Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation
Abstract
:1. Introduction
2. Models and Methods
3. Results and Discussion
3.1. Force-Indenter Depth Responses
3.2. Hardness-Contact Strain Responses
3.3. Surface Accumulation Analysis
3.4. Incipient Plastic Structures
3.5. Twinning Partial Slip
3.5.1. Formation of Twinning Partial Slips
3.5.2. Twinning Partial Slips in Incipient Plastic Structures
3.5.3. Expansion of Twinning Partial Slips
3.6. Dislocation Transmission
3.7. Dislocation Length Quantitative Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, X.Y.; Lu, K. Playing with defects in metals. Nat. Mater. 2017, 16, 700–701. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, X.Y.; Lu, K. Making Materials Plain: Concept, Principle and Applications. Acta Metall. Sin. 2017, 53, 1413–1417. [Google Scholar] [CrossRef]
- Meyers, M.A.; Traiviratana, S.; Lubarda, V.A.; Benson, D.J.; Bringa, E.M. The role of dislocations in the growth of nanosized voids in ductile failure of metals. Jom 2009, 61, 35–41. [Google Scholar] [CrossRef]
- Lu, K.; Lu, L.; Suresh, S. Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science 2009, 324, 349–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 2016, 1, 15. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Furnish, T.A.; Kassner, M.E.; Hodge, A.M. Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture. J. Mater. Res. 2012, 27, 3049–3057. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, K.Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M.A.; Wang, J.; Zhang, X. Damage-tolerant nanotwinned metals with nanovoids under radiation environments. Nat. Commun. 2015, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.; Cai, C.; Greer, J.R. Influence of homogeneous interfaces on the strength of 500 nm diameter Cu nanopillars. Nano Lett. 2011, 11, 1743–1746. [Google Scholar] [CrossRef]
- Zhu, T.; Gao, H.J. Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling. Scr. Mater. 2012, 66, 843–848. [Google Scholar] [CrossRef]
- Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Ultrahigh Strength and High Electrical Conductivity in Copper. Science 2004, 304, 422–426. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Chen, X.; Huang, X.; Lu, K. Revealing the Maximum Strength in Nanotwinned Copper. Science 2009, 323, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhou, H.F.; Lu, Q.H.; Gao, H.J.; Lu, L. Extra strengthening and work hardening in gradient nanotwinned metals. Science 2018, 362, 6414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Z.S.; Li, X.Y.; Gui, L.J.; Lu, Q.H.; Zhu, T.; Gao, H.J.; Lu, L. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 2013, 61, 217–227. [Google Scholar] [CrossRef]
- Wu, Z.X.; Zhang, Y.W.; Srolovitz, D.J. Dislocation-twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals. Acta Mater. 2009, 57, 4508–4518. [Google Scholar] [CrossRef]
- Lu, N.; Du, K.; Lu, L.; Ye, H.Q. Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper. Nat. Commun. 2015, 6, 7648. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.M.; Sansoz, F.; LaGrange, T.; Ott, R.T.; Marian, J.; Barbee, T.W.; Hamza, A.V. Defective twin boundaries in nanotwinned metals. Nat. Mater. 2013, 12, 697–702. [Google Scholar] [CrossRef]
- Fang, Q.J.L.; Sansoz, F. Influence of intrinsic kink-like defects on screw dislocation coherent twin boundary interactions in copper. Acta Materialia 2017, 123, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Xing, B.; Yan, S.; Jiang, W.; Qin, Q.H. Deformation mechanism of kink-step distorted coherent twin boundaries in copper nanowire. AIMS Mater. Sci. 2017, 4, 102–117. [Google Scholar] [CrossRef]
- Bufford, D.; Liu, Y.; Wang, J.; Wang, H.; Zhang, X. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat. Commun. 2014, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Peng, X.; Fu, T.; Chen, X.; Xiang, H.; Li, Q.; Hu, N. Molecular dynamics simulation of BCC Ta with coherent twin boundaries under nanoindentation. Mater. Sci. Eng. A 2017, 700, 609–616. [Google Scholar] [CrossRef]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-Atom-Method Functions For The Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, And Their Alloys. Phys. Rev. B 1986, 33, 7983–7991. [Google Scholar] [CrossRef] [PubMed]
- Plimpton, S. Fast Parallel Algorithms For Short-Range Molecular-Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Tschopp, M.A.; McDowell, D.L. Structures and energies of Sigma 3 asymmetric tilt grain boundaries in copper and aluminium. Philos. Mag. 2007, 87, 3147–3173. [Google Scholar] [CrossRef]
- Cao, A.J.; Wei, Y.G. Atomistic simulations of the mechanical behavior of fivefold twinned nanowires. Phys. Rev. B 2006, 74, 7. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Misra, A.; Hirth, J.P. Shear response of Sigma 3{112} twin boundaries in face-centered-cubic metals. Phys. Rev. B 2011, 83, 8. [Google Scholar] [CrossRef]
- Alhafez, I.A.; Ruestes, C.J.; Gao, Y.; Urbassek, H.M. Nanoindentation of hcp metals: A comparative simulation study of the evolution of dislocation networks. Nanotechnology 2015, 27, 045706. [Google Scholar] [CrossRef]
- Yang, B.; Zheng, B.; Hu, X.; Zhang, K.; Li, Y.; He, P.; Yue, Z. Atomistic simulation of nanoindentation on incipient plasticity and dislocation evolution in γ/γ′ phase with interface and void. Comput. Mater. Sci. 2016, 114, 172–177. [Google Scholar] [CrossRef]
- Salehinia, I.; Lawrence, S.K.; Bahr, D.F. The effect of crystal orientation on the stochastic behavior of dislocation nucleation and multiplication during nanoindentation. Acta Mater. 2013, 61, 1421–1431. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 2012, 20, 085007. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Hertz, H. Ueber die Berührung fester elastischer Körper. Journal fur die Reine und Angewandte Mathematik 1882, 1882, 156–171. [Google Scholar] [CrossRef]
- Mishin, Y.; Farkas, D.; Mehl, M.J.; Papaconstantopoulos, D.A. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 1999, 59, 3393–3407. [Google Scholar] [CrossRef] [Green Version]
- Tsuru, T.; Shibutani, Y. Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu. Phys. Rev. B 2007, 75, 6. [Google Scholar] [CrossRef]
- Liu, Y.; Jian, J.; Chen, Y.; Wang, H.; Zhang, X. Plasticity and ultra-low stress induced twin boundary migration in nanotwinned Cu by in situ nanoindentation studies. Appl. Phys. Lett. 2014, 104, 5. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics. Proc. Inst. Mech. Eng. 2009, 223, 254. [Google Scholar]
- Swain, M.V. Mechanical property characterisation of small volumes of brittle materials with spherical tipped indenters. Mater. Sci. Eng. A 1998, 253, 160–166. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Ziegenhain, G.; Urbassek, H.M.; Hartmaier, A. Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: A simulational study. J. Appl. Phys. 2010, 107, 6. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Ruestes, C.J.; Tramontina, D.R.; Urbassek, H.M. Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J. Mech. Phys. Solids 2015, 75, 58–75. [Google Scholar] [CrossRef]
- Field, J.S.; Swain, M.V. Determining The Mechanical-Properties Of Small Volumes Of Material From Submicrometer Spherical Indentations. J. Mater. Res. 1995, 10, 101–112. [Google Scholar] [CrossRef]
- Fu, T.; Peng, X.; Chen, X.; Weng, S.; Hu, N.; Li, Q.; Wang, Z. Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Sci. Rep. 2016, 6, 35665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Yu, K.Y.; Chen, Y.; Song, M.; Wang, H.; Kirk, M.A.; Li, M.; Zhang, X. In Situ Study of Defect Migration Kinetics and Self-Healing of Twin Boundaries in Heavy Ion Irradiated Nanotwinned Metals. Nano Lett. 2015, 15, 2922–2927. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, J.; Misra, A.; Zhang, X.; Huang, J.Y.; Hirth, J.P. Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 2011, 59, 5989–5996. [Google Scholar] [CrossRef]
Model | Adjust R-Square of Linear Fit | Maximum Hardness (GPa) |
---|---|---|
TPT | 0.99087 | 27.74 |
SDT | 0.99121 | 26.98 |
TDT | 0.99163 | 27.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Ni, Y.; Zhang, Z. Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation. Nanomaterials 2020, 10, 221. https://doi.org/10.3390/nano10020221
Hu X, Ni Y, Zhang Z. Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation. Nanomaterials. 2020; 10(2):221. https://doi.org/10.3390/nano10020221
Chicago/Turabian StyleHu, Xiaowen, Yushan Ni, and Zhongli Zhang. 2020. "Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation" Nanomaterials 10, no. 2: 221. https://doi.org/10.3390/nano10020221
APA StyleHu, X., Ni, Y., & Zhang, Z. (2020). Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation. Nanomaterials, 10(2), 221. https://doi.org/10.3390/nano10020221