Dhakal, K.P.; Lee, J.; Yun, S.J.; Han, G.H.; Kim, J. Observation of charge transfer in heterostructures composed of MoSe2 quantum dots and a monolayer MoS2 or WSe2. J. Phys. Chem. C 2017, 121, 1997–2004. [Google Scholar] [CrossRef]
- Roy, S.; Ajmal, C.M.; Baik, S.; Kim, J. Silver nanoflower for single-particle SERS with 10 pM sensitivity. Nanotechnology 2017, 28, 465705. [Google Scholar] [CrossRef]
- Zondervan, R.; Kulzer, F.; Kol’chenko, M.A.; Orrit, M. Photobleaching of rhodamine 6G in poly (vinyl alcohol) at the ensemble and single-molecule levels. J. Phys. Chem. A 2004, 108, 1657–1665. [Google Scholar] [CrossRef]
- Zondervan, R.; Kulzer, F.; Orlinskii, S.B.; Orrit, M. Photoblinking of Rhodamine 6G in poly (vinyl alcohol): Radical dark state formed through the triplet. J. Phys. Chem. A 2003, 107, 6770–6776. [Google Scholar] [CrossRef]
- Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schu¨ller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi RRL 2015, 9, 457–461. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Zheng, W.; Liu, H.; Zhuang, X.; Fan, P.; Gong, Y.; Li, H.; Wu, X.; Jiang, Y.; Zhu, X.; et al. Nonlinear photoluminescence in monolayer WS2: Parabolic emission and excitation fluence-dependent recombination dynamics. Nanoscale 2017, 9, 7235–7241. [Google Scholar] [CrossRef] [PubMed]
- Chernikov, A.; Ruppert, C.; Hill, H.M.; Rigosi, A.F.; Heinz, T.F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics 2015, 9, 466–470. [Google Scholar] [CrossRef]
- Aslan, O.B. Probing Transition Metal Dichalcogenides via Strain-Tuned and Polarization-Resolved Optical Spectroscopy. Ph.D. Thesis, Columbia University, New York, NY, USA, 2017. [Google Scholar]
- Wang, S.; Wang, J.; Zhao, W.; Giustiniano, F.; Chu, L.; Verzhbitsiy, I.; Yong, J.Z.; Eda, G. Efficient carrier-to-exciton conversion in field emission tunnel diodes based on MIS-type van der Waals Heterostack. Nano Lett. 2017, 17, 5156–5162. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Ghimire, G.; Roy, S.; Kim, Y.; Seo, C.; Sood, A.K.; Jang, J.I.; Kim, J. Impeding exciton−exciton annihilation in monolayer WS2 by laser irradiation. ACS Photonics 2018, 5, 2904–2911. [Google Scholar]
- Lee, Y.; Kim, J. Controlling lattice defects and inter-exciton interactions in monolayer transition metal dichalcogenides for efficient light emission. ACS Photonics 2018, 5, 4187–4194. [Google Scholar]
- Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D.R.T.; et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916. [Google Scholar] [CrossRef]
- Morozov, Y.V.; Kuno, M. Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2. Appl. Phys. Lett. 2015, 107, 083103. [Google Scholar]
Concentration (M) | Thickness | 10−2 | 5 × 10−3 | 10−3 | 5 × 10−4 | 10−4 | 5 × 10−5 |
---|---|---|---|---|---|---|---|
Quantum Yield (%) | 300 nm | 14.5 | 17.8 | 19.5 | 20.3 | 20.6 | 22.2 |
80 nm | 5.4 | 6.4 | 6.2 | 9.1 | 9.5 | 10.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, S.; Sharbirin, A.S.; Lee, Y.; Kim, W.B.; Kim, T.S.; Cho, K.; Kang, K.; Jung, H.S.; Kim, J. Measurement of Quantum Yields of Monolayer TMDs Using Dye-Dispersed PMMA Thin Films. Nanomaterials 2020, 10, 1032. https://doi.org/10.3390/nano10061032
Roy S, Sharbirin AS, Lee Y, Kim WB, Kim TS, Cho K, Kang K, Jung HS, Kim J. Measurement of Quantum Yields of Monolayer TMDs Using Dye-Dispersed PMMA Thin Films. Nanomaterials. 2020; 10(6):1032. https://doi.org/10.3390/nano10061032
Chicago/Turabian StyleRoy, Shrawan, Anir S. Sharbirin, Yongjun Lee, Won Bin Kim, Tae Soo Kim, Kiwon Cho, Kibum Kang, Hyun Suk Jung, and Jeongyong Kim. 2020. "Measurement of Quantum Yields of Monolayer TMDs Using Dye-Dispersed PMMA Thin Films" Nanomaterials 10, no. 6: 1032. https://doi.org/10.3390/nano10061032
APA StyleRoy, S., Sharbirin, A. S., Lee, Y., Kim, W. B., Kim, T. S., Cho, K., Kang, K., Jung, H. S., & Kim, J. (2020). Measurement of Quantum Yields of Monolayer TMDs Using Dye-Dispersed PMMA Thin Films. Nanomaterials, 10(6), 1032. https://doi.org/10.3390/nano10061032