Size Distribution, Mechanical and Electrical Properties of CuO Nanowires Grown by Modified Thermal Oxidation Methods
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Size Distribution of CuO Nanowires
3.2. Mechanical Characterization
3.3. Electrical Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Z.; Yang, Y.; Liang, J.; Hu, Z.; Li, S.; Peng, S.; Qian, Y. Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process. J. Phys. Chem. B 2003, 107, 12658–12661. [Google Scholar] [CrossRef]
- Konishi, Y.; Motoyama, M.; Matsushima, H.; Fukunaka, Y.; Ishii, R.; Ito, Y. Electrodeposition of Cu nanowire arrays with a template. J. Electroanal. Chem. 2003, 559, 149–153. [Google Scholar] [CrossRef]
- Han, J.-W.; Lohn, A.; Kobayashi, N.P.; Meyyappan, M. Evolutional Transformation of Copper Oxide Nanowires to Copper Nanowires by a Reduction Technique. Mater. Express 2011, 1, 176–180. [Google Scholar] [CrossRef]
- Reitz, J.B.; Solomon, E.I. Propylene Oxidation on Copper Oxide Surfaces: Electronic and Geometric Contributions to Reactivity and Selectivity. J. Am. Chem. Soc. 1998, 120, 11467–11478. [Google Scholar] [CrossRef]
- Hoa, N.D.; An, S.Y.; Dung, N.Q.; Van Quy, N.; Kima, D. Synthesis of p-type semiconducting cupric oxide thin films and their application to hydrogen detection. Sens. Actuators B Chem. 2010, 146, 239–244. [Google Scholar] [CrossRef]
- Zappa, D.; Comini, E.; Zamani, R.R.; Arbiol, J.; Morante, J.R.; Sberveglieri, G. Preparation of copper oxide nanowire-based conductometric chemical sensors. Sens. Actuators B Chem. 2013, 182, 7–15. [Google Scholar] [CrossRef]
- Luo, L.-B.; Wang, X.-H.; Xie, C.; Li, Z.; Lu, R.; Yang, X.-B.; Lu, J. One-dimensional CuO nanowire: Synthesis, electrical, and optoelectronic devices application. Nanoscale Res. Lett. 2014, 9, 637. [Google Scholar] [CrossRef] [Green Version]
- Sung, S.-Y.; Kim, S.; Jo, K.-M.; Lee, J.-H.; Kim, J.-J.; Kim, S.-G.; Chai, K.-H.; Pearton, S.J.; Norton, D.P.; Heo, Y.-W. Fabrication of p-channel thin-film transistors using CuO active layers deposited at low temperature. Appl. Phys. Lett. 2010, 97, 222109. [Google Scholar] [CrossRef]
- Li, D.; Hu, J.; Wu, R.; Lu, J.G. Conductometric chemical sensor based on individual CuO nanowires. Nanotechnology 2010, 21, 485502. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.-T.; Chen, J.-M.; Lin, H.-H.; Shih, H.-C. Field emission from various CuO nanostructures. Appl. Phys. Lett. 2003, 83, 3383–3385. [Google Scholar] [CrossRef]
- Fan, Z.; Fan, X.; Li, A.; Dong, L. In situ forming, characterization, and transduction of nanowire memristors. Nanoscale 2013, 5, 12310–12315. [Google Scholar] [CrossRef]
- Jiang, X.; Herricks, T.; Xia, Y. CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air. Nano Lett. 2002, 2, 1333–1338. [Google Scholar] [CrossRef]
- Tan, E.P.S.; Zhu, Y.; Yu, T.; Dai, L.; Sow, C.-H.; Tan, V.; Lim, C.T. Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 2007, 90, 163112. [Google Scholar] [CrossRef]
- Loh, O.Y.; Espinosa, H.D. Nanoelectromechanical contact switches. Nat. Nanotechnol. 2012, 7, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Jasulaneca, L.; Kosmaca, J.; Meija, R.; Andzane, J.; Erts, D. Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches—Materials solutions and operational conditions. Beilstein J. Nanotechnol. 2018, 9, 271–300. [Google Scholar] [CrossRef]
- Husain, A.; Hone, J.; Postma, H.; Huang, X.M.H.; Drake, T.; Barbic, M.; Scherer, A.; Roukes, M.L. Nanowire-based very-high-frequency electromechanical resonator. Appl. Phys. Lett. 2003, 83, 1240–1242. [Google Scholar] [CrossRef]
- Meija, R.; I Livshits, A.; Kosmaca, J.; Jasulaneca, L.; Andzane, J.; Biswas, S.; Holmes, J.D.; Erts, D. Resonance assisted jump-in voltage reduction for electrostatically actuated nanobeam-based gateless NEM switches. Nanotechnology 2019, 30, 385203. [Google Scholar] [CrossRef]
- Xiao, H.-M.; Fu, S.-Y.; Zhu, L.-P.; Li, Y.-Q.; Yang, G. Controlled Synthesis and Characterization of CuO Nanostructures through a Facile Hydrothermal Route in the Presence of Sodium Citrate. Eur. J. Inorg. Chem. 2007, 2007, 1966–1971. [Google Scholar] [CrossRef]
- Toboonsung, B.; Singjai, P. Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process. J. Alloy. Compd. 2011, 509, 4132–4137. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Kang, Y.; Wu, S.; Wang, S. Brochantite tabular microspindles and their conversion to wormlike CuO structures for gas sensing. CrystEngComm 2012, 14, 620–625. [Google Scholar] [CrossRef]
- Kumar, A.; Srivastava, A.K.; Tiwari, P.; Nandedkar, R.V. The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Physics: Condens. Matter 2004, 16, 8531–8543. [Google Scholar] [CrossRef]
- Liang, J.; Kishi, N.; Soga, T.; Jimbo, T. The Synthesis of Highly Aligned Cupric Oxide Nanowires by Heating Copper Foil. J. Nanomater. 2011, 2011, 1–8. [Google Scholar] [CrossRef]
- Gonçalves, A.M.B.; Campos, L.C.; Ferlauto, A.; Lacerda, R.G. On the growth and electrical characterization of CuO nanowires by thermal oxidation. J. Appl. Phys. 2009, 106, 34303. [Google Scholar] [CrossRef]
- Xu, C.; Woo, C.; Shi, S.-Q. The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates. Superlattices Microstruct. 2004, 36, 31–38. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Yuan, Y.; Liao, L.; Pan, C. Effect of electric field on CuO nanoneedle growth during thermal oxidation and its growth mechanism. J. Appl. Phys. 2010, 108, 24308. [Google Scholar] [CrossRef]
- Tang, C.; Liao, X.; Zhong, W.; Yu, H.; Liu, Z. Electric field assisted growth and field emission properties of thermally oxidized CuO nanowires. RSC Adv. 2017, 7, 6439–6446. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Lilley, C.M. Surface Effect on the Elastic Behavior of Static Bending Nanowires. Nano Lett. 2008, 8, 1798–1802. [Google Scholar] [CrossRef]
- He, J.; Lilley, C.M. Surface stress effect on bending resonance of nanowires with different boundary conditions. Appl. Phys. Lett. 2008, 93, 263108. [Google Scholar] [CrossRef]
- Wu, J.; Yin, B.; Wu, F.; Myung, Y.; Banerjee, P. Charge transport in single CuO nanowires. Appl. Phys. Lett. 2014, 105, 183506. [Google Scholar] [CrossRef]
- Lin, Z.; Zhan, R.; Li, L.; Liu, H.; Jia, S.; Chen, H.; Tang, S.; She, J.; Deng, S.; Xu, N.; et al. Defect-concentration dependence of electrical transport mechanisms in CuO nanowires. RSC Adv. 2018, 8, 2188–2195. [Google Scholar] [CrossRef] [Green Version]
- A Talin, A.; Leonard, F.; Katzenmeyer, A.M.; Swartzentruber, B.; Picraux, S.T.; E Toimil-Molares, M.; Cederberg, J.G.; Wang, X.; Hersee, S.D.; Rishinaramangalum, A. Transport characterization in nanowires using an electrical nanoprobe. Semicond. Sci. Technol. 2010, 25, 24015. [Google Scholar] [CrossRef]
- Kunakova, G.; Viter, R.; Abay, S.; Biswas, S.; Holmes, J.D.; Bauch, T.; Lombardi, F.; Erts, D. Space charge limited current mechanism in Bi2S3 nanowires. J. Appl. Phys. 2016, 119, 114308. [Google Scholar] [CrossRef] [Green Version]
- Jasulaneca, L.; Meija, R.; Livshits, A.I.; Prikulis, J.; Biswas, S.; Holmes, J.D.; Erts, D. Determination of Young’s modulus of Sb2S3 nanowires by in situ resonance and bending methods. Beilstein J. Nanotechnol. 2016, 7, 278–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosmaca, J.; Jasulaneca, L.; Meija, R.; Andzane, J.; Romanova, M.; Kunakova, G.; Erts, D. Young’s modulus and indirect morphological analysis of Bi2Se3nanoribbons by resonance measurements. Nanotechnology 2017, 28, 325701. [Google Scholar] [CrossRef] [PubMed]
- Kosmaca, J.; Meija, R.; Antsov, M.; Kunakova, G.; Sondors, R.; Iatsunskyi, I.; Coy, E.; Doherty, J.; Biswas, S.; Holmes, J.D.; et al. Investigating the mechanical properties of GeSn nanowires. Nanoscale 2019, 11, 13612–13619. [Google Scholar] [CrossRef] [PubMed]
- Kunakova, G.; Meija, R.; Bite, I.; Prikulis, J.; Kosmaca, J.; Varghese, J.; Holmes, J.D.; Erts, D. Sensing properties of assembled Bi2S3nanowire arrays. Phys. Scr. 2015, 90, 94017. [Google Scholar] [CrossRef]
- Ramma, M.M.; Katkevics, J.; Jasulaneca, L.; Kunakova, G.; Sondors, R.; Meija, R.; Erts, D.; Kosmaca, J. Dielectrophoretic alignment and electrical characterization of CuO nanowire-based systems. 2020. Unpublished work. [Google Scholar]
- Liang, J.B.; Li, X.Y.; Kishi, N.; Soga, T. Single Phase CuO Thin Films Prepared by Thermal Oxidation in Air with Water Vapor. Adv. Mater. Res. 2015, 1109, 544–548. [Google Scholar] [CrossRef]
- Han, Z.; Lu, L.; Zhang, H.W.; Yang, Z.Q.; Wang, F.H.; Lu, K. Comparison of the Oxidation Behavior of Nanocrystalline and Coarse-Grain Copper. Oxid. Met. 2005, 63, 261–275. [Google Scholar] [CrossRef]
- Farbod, M.; Ghaffari, N.M.; Kazeminezhad, I. Fabrication of single phase CuO nanowires and effect of electric field on their growth and investigation of their photocatalytic properties. Ceram. Int. 2014, 40, 517–521. [Google Scholar] [CrossRef]
- Jasulaneca, L.; Livshits, A.; Meija, R.; Kosmaca, J.; Sondors, R.; Ramma, M.; Jevdokimovs, D.; Prikulis, J.; Erts, D. Fabrication and characterization of CuO nanowire based nanoelectromechanical switches. 2020. Unpublished work. [Google Scholar]
- Wang, G.; Li, X. Predicting Young’s modulus of nanowires from first-principles calculations on their surface and bulk materials. J. Appl. Phys. 2008, 104, 113517. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-H.; Bhunia, S.; Mehregany, M. Electromechanical Computing at 500°C with Silicon Carbide. Science 2010, 329, 1316–1318. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sondors, R.; Kosmaca, J.; Kunakova, G.; Jasulaneca, L.; Ramma, M.M.; Meija, R.; Kauranens, E.; Antsov, M.; Erts, D. Size Distribution, Mechanical and Electrical Properties of CuO Nanowires Grown by Modified Thermal Oxidation Methods. Nanomaterials 2020, 10, 1051. https://doi.org/10.3390/nano10061051
Sondors R, Kosmaca J, Kunakova G, Jasulaneca L, Ramma MM, Meija R, Kauranens E, Antsov M, Erts D. Size Distribution, Mechanical and Electrical Properties of CuO Nanowires Grown by Modified Thermal Oxidation Methods. Nanomaterials. 2020; 10(6):1051. https://doi.org/10.3390/nano10061051
Chicago/Turabian StyleSondors, Raitis, Jelena Kosmaca, Gunta Kunakova, Liga Jasulaneca, Matiss Martins Ramma, Raimonds Meija, Edijs Kauranens, Mikk Antsov, and Donats Erts. 2020. "Size Distribution, Mechanical and Electrical Properties of CuO Nanowires Grown by Modified Thermal Oxidation Methods" Nanomaterials 10, no. 6: 1051. https://doi.org/10.3390/nano10061051
APA StyleSondors, R., Kosmaca, J., Kunakova, G., Jasulaneca, L., Ramma, M. M., Meija, R., Kauranens, E., Antsov, M., & Erts, D. (2020). Size Distribution, Mechanical and Electrical Properties of CuO Nanowires Grown by Modified Thermal Oxidation Methods. Nanomaterials, 10(6), 1051. https://doi.org/10.3390/nano10061051